mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	produce two results.) * Do not touch volatile loads. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@36604 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			4531 lines
		
	
	
		
			173 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			4531 lines
		
	
	
		
			173 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by Nate Begeman and is distributed under the
 | |
| // University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass combines dag nodes to form fewer, simpler DAG nodes.  It can be run
 | |
| // both before and after the DAG is legalized.
 | |
| //
 | |
| // FIXME: Missing folds
 | |
| // sdiv, udiv, srem, urem (X, const) where X is an integer can be expanded into
 | |
| //  a sequence of multiplies, shifts, and adds.  This should be controlled by
 | |
| //  some kind of hint from the target that int div is expensive.
 | |
| // various folds of mulh[s,u] by constants such as -1, powers of 2, etc.
 | |
| //
 | |
| // FIXME: select C, pow2, pow2 -> something smart
 | |
| // FIXME: trunc(select X, Y, Z) -> select X, trunc(Y), trunc(Z)
 | |
| // FIXME: Dead stores -> nuke
 | |
| // FIXME: shr X, (and Y,31) -> shr X, Y   (TRICKY!)
 | |
| // FIXME: mul (x, const) -> shifts + adds
 | |
| // FIXME: undef values
 | |
| // FIXME: divide by zero is currently left unfolded.  do we want to turn this
 | |
| //        into an undef?
 | |
| // FIXME: select ne (select cc, 1, 0), 0, true, false -> select cc, true, false
 | |
| // 
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "dagcombine"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/CodeGen/SelectionDAG.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Target/TargetLowering.h"
 | |
| #include "llvm/Target/TargetOptions.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NodesCombined   , "Number of dag nodes combined");
 | |
| STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created");
 | |
| STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created");
 | |
| 
 | |
| namespace {
 | |
| #ifndef NDEBUG
 | |
|   static cl::opt<bool>
 | |
|     ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
 | |
|                     cl::desc("Pop up a window to show dags before the first "
 | |
|                              "dag combine pass"));
 | |
|   static cl::opt<bool>
 | |
|     ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
 | |
|                     cl::desc("Pop up a window to show dags before the second "
 | |
|                              "dag combine pass"));
 | |
| #else
 | |
|   static const bool ViewDAGCombine1 = false;
 | |
|   static const bool ViewDAGCombine2 = false;
 | |
| #endif
 | |
|   
 | |
|   static cl::opt<bool>
 | |
|     CombinerAA("combiner-alias-analysis", cl::Hidden,
 | |
|                cl::desc("Turn on alias analysis during testing"));
 | |
| 
 | |
|   static cl::opt<bool>
 | |
|     CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden,
 | |
|                cl::desc("Include global information in alias analysis"));
 | |
| 
 | |
| //------------------------------ DAGCombiner ---------------------------------//
 | |
| 
 | |
|   class VISIBILITY_HIDDEN DAGCombiner {
 | |
|     SelectionDAG &DAG;
 | |
|     TargetLowering &TLI;
 | |
|     bool AfterLegalize;
 | |
| 
 | |
|     // Worklist of all of the nodes that need to be simplified.
 | |
|     std::vector<SDNode*> WorkList;
 | |
| 
 | |
|     // AA - Used for DAG load/store alias analysis.
 | |
|     AliasAnalysis &AA;
 | |
| 
 | |
|     /// AddUsersToWorkList - When an instruction is simplified, add all users of
 | |
|     /// the instruction to the work lists because they might get more simplified
 | |
|     /// now.
 | |
|     ///
 | |
|     void AddUsersToWorkList(SDNode *N) {
 | |
|       for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
 | |
|            UI != UE; ++UI)
 | |
|         AddToWorkList(*UI);
 | |
|     }
 | |
| 
 | |
|     /// removeFromWorkList - remove all instances of N from the worklist.
 | |
|     ///
 | |
|     void removeFromWorkList(SDNode *N) {
 | |
|       WorkList.erase(std::remove(WorkList.begin(), WorkList.end(), N),
 | |
|                      WorkList.end());
 | |
|     }
 | |
|     
 | |
|   public:
 | |
|     /// AddToWorkList - Add to the work list making sure it's instance is at the
 | |
|     /// the back (next to be processed.)
 | |
|     void AddToWorkList(SDNode *N) {
 | |
|       removeFromWorkList(N);
 | |
|       WorkList.push_back(N);
 | |
|     }
 | |
| 
 | |
|     SDOperand CombineTo(SDNode *N, const SDOperand *To, unsigned NumTo,
 | |
|                         bool AddTo = true) {
 | |
|       assert(N->getNumValues() == NumTo && "Broken CombineTo call!");
 | |
|       ++NodesCombined;
 | |
|       DOUT << "\nReplacing.1 "; DEBUG(N->dump());
 | |
|       DOUT << "\nWith: "; DEBUG(To[0].Val->dump(&DAG));
 | |
|       DOUT << " and " << NumTo-1 << " other values\n";
 | |
|       std::vector<SDNode*> NowDead;
 | |
|       DAG.ReplaceAllUsesWith(N, To, &NowDead);
 | |
|       
 | |
|       if (AddTo) {
 | |
|         // Push the new nodes and any users onto the worklist
 | |
|         for (unsigned i = 0, e = NumTo; i != e; ++i) {
 | |
|           AddToWorkList(To[i].Val);
 | |
|           AddUsersToWorkList(To[i].Val);
 | |
|         }
 | |
|       }
 | |
|       
 | |
|       // Nodes can be reintroduced into the worklist.  Make sure we do not
 | |
|       // process a node that has been replaced.
 | |
|       removeFromWorkList(N);
 | |
|       for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
 | |
|         removeFromWorkList(NowDead[i]);
 | |
|       
 | |
|       // Finally, since the node is now dead, remove it from the graph.
 | |
|       DAG.DeleteNode(N);
 | |
|       return SDOperand(N, 0);
 | |
|     }
 | |
|     
 | |
|     SDOperand CombineTo(SDNode *N, SDOperand Res, bool AddTo = true) {
 | |
|       return CombineTo(N, &Res, 1, AddTo);
 | |
|     }
 | |
|     
 | |
|     SDOperand CombineTo(SDNode *N, SDOperand Res0, SDOperand Res1,
 | |
|                         bool AddTo = true) {
 | |
|       SDOperand To[] = { Res0, Res1 };
 | |
|       return CombineTo(N, To, 2, AddTo);
 | |
|     }
 | |
|   private:    
 | |
|     
 | |
|     /// SimplifyDemandedBits - Check the specified integer node value to see if
 | |
|     /// it can be simplified or if things it uses can be simplified by bit
 | |
|     /// propagation.  If so, return true.
 | |
|     bool SimplifyDemandedBits(SDOperand Op) {
 | |
|       TargetLowering::TargetLoweringOpt TLO(DAG);
 | |
|       uint64_t KnownZero, KnownOne;
 | |
|       uint64_t Demanded = MVT::getIntVTBitMask(Op.getValueType());
 | |
|       if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO))
 | |
|         return false;
 | |
| 
 | |
|       // Revisit the node.
 | |
|       AddToWorkList(Op.Val);
 | |
|       
 | |
|       // Replace the old value with the new one.
 | |
|       ++NodesCombined;
 | |
|       DOUT << "\nReplacing.2 "; DEBUG(TLO.Old.Val->dump());
 | |
|       DOUT << "\nWith: "; DEBUG(TLO.New.Val->dump(&DAG));
 | |
|       DOUT << '\n';
 | |
| 
 | |
|       std::vector<SDNode*> NowDead;
 | |
|       DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New, NowDead);
 | |
|       
 | |
|       // Push the new node and any (possibly new) users onto the worklist.
 | |
|       AddToWorkList(TLO.New.Val);
 | |
|       AddUsersToWorkList(TLO.New.Val);
 | |
|       
 | |
|       // Nodes can end up on the worklist more than once.  Make sure we do
 | |
|       // not process a node that has been replaced.
 | |
|       for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
 | |
|         removeFromWorkList(NowDead[i]);
 | |
|       
 | |
|       // Finally, if the node is now dead, remove it from the graph.  The node
 | |
|       // may not be dead if the replacement process recursively simplified to
 | |
|       // something else needing this node.
 | |
|       if (TLO.Old.Val->use_empty()) {
 | |
|         removeFromWorkList(TLO.Old.Val);
 | |
|         
 | |
|         // If the operands of this node are only used by the node, they will now
 | |
|         // be dead.  Make sure to visit them first to delete dead nodes early.
 | |
|         for (unsigned i = 0, e = TLO.Old.Val->getNumOperands(); i != e; ++i)
 | |
|           if (TLO.Old.Val->getOperand(i).Val->hasOneUse())
 | |
|             AddToWorkList(TLO.Old.Val->getOperand(i).Val);
 | |
|         
 | |
|         DAG.DeleteNode(TLO.Old.Val);
 | |
|       }
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     bool CombineToPreIndexedLoadStore(SDNode *N);
 | |
|     bool CombineToPostIndexedLoadStore(SDNode *N);
 | |
|     
 | |
|     
 | |
|     /// visit - call the node-specific routine that knows how to fold each
 | |
|     /// particular type of node.
 | |
|     SDOperand visit(SDNode *N);
 | |
| 
 | |
|     // Visitation implementation - Implement dag node combining for different
 | |
|     // node types.  The semantics are as follows:
 | |
|     // Return Value:
 | |
|     //   SDOperand.Val == 0   - No change was made
 | |
|     //   SDOperand.Val == N   - N was replaced, is dead, and is already handled.
 | |
|     //   otherwise            - N should be replaced by the returned Operand.
 | |
|     //
 | |
|     SDOperand visitTokenFactor(SDNode *N);
 | |
|     SDOperand visitADD(SDNode *N);
 | |
|     SDOperand visitSUB(SDNode *N);
 | |
|     SDOperand visitADDC(SDNode *N);
 | |
|     SDOperand visitADDE(SDNode *N);
 | |
|     SDOperand visitMUL(SDNode *N);
 | |
|     SDOperand visitSDIV(SDNode *N);
 | |
|     SDOperand visitUDIV(SDNode *N);
 | |
|     SDOperand visitSREM(SDNode *N);
 | |
|     SDOperand visitUREM(SDNode *N);
 | |
|     SDOperand visitMULHU(SDNode *N);
 | |
|     SDOperand visitMULHS(SDNode *N);
 | |
|     SDOperand visitAND(SDNode *N);
 | |
|     SDOperand visitOR(SDNode *N);
 | |
|     SDOperand visitXOR(SDNode *N);
 | |
|     SDOperand visitVBinOp(SDNode *N, ISD::NodeType IntOp, ISD::NodeType FPOp);
 | |
|     SDOperand visitSHL(SDNode *N);
 | |
|     SDOperand visitSRA(SDNode *N);
 | |
|     SDOperand visitSRL(SDNode *N);
 | |
|     SDOperand visitCTLZ(SDNode *N);
 | |
|     SDOperand visitCTTZ(SDNode *N);
 | |
|     SDOperand visitCTPOP(SDNode *N);
 | |
|     SDOperand visitSELECT(SDNode *N);
 | |
|     SDOperand visitSELECT_CC(SDNode *N);
 | |
|     SDOperand visitSETCC(SDNode *N);
 | |
|     SDOperand visitSIGN_EXTEND(SDNode *N);
 | |
|     SDOperand visitZERO_EXTEND(SDNode *N);
 | |
|     SDOperand visitANY_EXTEND(SDNode *N);
 | |
|     SDOperand visitSIGN_EXTEND_INREG(SDNode *N);
 | |
|     SDOperand visitTRUNCATE(SDNode *N);
 | |
|     SDOperand visitBIT_CONVERT(SDNode *N);
 | |
|     SDOperand visitVBIT_CONVERT(SDNode *N);
 | |
|     SDOperand visitFADD(SDNode *N);
 | |
|     SDOperand visitFSUB(SDNode *N);
 | |
|     SDOperand visitFMUL(SDNode *N);
 | |
|     SDOperand visitFDIV(SDNode *N);
 | |
|     SDOperand visitFREM(SDNode *N);
 | |
|     SDOperand visitFCOPYSIGN(SDNode *N);
 | |
|     SDOperand visitSINT_TO_FP(SDNode *N);
 | |
|     SDOperand visitUINT_TO_FP(SDNode *N);
 | |
|     SDOperand visitFP_TO_SINT(SDNode *N);
 | |
|     SDOperand visitFP_TO_UINT(SDNode *N);
 | |
|     SDOperand visitFP_ROUND(SDNode *N);
 | |
|     SDOperand visitFP_ROUND_INREG(SDNode *N);
 | |
|     SDOperand visitFP_EXTEND(SDNode *N);
 | |
|     SDOperand visitFNEG(SDNode *N);
 | |
|     SDOperand visitFABS(SDNode *N);
 | |
|     SDOperand visitBRCOND(SDNode *N);
 | |
|     SDOperand visitBR_CC(SDNode *N);
 | |
|     SDOperand visitLOAD(SDNode *N);
 | |
|     SDOperand visitSTORE(SDNode *N);
 | |
|     SDOperand visitINSERT_VECTOR_ELT(SDNode *N);
 | |
|     SDOperand visitVINSERT_VECTOR_ELT(SDNode *N);
 | |
|     SDOperand visitVBUILD_VECTOR(SDNode *N);
 | |
|     SDOperand visitVECTOR_SHUFFLE(SDNode *N);
 | |
|     SDOperand visitVVECTOR_SHUFFLE(SDNode *N);
 | |
| 
 | |
|     SDOperand XformToShuffleWithZero(SDNode *N);
 | |
|     SDOperand ReassociateOps(unsigned Opc, SDOperand LHS, SDOperand RHS);
 | |
|     
 | |
|     bool SimplifySelectOps(SDNode *SELECT, SDOperand LHS, SDOperand RHS);
 | |
|     SDOperand SimplifyBinOpWithSameOpcodeHands(SDNode *N);
 | |
|     SDOperand SimplifySelect(SDOperand N0, SDOperand N1, SDOperand N2);
 | |
|     SDOperand SimplifySelectCC(SDOperand N0, SDOperand N1, SDOperand N2, 
 | |
|                                SDOperand N3, ISD::CondCode CC, 
 | |
|                                bool NotExtCompare = false);
 | |
|     SDOperand SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1,
 | |
|                             ISD::CondCode Cond, bool foldBooleans = true);
 | |
|     SDOperand ConstantFoldVBIT_CONVERTofVBUILD_VECTOR(SDNode *, MVT::ValueType);
 | |
|     SDOperand BuildSDIV(SDNode *N);
 | |
|     SDOperand BuildUDIV(SDNode *N);
 | |
|     SDNode *MatchRotate(SDOperand LHS, SDOperand RHS);
 | |
|     SDOperand ReduceLoadWidth(SDNode *N);
 | |
|     
 | |
|     /// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
 | |
|     /// looking for aliasing nodes and adding them to the Aliases vector.
 | |
|     void GatherAllAliases(SDNode *N, SDOperand OriginalChain,
 | |
|                           SmallVector<SDOperand, 8> &Aliases);
 | |
| 
 | |
|     /// isAlias - Return true if there is any possibility that the two addresses
 | |
|     /// overlap.
 | |
|     bool isAlias(SDOperand Ptr1, int64_t Size1,
 | |
|                  const Value *SrcValue1, int SrcValueOffset1,
 | |
|                  SDOperand Ptr2, int64_t Size2,
 | |
|                  const Value *SrcValue2, int SrcValueOffset2);
 | |
|                  
 | |
|     /// FindAliasInfo - Extracts the relevant alias information from the memory
 | |
|     /// node.  Returns true if the operand was a load.
 | |
|     bool FindAliasInfo(SDNode *N,
 | |
|                        SDOperand &Ptr, int64_t &Size,
 | |
|                        const Value *&SrcValue, int &SrcValueOffset);
 | |
|                        
 | |
|     /// FindBetterChain - Walk up chain skipping non-aliasing memory nodes,
 | |
|     /// looking for a better chain (aliasing node.)
 | |
|     SDOperand FindBetterChain(SDNode *N, SDOperand Chain);
 | |
|     
 | |
| public:
 | |
|     DAGCombiner(SelectionDAG &D, AliasAnalysis &A)
 | |
|       : DAG(D),
 | |
|         TLI(D.getTargetLoweringInfo()),
 | |
|         AfterLegalize(false),
 | |
|         AA(A) {}
 | |
|     
 | |
|     /// Run - runs the dag combiner on all nodes in the work list
 | |
|     void Run(bool RunningAfterLegalize); 
 | |
|   };
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  TargetLowering::DAGCombinerInfo implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) {
 | |
|   ((DAGCombiner*)DC)->AddToWorkList(N);
 | |
| }
 | |
| 
 | |
| SDOperand TargetLowering::DAGCombinerInfo::
 | |
| CombineTo(SDNode *N, const std::vector<SDOperand> &To) {
 | |
|   return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size());
 | |
| }
 | |
| 
 | |
| SDOperand TargetLowering::DAGCombinerInfo::
 | |
| CombineTo(SDNode *N, SDOperand Res) {
 | |
|   return ((DAGCombiner*)DC)->CombineTo(N, Res);
 | |
| }
 | |
| 
 | |
| 
 | |
| SDOperand TargetLowering::DAGCombinerInfo::
 | |
| CombineTo(SDNode *N, SDOperand Res0, SDOperand Res1) {
 | |
|   return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| 
 | |
| // isSetCCEquivalent - Return true if this node is a setcc, or is a select_cc
 | |
| // that selects between the values 1 and 0, making it equivalent to a setcc.
 | |
| // Also, set the incoming LHS, RHS, and CC references to the appropriate 
 | |
| // nodes based on the type of node we are checking.  This simplifies life a
 | |
| // bit for the callers.
 | |
| static bool isSetCCEquivalent(SDOperand N, SDOperand &LHS, SDOperand &RHS,
 | |
|                               SDOperand &CC) {
 | |
|   if (N.getOpcode() == ISD::SETCC) {
 | |
|     LHS = N.getOperand(0);
 | |
|     RHS = N.getOperand(1);
 | |
|     CC  = N.getOperand(2);
 | |
|     return true;
 | |
|   }
 | |
|   if (N.getOpcode() == ISD::SELECT_CC && 
 | |
|       N.getOperand(2).getOpcode() == ISD::Constant &&
 | |
|       N.getOperand(3).getOpcode() == ISD::Constant &&
 | |
|       cast<ConstantSDNode>(N.getOperand(2))->getValue() == 1 &&
 | |
|       cast<ConstantSDNode>(N.getOperand(3))->isNullValue()) {
 | |
|     LHS = N.getOperand(0);
 | |
|     RHS = N.getOperand(1);
 | |
|     CC  = N.getOperand(4);
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // isOneUseSetCC - Return true if this is a SetCC-equivalent operation with only
 | |
| // one use.  If this is true, it allows the users to invert the operation for
 | |
| // free when it is profitable to do so.
 | |
| static bool isOneUseSetCC(SDOperand N) {
 | |
|   SDOperand N0, N1, N2;
 | |
|   if (isSetCCEquivalent(N, N0, N1, N2) && N.Val->hasOneUse())
 | |
|     return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| SDOperand DAGCombiner::ReassociateOps(unsigned Opc, SDOperand N0, SDOperand N1){
 | |
|   MVT::ValueType VT = N0.getValueType();
 | |
|   // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one use
 | |
|   // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2))
 | |
|   if (N0.getOpcode() == Opc && isa<ConstantSDNode>(N0.getOperand(1))) {
 | |
|     if (isa<ConstantSDNode>(N1)) {
 | |
|       SDOperand OpNode = DAG.getNode(Opc, VT, N0.getOperand(1), N1);
 | |
|       AddToWorkList(OpNode.Val);
 | |
|       return DAG.getNode(Opc, VT, OpNode, N0.getOperand(0));
 | |
|     } else if (N0.hasOneUse()) {
 | |
|       SDOperand OpNode = DAG.getNode(Opc, VT, N0.getOperand(0), N1);
 | |
|       AddToWorkList(OpNode.Val);
 | |
|       return DAG.getNode(Opc, VT, OpNode, N0.getOperand(1));
 | |
|     }
 | |
|   }
 | |
|   // reassoc. (op y, (op x, c1)) -> (op (op x, y), c1) iff x+c1 has one use
 | |
|   // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2))
 | |
|   if (N1.getOpcode() == Opc && isa<ConstantSDNode>(N1.getOperand(1))) {
 | |
|     if (isa<ConstantSDNode>(N0)) {
 | |
|       SDOperand OpNode = DAG.getNode(Opc, VT, N1.getOperand(1), N0);
 | |
|       AddToWorkList(OpNode.Val);
 | |
|       return DAG.getNode(Opc, VT, OpNode, N1.getOperand(0));
 | |
|     } else if (N1.hasOneUse()) {
 | |
|       SDOperand OpNode = DAG.getNode(Opc, VT, N1.getOperand(0), N0);
 | |
|       AddToWorkList(OpNode.Val);
 | |
|       return DAG.getNode(Opc, VT, OpNode, N1.getOperand(1));
 | |
|     }
 | |
|   }
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| void DAGCombiner::Run(bool RunningAfterLegalize) {
 | |
|   // set the instance variable, so that the various visit routines may use it.
 | |
|   AfterLegalize = RunningAfterLegalize;
 | |
| 
 | |
|   // Add all the dag nodes to the worklist.
 | |
|   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
 | |
|        E = DAG.allnodes_end(); I != E; ++I)
 | |
|     WorkList.push_back(I);
 | |
|   
 | |
|   // Create a dummy node (which is not added to allnodes), that adds a reference
 | |
|   // to the root node, preventing it from being deleted, and tracking any
 | |
|   // changes of the root.
 | |
|   HandleSDNode Dummy(DAG.getRoot());
 | |
|   
 | |
|   // The root of the dag may dangle to deleted nodes until the dag combiner is
 | |
|   // done.  Set it to null to avoid confusion.
 | |
|   DAG.setRoot(SDOperand());
 | |
|   
 | |
|   /// DagCombineInfo - Expose the DAG combiner to the target combiner impls.
 | |
|   TargetLowering::DAGCombinerInfo 
 | |
|     DagCombineInfo(DAG, !RunningAfterLegalize, false, this);
 | |
| 
 | |
|   // while the worklist isn't empty, inspect the node on the end of it and
 | |
|   // try and combine it.
 | |
|   while (!WorkList.empty()) {
 | |
|     SDNode *N = WorkList.back();
 | |
|     WorkList.pop_back();
 | |
|     
 | |
|     // If N has no uses, it is dead.  Make sure to revisit all N's operands once
 | |
|     // N is deleted from the DAG, since they too may now be dead or may have a
 | |
|     // reduced number of uses, allowing other xforms.
 | |
|     if (N->use_empty() && N != &Dummy) {
 | |
|       for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
 | |
|         AddToWorkList(N->getOperand(i).Val);
 | |
|       
 | |
|       DAG.DeleteNode(N);
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     SDOperand RV = visit(N);
 | |
|     
 | |
|     // If nothing happened, try a target-specific DAG combine.
 | |
|     if (RV.Val == 0) {
 | |
|       assert(N->getOpcode() != ISD::DELETED_NODE &&
 | |
|              "Node was deleted but visit returned NULL!");
 | |
|       if (N->getOpcode() >= ISD::BUILTIN_OP_END ||
 | |
|           TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode()))
 | |
|         RV = TLI.PerformDAGCombine(N, DagCombineInfo);
 | |
|     }
 | |
|     
 | |
|     if (RV.Val) {
 | |
|       ++NodesCombined;
 | |
|       // If we get back the same node we passed in, rather than a new node or
 | |
|       // zero, we know that the node must have defined multiple values and
 | |
|       // CombineTo was used.  Since CombineTo takes care of the worklist 
 | |
|       // mechanics for us, we have no work to do in this case.
 | |
|       if (RV.Val != N) {
 | |
|         assert(N->getOpcode() != ISD::DELETED_NODE &&
 | |
|                RV.Val->getOpcode() != ISD::DELETED_NODE &&
 | |
|                "Node was deleted but visit returned new node!");
 | |
| 
 | |
|         DOUT << "\nReplacing.3 "; DEBUG(N->dump());
 | |
|         DOUT << "\nWith: "; DEBUG(RV.Val->dump(&DAG));
 | |
|         DOUT << '\n';
 | |
|         std::vector<SDNode*> NowDead;
 | |
|         if (N->getNumValues() == RV.Val->getNumValues())
 | |
|           DAG.ReplaceAllUsesWith(N, RV.Val, &NowDead);
 | |
|         else {
 | |
|           assert(N->getValueType(0) == RV.getValueType() && "Type mismatch");
 | |
|           SDOperand OpV = RV;
 | |
|           DAG.ReplaceAllUsesWith(N, &OpV, &NowDead);
 | |
|         }
 | |
|           
 | |
|         // Push the new node and any users onto the worklist
 | |
|         AddToWorkList(RV.Val);
 | |
|         AddUsersToWorkList(RV.Val);
 | |
|           
 | |
|         // Nodes can be reintroduced into the worklist.  Make sure we do not
 | |
|         // process a node that has been replaced.
 | |
|         removeFromWorkList(N);
 | |
|         for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
 | |
|           removeFromWorkList(NowDead[i]);
 | |
|         
 | |
|         // Finally, since the node is now dead, remove it from the graph.
 | |
|         DAG.DeleteNode(N);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // If the root changed (e.g. it was a dead load, update the root).
 | |
|   DAG.setRoot(Dummy.getValue());
 | |
| }
 | |
| 
 | |
| SDOperand DAGCombiner::visit(SDNode *N) {
 | |
|   switch(N->getOpcode()) {
 | |
|   default: break;
 | |
|   case ISD::TokenFactor:        return visitTokenFactor(N);
 | |
|   case ISD::ADD:                return visitADD(N);
 | |
|   case ISD::SUB:                return visitSUB(N);
 | |
|   case ISD::ADDC:               return visitADDC(N);
 | |
|   case ISD::ADDE:               return visitADDE(N);
 | |
|   case ISD::MUL:                return visitMUL(N);
 | |
|   case ISD::SDIV:               return visitSDIV(N);
 | |
|   case ISD::UDIV:               return visitUDIV(N);
 | |
|   case ISD::SREM:               return visitSREM(N);
 | |
|   case ISD::UREM:               return visitUREM(N);
 | |
|   case ISD::MULHU:              return visitMULHU(N);
 | |
|   case ISD::MULHS:              return visitMULHS(N);
 | |
|   case ISD::AND:                return visitAND(N);
 | |
|   case ISD::OR:                 return visitOR(N);
 | |
|   case ISD::XOR:                return visitXOR(N);
 | |
|   case ISD::SHL:                return visitSHL(N);
 | |
|   case ISD::SRA:                return visitSRA(N);
 | |
|   case ISD::SRL:                return visitSRL(N);
 | |
|   case ISD::CTLZ:               return visitCTLZ(N);
 | |
|   case ISD::CTTZ:               return visitCTTZ(N);
 | |
|   case ISD::CTPOP:              return visitCTPOP(N);
 | |
|   case ISD::SELECT:             return visitSELECT(N);
 | |
|   case ISD::SELECT_CC:          return visitSELECT_CC(N);
 | |
|   case ISD::SETCC:              return visitSETCC(N);
 | |
|   case ISD::SIGN_EXTEND:        return visitSIGN_EXTEND(N);
 | |
|   case ISD::ZERO_EXTEND:        return visitZERO_EXTEND(N);
 | |
|   case ISD::ANY_EXTEND:         return visitANY_EXTEND(N);
 | |
|   case ISD::SIGN_EXTEND_INREG:  return visitSIGN_EXTEND_INREG(N);
 | |
|   case ISD::TRUNCATE:           return visitTRUNCATE(N);
 | |
|   case ISD::BIT_CONVERT:        return visitBIT_CONVERT(N);
 | |
|   case ISD::VBIT_CONVERT:       return visitVBIT_CONVERT(N);
 | |
|   case ISD::FADD:               return visitFADD(N);
 | |
|   case ISD::FSUB:               return visitFSUB(N);
 | |
|   case ISD::FMUL:               return visitFMUL(N);
 | |
|   case ISD::FDIV:               return visitFDIV(N);
 | |
|   case ISD::FREM:               return visitFREM(N);
 | |
|   case ISD::FCOPYSIGN:          return visitFCOPYSIGN(N);
 | |
|   case ISD::SINT_TO_FP:         return visitSINT_TO_FP(N);
 | |
|   case ISD::UINT_TO_FP:         return visitUINT_TO_FP(N);
 | |
|   case ISD::FP_TO_SINT:         return visitFP_TO_SINT(N);
 | |
|   case ISD::FP_TO_UINT:         return visitFP_TO_UINT(N);
 | |
|   case ISD::FP_ROUND:           return visitFP_ROUND(N);
 | |
|   case ISD::FP_ROUND_INREG:     return visitFP_ROUND_INREG(N);
 | |
|   case ISD::FP_EXTEND:          return visitFP_EXTEND(N);
 | |
|   case ISD::FNEG:               return visitFNEG(N);
 | |
|   case ISD::FABS:               return visitFABS(N);
 | |
|   case ISD::BRCOND:             return visitBRCOND(N);
 | |
|   case ISD::BR_CC:              return visitBR_CC(N);
 | |
|   case ISD::LOAD:               return visitLOAD(N);
 | |
|   case ISD::STORE:              return visitSTORE(N);
 | |
|   case ISD::INSERT_VECTOR_ELT:  return visitINSERT_VECTOR_ELT(N);
 | |
|   case ISD::VINSERT_VECTOR_ELT: return visitVINSERT_VECTOR_ELT(N);
 | |
|   case ISD::VBUILD_VECTOR:      return visitVBUILD_VECTOR(N);
 | |
|   case ISD::VECTOR_SHUFFLE:     return visitVECTOR_SHUFFLE(N);
 | |
|   case ISD::VVECTOR_SHUFFLE:    return visitVVECTOR_SHUFFLE(N);
 | |
|   case ISD::VADD:               return visitVBinOp(N, ISD::ADD , ISD::FADD);
 | |
|   case ISD::VSUB:               return visitVBinOp(N, ISD::SUB , ISD::FSUB);
 | |
|   case ISD::VMUL:               return visitVBinOp(N, ISD::MUL , ISD::FMUL);
 | |
|   case ISD::VSDIV:              return visitVBinOp(N, ISD::SDIV, ISD::FDIV);
 | |
|   case ISD::VUDIV:              return visitVBinOp(N, ISD::UDIV, ISD::UDIV);
 | |
|   case ISD::VAND:               return visitVBinOp(N, ISD::AND , ISD::AND);
 | |
|   case ISD::VOR:                return visitVBinOp(N, ISD::OR  , ISD::OR);
 | |
|   case ISD::VXOR:               return visitVBinOp(N, ISD::XOR , ISD::XOR);
 | |
|   }
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| /// getInputChainForNode - Given a node, return its input chain if it has one,
 | |
| /// otherwise return a null sd operand.
 | |
| static SDOperand getInputChainForNode(SDNode *N) {
 | |
|   if (unsigned NumOps = N->getNumOperands()) {
 | |
|     if (N->getOperand(0).getValueType() == MVT::Other)
 | |
|       return N->getOperand(0);
 | |
|     else if (N->getOperand(NumOps-1).getValueType() == MVT::Other)
 | |
|       return N->getOperand(NumOps-1);
 | |
|     for (unsigned i = 1; i < NumOps-1; ++i)
 | |
|       if (N->getOperand(i).getValueType() == MVT::Other)
 | |
|         return N->getOperand(i);
 | |
|   }
 | |
|   return SDOperand(0, 0);
 | |
| }
 | |
| 
 | |
| SDOperand DAGCombiner::visitTokenFactor(SDNode *N) {
 | |
|   // If N has two operands, where one has an input chain equal to the other,
 | |
|   // the 'other' chain is redundant.
 | |
|   if (N->getNumOperands() == 2) {
 | |
|     if (getInputChainForNode(N->getOperand(0).Val) == N->getOperand(1))
 | |
|       return N->getOperand(0);
 | |
|     if (getInputChainForNode(N->getOperand(1).Val) == N->getOperand(0))
 | |
|       return N->getOperand(1);
 | |
|   }
 | |
|   
 | |
|   
 | |
|   SmallVector<SDNode *, 8> TFs;   // List of token factors to visit.
 | |
|   SmallVector<SDOperand, 8> Ops;  // Ops for replacing token factor.
 | |
|   bool Changed = false;           // If we should replace this token factor.
 | |
|   
 | |
|   // Start out with this token factor.
 | |
|   TFs.push_back(N);
 | |
|   
 | |
|   // Iterate through token factors.  The TFs grows when new token factors are
 | |
|   // encountered.
 | |
|   for (unsigned i = 0; i < TFs.size(); ++i) {
 | |
|     SDNode *TF = TFs[i];
 | |
|     
 | |
|     // Check each of the operands.
 | |
|     for (unsigned i = 0, ie = TF->getNumOperands(); i != ie; ++i) {
 | |
|       SDOperand Op = TF->getOperand(i);
 | |
|       
 | |
|       switch (Op.getOpcode()) {
 | |
|       case ISD::EntryToken:
 | |
|         // Entry tokens don't need to be added to the list. They are
 | |
|         // rededundant.
 | |
|         Changed = true;
 | |
|         break;
 | |
|         
 | |
|       case ISD::TokenFactor:
 | |
|         if ((CombinerAA || Op.hasOneUse()) &&
 | |
|             std::find(TFs.begin(), TFs.end(), Op.Val) == TFs.end()) {
 | |
|           // Queue up for processing.
 | |
|           TFs.push_back(Op.Val);
 | |
|           // Clean up in case the token factor is removed.
 | |
|           AddToWorkList(Op.Val);
 | |
|           Changed = true;
 | |
|           break;
 | |
|         }
 | |
|         // Fall thru
 | |
|         
 | |
|       default:
 | |
|         // Only add if not there prior.
 | |
|         if (std::find(Ops.begin(), Ops.end(), Op) == Ops.end())
 | |
|           Ops.push_back(Op);
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   SDOperand Result;
 | |
| 
 | |
|   // If we've change things around then replace token factor.
 | |
|   if (Changed) {
 | |
|     if (Ops.size() == 0) {
 | |
|       // The entry token is the only possible outcome.
 | |
|       Result = DAG.getEntryNode();
 | |
|     } else {
 | |
|       // New and improved token factor.
 | |
|       Result = DAG.getNode(ISD::TokenFactor, MVT::Other, &Ops[0], Ops.size());
 | |
|     }
 | |
|     
 | |
|     // Don't add users to work list.
 | |
|     return CombineTo(N, Result, false);
 | |
|   }
 | |
|   
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| static
 | |
| SDOperand combineShlAddConstant(SDOperand N0, SDOperand N1, SelectionDAG &DAG) {
 | |
|   MVT::ValueType VT = N0.getValueType();
 | |
|   SDOperand N00 = N0.getOperand(0);
 | |
|   SDOperand N01 = N0.getOperand(1);
 | |
|   ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N01);
 | |
|   if (N01C && N00.getOpcode() == ISD::ADD && N00.Val->hasOneUse() &&
 | |
|       isa<ConstantSDNode>(N00.getOperand(1))) {
 | |
|     N0 = DAG.getNode(ISD::ADD, VT,
 | |
|                      DAG.getNode(ISD::SHL, VT, N00.getOperand(0), N01),
 | |
|                      DAG.getNode(ISD::SHL, VT, N00.getOperand(1), N01));
 | |
|     return DAG.getNode(ISD::ADD, VT, N0, N1);
 | |
|   }
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| SDOperand DAGCombiner::visitADD(SDNode *N) {
 | |
|   SDOperand N0 = N->getOperand(0);
 | |
|   SDOperand N1 = N->getOperand(1);
 | |
|   ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
 | |
|   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
 | |
|   MVT::ValueType VT = N0.getValueType();
 | |
|   
 | |
|   // fold (add c1, c2) -> c1+c2
 | |
|   if (N0C && N1C)
 | |
|     return DAG.getNode(ISD::ADD, VT, N0, N1);
 | |
|   // canonicalize constant to RHS
 | |
|   if (N0C && !N1C)
 | |
|     return DAG.getNode(ISD::ADD, VT, N1, N0);
 | |
|   // fold (add x, 0) -> x
 | |
|   if (N1C && N1C->isNullValue())
 | |
|     return N0;
 | |
|   // fold ((c1-A)+c2) -> (c1+c2)-A
 | |
|   if (N1C && N0.getOpcode() == ISD::SUB)
 | |
|     if (ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
 | |
|       return DAG.getNode(ISD::SUB, VT,
 | |
|                          DAG.getConstant(N1C->getValue()+N0C->getValue(), VT),
 | |
|                          N0.getOperand(1));
 | |
|   // reassociate add
 | |
|   SDOperand RADD = ReassociateOps(ISD::ADD, N0, N1);
 | |
|   if (RADD.Val != 0)
 | |
|     return RADD;
 | |
|   // fold ((0-A) + B) -> B-A
 | |
|   if (N0.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N0.getOperand(0)) &&
 | |
|       cast<ConstantSDNode>(N0.getOperand(0))->isNullValue())
 | |
|     return DAG.getNode(ISD::SUB, VT, N1, N0.getOperand(1));
 | |
|   // fold (A + (0-B)) -> A-B
 | |
|   if (N1.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N1.getOperand(0)) &&
 | |
|       cast<ConstantSDNode>(N1.getOperand(0))->isNullValue())
 | |
|     return DAG.getNode(ISD::SUB, VT, N0, N1.getOperand(1));
 | |
|   // fold (A+(B-A)) -> B
 | |
|   if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1))
 | |
|     return N1.getOperand(0);
 | |
| 
 | |
|   if (!MVT::isVector(VT) && SimplifyDemandedBits(SDOperand(N, 0)))
 | |
|     return SDOperand(N, 0);
 | |
|   
 | |
|   // fold (a+b) -> (a|b) iff a and b share no bits.
 | |
|   if (MVT::isInteger(VT) && !MVT::isVector(VT)) {
 | |
|     uint64_t LHSZero, LHSOne;
 | |
|     uint64_t RHSZero, RHSOne;
 | |
|     uint64_t Mask = MVT::getIntVTBitMask(VT);
 | |
|     TLI.ComputeMaskedBits(N0, Mask, LHSZero, LHSOne);
 | |
|     if (LHSZero) {
 | |
|       TLI.ComputeMaskedBits(N1, Mask, RHSZero, RHSOne);
 | |
|       
 | |
|       // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
 | |
|       // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
 | |
|       if ((RHSZero & (~LHSZero & Mask)) == (~LHSZero & Mask) ||
 | |
|           (LHSZero & (~RHSZero & Mask)) == (~RHSZero & Mask))
 | |
|         return DAG.getNode(ISD::OR, VT, N0, N1);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
 | |
|   if (N0.getOpcode() == ISD::SHL && N0.Val->hasOneUse()) {
 | |
|     SDOperand Result = combineShlAddConstant(N0, N1, DAG);
 | |
|     if (Result.Val) return Result;
 | |
|   }
 | |
|   if (N1.getOpcode() == ISD::SHL && N1.Val->hasOneUse()) {
 | |
|     SDOperand Result = combineShlAddConstant(N1, N0, DAG);
 | |
|     if (Result.Val) return Result;
 | |
|   }
 | |
| 
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| SDOperand DAGCombiner::visitADDC(SDNode *N) {
 | |
|   SDOperand N0 = N->getOperand(0);
 | |
|   SDOperand N1 = N->getOperand(1);
 | |
|   ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
 | |
|   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
 | |
|   MVT::ValueType VT = N0.getValueType();
 | |
|   
 | |
|   // If the flag result is dead, turn this into an ADD.
 | |
|   if (N->hasNUsesOfValue(0, 1))
 | |
|     return CombineTo(N, DAG.getNode(ISD::ADD, VT, N1, N0),
 | |
|                      DAG.getNode(ISD::CARRY_FALSE, MVT::Flag));
 | |
|   
 | |
|   // canonicalize constant to RHS.
 | |
|   if (N0C && !N1C) {
 | |
|     SDOperand Ops[] = { N1, N0 };
 | |
|     return DAG.getNode(ISD::ADDC, N->getVTList(), Ops, 2);
 | |
|   }
 | |
|   
 | |
|   // fold (addc x, 0) -> x + no carry out
 | |
|   if (N1C && N1C->isNullValue())
 | |
|     return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, MVT::Flag));
 | |
|   
 | |
|   // fold (addc a, b) -> (or a, b), CARRY_FALSE iff a and b share no bits.
 | |
|   uint64_t LHSZero, LHSOne;
 | |
|   uint64_t RHSZero, RHSOne;
 | |
|   uint64_t Mask = MVT::getIntVTBitMask(VT);
 | |
|   TLI.ComputeMaskedBits(N0, Mask, LHSZero, LHSOne);
 | |
|   if (LHSZero) {
 | |
|     TLI.ComputeMaskedBits(N1, Mask, RHSZero, RHSOne);
 | |
|     
 | |
|     // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
 | |
|     // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
 | |
|     if ((RHSZero & (~LHSZero & Mask)) == (~LHSZero & Mask) ||
 | |
|         (LHSZero & (~RHSZero & Mask)) == (~RHSZero & Mask))
 | |
|       return CombineTo(N, DAG.getNode(ISD::OR, VT, N0, N1),
 | |
|                        DAG.getNode(ISD::CARRY_FALSE, MVT::Flag));
 | |
|   }
 | |
|   
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| SDOperand DAGCombiner::visitADDE(SDNode *N) {
 | |
|   SDOperand N0 = N->getOperand(0);
 | |
|   SDOperand N1 = N->getOperand(1);
 | |
|   SDOperand CarryIn = N->getOperand(2);
 | |
|   ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
 | |
|   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
 | |
|   //MVT::ValueType VT = N0.getValueType();
 | |
|   
 | |
|   // canonicalize constant to RHS
 | |
|   if (N0C && !N1C) {
 | |
|     SDOperand Ops[] = { N1, N0, CarryIn };
 | |
|     return DAG.getNode(ISD::ADDE, N->getVTList(), Ops, 3);
 | |
|   }
 | |
|   
 | |
|   // fold (adde x, y, false) -> (addc x, y)
 | |
|   if (CarryIn.getOpcode() == ISD::CARRY_FALSE) {
 | |
|     SDOperand Ops[] = { N1, N0 };
 | |
|     return DAG.getNode(ISD::ADDC, N->getVTList(), Ops, 2);
 | |
|   }
 | |
|   
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| SDOperand DAGCombiner::visitSUB(SDNode *N) {
 | |
|   SDOperand N0 = N->getOperand(0);
 | |
|   SDOperand N1 = N->getOperand(1);
 | |
|   ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val);
 | |
|   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
 | |
|   MVT::ValueType VT = N0.getValueType();
 | |
|   
 | |
|   // fold (sub x, x) -> 0
 | |
|   if (N0 == N1)
 | |
|     return DAG.getConstant(0, N->getValueType(0));
 | |
|   // fold (sub c1, c2) -> c1-c2
 | |
|   if (N0C && N1C)
 | |
|     return DAG.getNode(ISD::SUB, VT, N0, N1);
 | |
|   // fold (sub x, c) -> (add x, -c)
 | |
|   if (N1C)
 | |
|     return DAG.getNode(ISD::ADD, VT, N0, DAG.getConstant(-N1C->getValue(), VT));
 | |
|   // fold (A+B)-A -> B
 | |
|   if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1)
 | |
|     return N0.getOperand(1);
 | |
|   // fold (A+B)-B -> A
 | |
|   if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1)
 | |
|     return N0.getOperand(0);
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| SDOperand DAGCombiner::visitMUL(SDNode *N) {
 | |
|   SDOperand N0 = N->getOperand(0);
 | |
|   SDOperand N1 = N->getOperand(1);
 | |
|   ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
 | |
|   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
 | |
|   MVT::ValueType VT = N0.getValueType();
 | |
|   
 | |
|   // fold (mul c1, c2) -> c1*c2
 | |
|   if (N0C && N1C)
 | |
|     return DAG.getNode(ISD::MUL, VT, N0, N1);
 | |
|   // canonicalize constant to RHS
 | |
|   if (N0C && !N1C)
 | |
|     return DAG.getNode(ISD::MUL, VT, N1, N0);
 | |
|   // fold (mul x, 0) -> 0
 | |
|   if (N1C && N1C->isNullValue())
 | |
|     return N1;
 | |
|   // fold (mul x, -1) -> 0-x
 | |
|   if (N1C && N1C->isAllOnesValue())
 | |
|     return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), N0);
 | |
|   // fold (mul x, (1 << c)) -> x << c
 | |
|   if (N1C && isPowerOf2_64(N1C->getValue()))
 | |
|     return DAG.getNode(ISD::SHL, VT, N0,
 | |
|                        DAG.getConstant(Log2_64(N1C->getValue()),
 | |
|                                        TLI.getShiftAmountTy()));
 | |
|   // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
 | |
|   if (N1C && isPowerOf2_64(-N1C->getSignExtended())) {
 | |
|     // FIXME: If the input is something that is easily negated (e.g. a 
 | |
|     // single-use add), we should put the negate there.
 | |
|     return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT),
 | |
|                        DAG.getNode(ISD::SHL, VT, N0,
 | |
|                             DAG.getConstant(Log2_64(-N1C->getSignExtended()),
 | |
|                                             TLI.getShiftAmountTy())));
 | |
|   }
 | |
| 
 | |
|   // (mul (shl X, c1), c2) -> (mul X, c2 << c1)
 | |
|   if (N1C && N0.getOpcode() == ISD::SHL && 
 | |
|       isa<ConstantSDNode>(N0.getOperand(1))) {
 | |
|     SDOperand C3 = DAG.getNode(ISD::SHL, VT, N1, N0.getOperand(1));
 | |
|     AddToWorkList(C3.Val);
 | |
|     return DAG.getNode(ISD::MUL, VT, N0.getOperand(0), C3);
 | |
|   }
 | |
|   
 | |
|   // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
 | |
|   // use.
 | |
|   {
 | |
|     SDOperand Sh(0,0), Y(0,0);
 | |
|     // Check for both (mul (shl X, C), Y)  and  (mul Y, (shl X, C)).
 | |
|     if (N0.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N0.getOperand(1)) &&
 | |
|         N0.Val->hasOneUse()) {
 | |
|       Sh = N0; Y = N1;
 | |
|     } else if (N1.getOpcode() == ISD::SHL && 
 | |
|                isa<ConstantSDNode>(N1.getOperand(1)) && N1.Val->hasOneUse()) {
 | |
|       Sh = N1; Y = N0;
 | |
|     }
 | |
|     if (Sh.Val) {
 | |
|       SDOperand Mul = DAG.getNode(ISD::MUL, VT, Sh.getOperand(0), Y);
 | |
|       return DAG.getNode(ISD::SHL, VT, Mul, Sh.getOperand(1));
 | |
|     }
 | |
|   }
 | |
|   // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
 | |
|   if (N1C && N0.getOpcode() == ISD::ADD && N0.Val->hasOneUse() && 
 | |
|       isa<ConstantSDNode>(N0.getOperand(1))) {
 | |
|     return DAG.getNode(ISD::ADD, VT, 
 | |
|                        DAG.getNode(ISD::MUL, VT, N0.getOperand(0), N1),
 | |
|                        DAG.getNode(ISD::MUL, VT, N0.getOperand(1), N1));
 | |
|   }
 | |
|   
 | |
|   // reassociate mul
 | |
|   SDOperand RMUL = ReassociateOps(ISD::MUL, N0, N1);
 | |
|   if (RMUL.Val != 0)
 | |
|     return RMUL;
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| SDOperand DAGCombiner::visitSDIV(SDNode *N) {
 | |
|   SDOperand N0 = N->getOperand(0);
 | |
|   SDOperand N1 = N->getOperand(1);
 | |
|   ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val);
 | |
|   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
 | |
|   MVT::ValueType VT = N->getValueType(0);
 | |
| 
 | |
|   // fold (sdiv c1, c2) -> c1/c2
 | |
|   if (N0C && N1C && !N1C->isNullValue())
 | |
|     return DAG.getNode(ISD::SDIV, VT, N0, N1);
 | |
|   // fold (sdiv X, 1) -> X
 | |
|   if (N1C && N1C->getSignExtended() == 1LL)
 | |
|     return N0;
 | |
|   // fold (sdiv X, -1) -> 0-X
 | |
|   if (N1C && N1C->isAllOnesValue())
 | |
|     return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), N0);
 | |
|   // If we know the sign bits of both operands are zero, strength reduce to a
 | |
|   // udiv instead.  Handles (X&15) /s 4 -> X&15 >> 2
 | |
|   uint64_t SignBit = 1ULL << (MVT::getSizeInBits(VT)-1);
 | |
|   if (TLI.MaskedValueIsZero(N1, SignBit) &&
 | |
|       TLI.MaskedValueIsZero(N0, SignBit))
 | |
|     return DAG.getNode(ISD::UDIV, N1.getValueType(), N0, N1);
 | |
|   // fold (sdiv X, pow2) -> simple ops after legalize
 | |
|   if (N1C && N1C->getValue() && !TLI.isIntDivCheap() &&
 | |
|       (isPowerOf2_64(N1C->getSignExtended()) || 
 | |
|        isPowerOf2_64(-N1C->getSignExtended()))) {
 | |
|     // If dividing by powers of two is cheap, then don't perform the following
 | |
|     // fold.
 | |
|     if (TLI.isPow2DivCheap())
 | |
|       return SDOperand();
 | |
|     int64_t pow2 = N1C->getSignExtended();
 | |
|     int64_t abs2 = pow2 > 0 ? pow2 : -pow2;
 | |
|     unsigned lg2 = Log2_64(abs2);
 | |
|     // Splat the sign bit into the register
 | |
|     SDOperand SGN = DAG.getNode(ISD::SRA, VT, N0,
 | |
|                                 DAG.getConstant(MVT::getSizeInBits(VT)-1,
 | |
|                                                 TLI.getShiftAmountTy()));
 | |
|     AddToWorkList(SGN.Val);
 | |
|     // Add (N0 < 0) ? abs2 - 1 : 0;
 | |
|     SDOperand SRL = DAG.getNode(ISD::SRL, VT, SGN,
 | |
|                                 DAG.getConstant(MVT::getSizeInBits(VT)-lg2,
 | |
|                                                 TLI.getShiftAmountTy()));
 | |
|     SDOperand ADD = DAG.getNode(ISD::ADD, VT, N0, SRL);
 | |
|     AddToWorkList(SRL.Val);
 | |
|     AddToWorkList(ADD.Val);    // Divide by pow2
 | |
|     SDOperand SRA = DAG.getNode(ISD::SRA, VT, ADD,
 | |
|                                 DAG.getConstant(lg2, TLI.getShiftAmountTy()));
 | |
|     // If we're dividing by a positive value, we're done.  Otherwise, we must
 | |
|     // negate the result.
 | |
|     if (pow2 > 0)
 | |
|       return SRA;
 | |
|     AddToWorkList(SRA.Val);
 | |
|     return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), SRA);
 | |
|   }
 | |
|   // if integer divide is expensive and we satisfy the requirements, emit an
 | |
|   // alternate sequence.
 | |
|   if (N1C && (N1C->getSignExtended() < -1 || N1C->getSignExtended() > 1) && 
 | |
|       !TLI.isIntDivCheap()) {
 | |
|     SDOperand Op = BuildSDIV(N);
 | |
|     if (Op.Val) return Op;
 | |
|   }
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| SDOperand DAGCombiner::visitUDIV(SDNode *N) {
 | |
|   SDOperand N0 = N->getOperand(0);
 | |
|   SDOperand N1 = N->getOperand(1);
 | |
|   ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val);
 | |
|   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
 | |
|   MVT::ValueType VT = N->getValueType(0);
 | |
|   
 | |
|   // fold (udiv c1, c2) -> c1/c2
 | |
|   if (N0C && N1C && !N1C->isNullValue())
 | |
|     return DAG.getNode(ISD::UDIV, VT, N0, N1);
 | |
|   // fold (udiv x, (1 << c)) -> x >>u c
 | |
|   if (N1C && isPowerOf2_64(N1C->getValue()))
 | |
|     return DAG.getNode(ISD::SRL, VT, N0, 
 | |
|                        DAG.getConstant(Log2_64(N1C->getValue()),
 | |
|                                        TLI.getShiftAmountTy()));
 | |
|   // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
 | |
|   if (N1.getOpcode() == ISD::SHL) {
 | |
|     if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
 | |
|       if (isPowerOf2_64(SHC->getValue())) {
 | |
|         MVT::ValueType ADDVT = N1.getOperand(1).getValueType();
 | |
|         SDOperand Add = DAG.getNode(ISD::ADD, ADDVT, N1.getOperand(1),
 | |
|                                     DAG.getConstant(Log2_64(SHC->getValue()),
 | |
|                                                     ADDVT));
 | |
|         AddToWorkList(Add.Val);
 | |
|         return DAG.getNode(ISD::SRL, VT, N0, Add);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   // fold (udiv x, c) -> alternate
 | |
|   if (N1C && N1C->getValue() && !TLI.isIntDivCheap()) {
 | |
|     SDOperand Op = BuildUDIV(N);
 | |
|     if (Op.Val) return Op;
 | |
|   }
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| SDOperand DAGCombiner::visitSREM(SDNode *N) {
 | |
|   SDOperand N0 = N->getOperand(0);
 | |
|   SDOperand N1 = N->getOperand(1);
 | |
|   ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
 | |
|   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
 | |
|   MVT::ValueType VT = N->getValueType(0);
 | |
|   
 | |
|   // fold (srem c1, c2) -> c1%c2
 | |
|   if (N0C && N1C && !N1C->isNullValue())
 | |
|     return DAG.getNode(ISD::SREM, VT, N0, N1);
 | |
|   // If we know the sign bits of both operands are zero, strength reduce to a
 | |
|   // urem instead.  Handles (X & 0x0FFFFFFF) %s 16 -> X&15
 | |
|   uint64_t SignBit = 1ULL << (MVT::getSizeInBits(VT)-1);
 | |
|   if (TLI.MaskedValueIsZero(N1, SignBit) &&
 | |
|       TLI.MaskedValueIsZero(N0, SignBit))
 | |
|     return DAG.getNode(ISD::UREM, VT, N0, N1);
 | |
|   
 | |
|   // Unconditionally lower X%C -> X-X/C*C.  This allows the X/C logic to hack on
 | |
|   // the remainder operation.
 | |
|   if (N1C && !N1C->isNullValue()) {
 | |
|     SDOperand Div = DAG.getNode(ISD::SDIV, VT, N0, N1);
 | |
|     SDOperand Mul = DAG.getNode(ISD::MUL, VT, Div, N1);
 | |
|     SDOperand Sub = DAG.getNode(ISD::SUB, VT, N0, Mul);
 | |
|     AddToWorkList(Div.Val);
 | |
|     AddToWorkList(Mul.Val);
 | |
|     return Sub;
 | |
|   }
 | |
|   
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| SDOperand DAGCombiner::visitUREM(SDNode *N) {
 | |
|   SDOperand N0 = N->getOperand(0);
 | |
|   SDOperand N1 = N->getOperand(1);
 | |
|   ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
 | |
|   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
 | |
|   MVT::ValueType VT = N->getValueType(0);
 | |
|   
 | |
|   // fold (urem c1, c2) -> c1%c2
 | |
|   if (N0C && N1C && !N1C->isNullValue())
 | |
|     return DAG.getNode(ISD::UREM, VT, N0, N1);
 | |
|   // fold (urem x, pow2) -> (and x, pow2-1)
 | |
|   if (N1C && !N1C->isNullValue() && isPowerOf2_64(N1C->getValue()))
 | |
|     return DAG.getNode(ISD::AND, VT, N0, DAG.getConstant(N1C->getValue()-1,VT));
 | |
|   // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
 | |
|   if (N1.getOpcode() == ISD::SHL) {
 | |
|     if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
 | |
|       if (isPowerOf2_64(SHC->getValue())) {
 | |
|         SDOperand Add = DAG.getNode(ISD::ADD, VT, N1,DAG.getConstant(~0ULL,VT));
 | |
|         AddToWorkList(Add.Val);
 | |
|         return DAG.getNode(ISD::AND, VT, N0, Add);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Unconditionally lower X%C -> X-X/C*C.  This allows the X/C logic to hack on
 | |
|   // the remainder operation.
 | |
|   if (N1C && !N1C->isNullValue()) {
 | |
|     SDOperand Div = DAG.getNode(ISD::UDIV, VT, N0, N1);
 | |
|     SDOperand Mul = DAG.getNode(ISD::MUL, VT, Div, N1);
 | |
|     SDOperand Sub = DAG.getNode(ISD::SUB, VT, N0, Mul);
 | |
|     AddToWorkList(Div.Val);
 | |
|     AddToWorkList(Mul.Val);
 | |
|     return Sub;
 | |
|   }
 | |
|   
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| SDOperand DAGCombiner::visitMULHS(SDNode *N) {
 | |
|   SDOperand N0 = N->getOperand(0);
 | |
|   SDOperand N1 = N->getOperand(1);
 | |
|   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
 | |
|   
 | |
|   // fold (mulhs x, 0) -> 0
 | |
|   if (N1C && N1C->isNullValue())
 | |
|     return N1;
 | |
|   // fold (mulhs x, 1) -> (sra x, size(x)-1)
 | |
|   if (N1C && N1C->getValue() == 1)
 | |
|     return DAG.getNode(ISD::SRA, N0.getValueType(), N0, 
 | |
|                        DAG.getConstant(MVT::getSizeInBits(N0.getValueType())-1,
 | |
|                                        TLI.getShiftAmountTy()));
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| SDOperand DAGCombiner::visitMULHU(SDNode *N) {
 | |
|   SDOperand N0 = N->getOperand(0);
 | |
|   SDOperand N1 = N->getOperand(1);
 | |
|   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
 | |
|   
 | |
|   // fold (mulhu x, 0) -> 0
 | |
|   if (N1C && N1C->isNullValue())
 | |
|     return N1;
 | |
|   // fold (mulhu x, 1) -> 0
 | |
|   if (N1C && N1C->getValue() == 1)
 | |
|     return DAG.getConstant(0, N0.getValueType());
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| /// SimplifyBinOpWithSameOpcodeHands - If this is a binary operator with
 | |
| /// two operands of the same opcode, try to simplify it.
 | |
| SDOperand DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) {
 | |
|   SDOperand N0 = N->getOperand(0), N1 = N->getOperand(1);
 | |
|   MVT::ValueType VT = N0.getValueType();
 | |
|   assert(N0.getOpcode() == N1.getOpcode() && "Bad input!");
 | |
|   
 | |
|   // For each of OP in AND/OR/XOR:
 | |
|   // fold (OP (zext x), (zext y)) -> (zext (OP x, y))
 | |
|   // fold (OP (sext x), (sext y)) -> (sext (OP x, y))
 | |
|   // fold (OP (aext x), (aext y)) -> (aext (OP x, y))
 | |
|   // fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y))
 | |
|   if ((N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND||
 | |
|        N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::TRUNCATE) &&
 | |
|       N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()) {
 | |
|     SDOperand ORNode = DAG.getNode(N->getOpcode(), 
 | |
|                                    N0.getOperand(0).getValueType(),
 | |
|                                    N0.getOperand(0), N1.getOperand(0));
 | |
|     AddToWorkList(ORNode.Val);
 | |
|     return DAG.getNode(N0.getOpcode(), VT, ORNode);
 | |
|   }
 | |
|   
 | |
|   // For each of OP in SHL/SRL/SRA/AND...
 | |
|   //   fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z)
 | |
|   //   fold (or  (OP x, z), (OP y, z)) -> (OP (or  x, y), z)
 | |
|   //   fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z)
 | |
|   if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL ||
 | |
|        N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::AND) &&
 | |
|       N0.getOperand(1) == N1.getOperand(1)) {
 | |
|     SDOperand ORNode = DAG.getNode(N->getOpcode(),
 | |
|                                    N0.getOperand(0).getValueType(),
 | |
|                                    N0.getOperand(0), N1.getOperand(0));
 | |
|     AddToWorkList(ORNode.Val);
 | |
|     return DAG.getNode(N0.getOpcode(), VT, ORNode, N0.getOperand(1));
 | |
|   }
 | |
|   
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| SDOperand DAGCombiner::visitAND(SDNode *N) {
 | |
|   SDOperand N0 = N->getOperand(0);
 | |
|   SDOperand N1 = N->getOperand(1);
 | |
|   SDOperand LL, LR, RL, RR, CC0, CC1;
 | |
|   ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
 | |
|   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
 | |
|   MVT::ValueType VT = N1.getValueType();
 | |
|   
 | |
|   // fold (and c1, c2) -> c1&c2
 | |
|   if (N0C && N1C)
 | |
|     return DAG.getNode(ISD::AND, VT, N0, N1);
 | |
|   // canonicalize constant to RHS
 | |
|   if (N0C && !N1C)
 | |
|     return DAG.getNode(ISD::AND, VT, N1, N0);
 | |
|   // fold (and x, -1) -> x
 | |
|   if (N1C && N1C->isAllOnesValue())
 | |
|     return N0;
 | |
|   // if (and x, c) is known to be zero, return 0
 | |
|   if (N1C && TLI.MaskedValueIsZero(SDOperand(N, 0), MVT::getIntVTBitMask(VT)))
 | |
|     return DAG.getConstant(0, VT);
 | |
|   // reassociate and
 | |
|   SDOperand RAND = ReassociateOps(ISD::AND, N0, N1);
 | |
|   if (RAND.Val != 0)
 | |
|     return RAND;
 | |
|   // fold (and (or x, 0xFFFF), 0xFF) -> 0xFF
 | |
|   if (N1C && N0.getOpcode() == ISD::OR)
 | |
|     if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
 | |
|       if ((ORI->getValue() & N1C->getValue()) == N1C->getValue())
 | |
|         return N1;
 | |
|   // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
 | |
|   if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
 | |
|     unsigned InMask = MVT::getIntVTBitMask(N0.getOperand(0).getValueType());
 | |
|     if (TLI.MaskedValueIsZero(N0.getOperand(0),
 | |
|                               ~N1C->getValue() & InMask)) {
 | |
|       SDOperand Zext = DAG.getNode(ISD::ZERO_EXTEND, N0.getValueType(),
 | |
|                                    N0.getOperand(0));
 | |
|       
 | |
|       // Replace uses of the AND with uses of the Zero extend node.
 | |
|       CombineTo(N, Zext);
 | |
|       
 | |
|       // We actually want to replace all uses of the any_extend with the
 | |
|       // zero_extend, to avoid duplicating things.  This will later cause this
 | |
|       // AND to be folded.
 | |
|       CombineTo(N0.Val, Zext);
 | |
|       return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
 | |
|     }
 | |
|   }
 | |
|   // fold (and (setcc x), (setcc y)) -> (setcc (and x, y))
 | |
|   if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
 | |
|     ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
 | |
|     ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
 | |
|     
 | |
|     if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
 | |
|         MVT::isInteger(LL.getValueType())) {
 | |
|       // fold (X == 0) & (Y == 0) -> (X|Y == 0)
 | |
|       if (cast<ConstantSDNode>(LR)->getValue() == 0 && Op1 == ISD::SETEQ) {
 | |
|         SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL);
 | |
|         AddToWorkList(ORNode.Val);
 | |
|         return DAG.getSetCC(VT, ORNode, LR, Op1);
 | |
|       }
 | |
|       // fold (X == -1) & (Y == -1) -> (X&Y == -1)
 | |
|       if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETEQ) {
 | |
|         SDOperand ANDNode = DAG.getNode(ISD::AND, LR.getValueType(), LL, RL);
 | |
|         AddToWorkList(ANDNode.Val);
 | |
|         return DAG.getSetCC(VT, ANDNode, LR, Op1);
 | |
|       }
 | |
|       // fold (X >  -1) & (Y >  -1) -> (X|Y > -1)
 | |
|       if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETGT) {
 | |
|         SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL);
 | |
|         AddToWorkList(ORNode.Val);
 | |
|         return DAG.getSetCC(VT, ORNode, LR, Op1);
 | |
|       }
 | |
|     }
 | |
|     // canonicalize equivalent to ll == rl
 | |
|     if (LL == RR && LR == RL) {
 | |
|       Op1 = ISD::getSetCCSwappedOperands(Op1);
 | |
|       std::swap(RL, RR);
 | |
|     }
 | |
|     if (LL == RL && LR == RR) {
 | |
|       bool isInteger = MVT::isInteger(LL.getValueType());
 | |
|       ISD::CondCode Result = ISD::getSetCCAndOperation(Op0, Op1, isInteger);
 | |
|       if (Result != ISD::SETCC_INVALID)
 | |
|         return DAG.getSetCC(N0.getValueType(), LL, LR, Result);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Simplify: and (op x...), (op y...)  -> (op (and x, y))
 | |
|   if (N0.getOpcode() == N1.getOpcode()) {
 | |
|     SDOperand Tmp = SimplifyBinOpWithSameOpcodeHands(N);
 | |
|     if (Tmp.Val) return Tmp;
 | |
|   }
 | |
|   
 | |
|   // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
 | |
|   // fold (and (sra)) -> (and (srl)) when possible.
 | |
|   if (!MVT::isVector(VT) &&
 | |
|       SimplifyDemandedBits(SDOperand(N, 0)))
 | |
|     return SDOperand(N, 0);
 | |
|   // fold (zext_inreg (extload x)) -> (zextload x)
 | |
|   if (ISD::isEXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val)) {
 | |
|     LoadSDNode *LN0 = cast<LoadSDNode>(N0);
 | |
|     MVT::ValueType EVT = LN0->getLoadedVT();
 | |
|     // If we zero all the possible extended bits, then we can turn this into
 | |
|     // a zextload if we are running before legalize or the operation is legal.
 | |
|     if (TLI.MaskedValueIsZero(N1, ~0ULL << MVT::getSizeInBits(EVT)) &&
 | |
|         (!AfterLegalize || TLI.isLoadXLegal(ISD::ZEXTLOAD, EVT))) {
 | |
|       SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(),
 | |
|                                          LN0->getBasePtr(), LN0->getSrcValue(),
 | |
|                                          LN0->getSrcValueOffset(), EVT,
 | |
|                                          LN0->isVolatile(), 
 | |
|                                          LN0->getAlignment());
 | |
|       AddToWorkList(N);
 | |
|       CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
 | |
|       return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
 | |
|     }
 | |
|   }
 | |
|   // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
 | |
|   if (ISD::isSEXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val) &&
 | |
|       N0.hasOneUse()) {
 | |
|     LoadSDNode *LN0 = cast<LoadSDNode>(N0);
 | |
|     MVT::ValueType EVT = LN0->getLoadedVT();
 | |
|     // If we zero all the possible extended bits, then we can turn this into
 | |
|     // a zextload if we are running before legalize or the operation is legal.
 | |
|     if (TLI.MaskedValueIsZero(N1, ~0ULL << MVT::getSizeInBits(EVT)) &&
 | |
|         (!AfterLegalize || TLI.isLoadXLegal(ISD::ZEXTLOAD, EVT))) {
 | |
|       SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(),
 | |
|                                          LN0->getBasePtr(), LN0->getSrcValue(),
 | |
|                                          LN0->getSrcValueOffset(), EVT,
 | |
|                                          LN0->isVolatile(), 
 | |
|                                          LN0->getAlignment());
 | |
|       AddToWorkList(N);
 | |
|       CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
 | |
|       return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // fold (and (load x), 255) -> (zextload x, i8)
 | |
|   // fold (and (extload x, i16), 255) -> (zextload x, i8)
 | |
|   if (N1C && N0.getOpcode() == ISD::LOAD) {
 | |
|     LoadSDNode *LN0 = cast<LoadSDNode>(N0);
 | |
|     if (LN0->getExtensionType() != ISD::SEXTLOAD &&
 | |
|         LN0->getAddressingMode() == ISD::UNINDEXED &&
 | |
|         N0.hasOneUse()) {
 | |
|       MVT::ValueType EVT, LoadedVT;
 | |
|       if (N1C->getValue() == 255)
 | |
|         EVT = MVT::i8;
 | |
|       else if (N1C->getValue() == 65535)
 | |
|         EVT = MVT::i16;
 | |
|       else if (N1C->getValue() == ~0U)
 | |
|         EVT = MVT::i32;
 | |
|       else
 | |
|         EVT = MVT::Other;
 | |
|     
 | |
|       LoadedVT = LN0->getLoadedVT();
 | |
|       if (EVT != MVT::Other && LoadedVT > EVT &&
 | |
|           (!AfterLegalize || TLI.isLoadXLegal(ISD::ZEXTLOAD, EVT))) {
 | |
|         MVT::ValueType PtrType = N0.getOperand(1).getValueType();
 | |
|         // For big endian targets, we need to add an offset to the pointer to
 | |
|         // load the correct bytes.  For little endian systems, we merely need to
 | |
|         // read fewer bytes from the same pointer.
 | |
|         unsigned PtrOff =
 | |
|           (MVT::getSizeInBits(LoadedVT) - MVT::getSizeInBits(EVT)) / 8;
 | |
|         SDOperand NewPtr = LN0->getBasePtr();
 | |
|         if (!TLI.isLittleEndian())
 | |
|           NewPtr = DAG.getNode(ISD::ADD, PtrType, NewPtr,
 | |
|                                DAG.getConstant(PtrOff, PtrType));
 | |
|         AddToWorkList(NewPtr.Val);
 | |
|         SDOperand Load =
 | |
|           DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(), NewPtr,
 | |
|                          LN0->getSrcValue(), LN0->getSrcValueOffset(), EVT,
 | |
|                          LN0->isVolatile(), LN0->getAlignment());
 | |
|         AddToWorkList(N);
 | |
|         CombineTo(N0.Val, Load, Load.getValue(1));
 | |
|         return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| SDOperand DAGCombiner::visitOR(SDNode *N) {
 | |
|   SDOperand N0 = N->getOperand(0);
 | |
|   SDOperand N1 = N->getOperand(1);
 | |
|   SDOperand LL, LR, RL, RR, CC0, CC1;
 | |
|   ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
 | |
|   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
 | |
|   MVT::ValueType VT = N1.getValueType();
 | |
|   unsigned OpSizeInBits = MVT::getSizeInBits(VT);
 | |
|   
 | |
|   // fold (or c1, c2) -> c1|c2
 | |
|   if (N0C && N1C)
 | |
|     return DAG.getNode(ISD::OR, VT, N0, N1);
 | |
|   // canonicalize constant to RHS
 | |
|   if (N0C && !N1C)
 | |
|     return DAG.getNode(ISD::OR, VT, N1, N0);
 | |
|   // fold (or x, 0) -> x
 | |
|   if (N1C && N1C->isNullValue())
 | |
|     return N0;
 | |
|   // fold (or x, -1) -> -1
 | |
|   if (N1C && N1C->isAllOnesValue())
 | |
|     return N1;
 | |
|   // fold (or x, c) -> c iff (x & ~c) == 0
 | |
|   if (N1C && 
 | |
|       TLI.MaskedValueIsZero(N0,~N1C->getValue() & (~0ULL>>(64-OpSizeInBits))))
 | |
|     return N1;
 | |
|   // reassociate or
 | |
|   SDOperand ROR = ReassociateOps(ISD::OR, N0, N1);
 | |
|   if (ROR.Val != 0)
 | |
|     return ROR;
 | |
|   // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
 | |
|   if (N1C && N0.getOpcode() == ISD::AND && N0.Val->hasOneUse() &&
 | |
|              isa<ConstantSDNode>(N0.getOperand(1))) {
 | |
|     ConstantSDNode *C1 = cast<ConstantSDNode>(N0.getOperand(1));
 | |
|     return DAG.getNode(ISD::AND, VT, DAG.getNode(ISD::OR, VT, N0.getOperand(0),
 | |
|                                                  N1),
 | |
|                        DAG.getConstant(N1C->getValue() | C1->getValue(), VT));
 | |
|   }
 | |
|   // fold (or (setcc x), (setcc y)) -> (setcc (or x, y))
 | |
|   if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
 | |
|     ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
 | |
|     ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
 | |
|     
 | |
|     if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
 | |
|         MVT::isInteger(LL.getValueType())) {
 | |
|       // fold (X != 0) | (Y != 0) -> (X|Y != 0)
 | |
|       // fold (X <  0) | (Y <  0) -> (X|Y < 0)
 | |
|       if (cast<ConstantSDNode>(LR)->getValue() == 0 && 
 | |
|           (Op1 == ISD::SETNE || Op1 == ISD::SETLT)) {
 | |
|         SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL);
 | |
|         AddToWorkList(ORNode.Val);
 | |
|         return DAG.getSetCC(VT, ORNode, LR, Op1);
 | |
|       }
 | |
|       // fold (X != -1) | (Y != -1) -> (X&Y != -1)
 | |
|       // fold (X >  -1) | (Y >  -1) -> (X&Y >  -1)
 | |
|       if (cast<ConstantSDNode>(LR)->isAllOnesValue() && 
 | |
|           (Op1 == ISD::SETNE || Op1 == ISD::SETGT)) {
 | |
|         SDOperand ANDNode = DAG.getNode(ISD::AND, LR.getValueType(), LL, RL);
 | |
|         AddToWorkList(ANDNode.Val);
 | |
|         return DAG.getSetCC(VT, ANDNode, LR, Op1);
 | |
|       }
 | |
|     }
 | |
|     // canonicalize equivalent to ll == rl
 | |
|     if (LL == RR && LR == RL) {
 | |
|       Op1 = ISD::getSetCCSwappedOperands(Op1);
 | |
|       std::swap(RL, RR);
 | |
|     }
 | |
|     if (LL == RL && LR == RR) {
 | |
|       bool isInteger = MVT::isInteger(LL.getValueType());
 | |
|       ISD::CondCode Result = ISD::getSetCCOrOperation(Op0, Op1, isInteger);
 | |
|       if (Result != ISD::SETCC_INVALID)
 | |
|         return DAG.getSetCC(N0.getValueType(), LL, LR, Result);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Simplify: or (op x...), (op y...)  -> (op (or x, y))
 | |
|   if (N0.getOpcode() == N1.getOpcode()) {
 | |
|     SDOperand Tmp = SimplifyBinOpWithSameOpcodeHands(N);
 | |
|     if (Tmp.Val) return Tmp;
 | |
|   }
 | |
|   
 | |
|   // (X & C1) | (Y & C2)  -> (X|Y) & C3  if possible.
 | |
|   if (N0.getOpcode() == ISD::AND &&
 | |
|       N1.getOpcode() == ISD::AND &&
 | |
|       N0.getOperand(1).getOpcode() == ISD::Constant &&
 | |
|       N1.getOperand(1).getOpcode() == ISD::Constant &&
 | |
|       // Don't increase # computations.
 | |
|       (N0.Val->hasOneUse() || N1.Val->hasOneUse())) {
 | |
|     // We can only do this xform if we know that bits from X that are set in C2
 | |
|     // but not in C1 are already zero.  Likewise for Y.
 | |
|     uint64_t LHSMask = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
 | |
|     uint64_t RHSMask = cast<ConstantSDNode>(N1.getOperand(1))->getValue();
 | |
|     
 | |
|     if (TLI.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) &&
 | |
|         TLI.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) {
 | |
|       SDOperand X =DAG.getNode(ISD::OR, VT, N0.getOperand(0), N1.getOperand(0));
 | |
|       return DAG.getNode(ISD::AND, VT, X, DAG.getConstant(LHSMask|RHSMask, VT));
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   
 | |
|   // See if this is some rotate idiom.
 | |
|   if (SDNode *Rot = MatchRotate(N0, N1))
 | |
|     return SDOperand(Rot, 0);
 | |
| 
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| 
 | |
| /// MatchRotateHalf - Match "(X shl/srl V1) & V2" where V2 may not be present.
 | |
| static bool MatchRotateHalf(SDOperand Op, SDOperand &Shift, SDOperand &Mask) {
 | |
|   if (Op.getOpcode() == ISD::AND) {
 | |
|     if (isa<ConstantSDNode>(Op.getOperand(1))) {
 | |
|       Mask = Op.getOperand(1);
 | |
|       Op = Op.getOperand(0);
 | |
|     } else {
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) {
 | |
|     Shift = Op;
 | |
|     return true;
 | |
|   }
 | |
|   return false;  
 | |
| }
 | |
| 
 | |
| 
 | |
| // MatchRotate - Handle an 'or' of two operands.  If this is one of the many
 | |
| // idioms for rotate, and if the target supports rotation instructions, generate
 | |
| // a rot[lr].
 | |
| SDNode *DAGCombiner::MatchRotate(SDOperand LHS, SDOperand RHS) {
 | |
|   // Must be a legal type.  Expanded an promoted things won't work with rotates.
 | |
|   MVT::ValueType VT = LHS.getValueType();
 | |
|   if (!TLI.isTypeLegal(VT)) return 0;
 | |
| 
 | |
|   // The target must have at least one rotate flavor.
 | |
|   bool HasROTL = TLI.isOperationLegal(ISD::ROTL, VT);
 | |
|   bool HasROTR = TLI.isOperationLegal(ISD::ROTR, VT);
 | |
|   if (!HasROTL && !HasROTR) return 0;
 | |
|   
 | |
|   // Match "(X shl/srl V1) & V2" where V2 may not be present.
 | |
|   SDOperand LHSShift;   // The shift.
 | |
|   SDOperand LHSMask;    // AND value if any.
 | |
|   if (!MatchRotateHalf(LHS, LHSShift, LHSMask))
 | |
|     return 0; // Not part of a rotate.
 | |
| 
 | |
|   SDOperand RHSShift;   // The shift.
 | |
|   SDOperand RHSMask;    // AND value if any.
 | |
|   if (!MatchRotateHalf(RHS, RHSShift, RHSMask))
 | |
|     return 0; // Not part of a rotate.
 | |
|   
 | |
|   if (LHSShift.getOperand(0) != RHSShift.getOperand(0))
 | |
|     return 0;   // Not shifting the same value.
 | |
| 
 | |
|   if (LHSShift.getOpcode() == RHSShift.getOpcode())
 | |
|     return 0;   // Shifts must disagree.
 | |
|     
 | |
|   // Canonicalize shl to left side in a shl/srl pair.
 | |
|   if (RHSShift.getOpcode() == ISD::SHL) {
 | |
|     std::swap(LHS, RHS);
 | |
|     std::swap(LHSShift, RHSShift);
 | |
|     std::swap(LHSMask , RHSMask );
 | |
|   }
 | |
| 
 | |
|   unsigned OpSizeInBits = MVT::getSizeInBits(VT);
 | |
|   SDOperand LHSShiftArg = LHSShift.getOperand(0);
 | |
|   SDOperand LHSShiftAmt = LHSShift.getOperand(1);
 | |
|   SDOperand RHSShiftAmt = RHSShift.getOperand(1);
 | |
| 
 | |
|   // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
 | |
|   // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2)
 | |
|   if (LHSShiftAmt.getOpcode() == ISD::Constant &&
 | |
|       RHSShiftAmt.getOpcode() == ISD::Constant) {
 | |
|     uint64_t LShVal = cast<ConstantSDNode>(LHSShiftAmt)->getValue();
 | |
|     uint64_t RShVal = cast<ConstantSDNode>(RHSShiftAmt)->getValue();
 | |
|     if ((LShVal + RShVal) != OpSizeInBits)
 | |
|       return 0;
 | |
| 
 | |
|     SDOperand Rot;
 | |
|     if (HasROTL)
 | |
|       Rot = DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt);
 | |
|     else
 | |
|       Rot = DAG.getNode(ISD::ROTR, VT, LHSShiftArg, RHSShiftAmt);
 | |
|     
 | |
|     // If there is an AND of either shifted operand, apply it to the result.
 | |
|     if (LHSMask.Val || RHSMask.Val) {
 | |
|       uint64_t Mask = MVT::getIntVTBitMask(VT);
 | |
|       
 | |
|       if (LHSMask.Val) {
 | |
|         uint64_t RHSBits = (1ULL << LShVal)-1;
 | |
|         Mask &= cast<ConstantSDNode>(LHSMask)->getValue() | RHSBits;
 | |
|       }
 | |
|       if (RHSMask.Val) {
 | |
|         uint64_t LHSBits = ~((1ULL << (OpSizeInBits-RShVal))-1);
 | |
|         Mask &= cast<ConstantSDNode>(RHSMask)->getValue() | LHSBits;
 | |
|       }
 | |
|         
 | |
|       Rot = DAG.getNode(ISD::AND, VT, Rot, DAG.getConstant(Mask, VT));
 | |
|     }
 | |
|     
 | |
|     return Rot.Val;
 | |
|   }
 | |
|   
 | |
|   // If there is a mask here, and we have a variable shift, we can't be sure
 | |
|   // that we're masking out the right stuff.
 | |
|   if (LHSMask.Val || RHSMask.Val)
 | |
|     return 0;
 | |
|   
 | |
|   // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotl x, y)
 | |
|   // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotr x, (sub 32, y))
 | |
|   if (RHSShiftAmt.getOpcode() == ISD::SUB &&
 | |
|       LHSShiftAmt == RHSShiftAmt.getOperand(1)) {
 | |
|     if (ConstantSDNode *SUBC = 
 | |
|           dyn_cast<ConstantSDNode>(RHSShiftAmt.getOperand(0))) {
 | |
|       if (SUBC->getValue() == OpSizeInBits)
 | |
|         if (HasROTL)
 | |
|           return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt).Val;
 | |
|         else
 | |
|           return DAG.getNode(ISD::ROTR, VT, LHSShiftArg, RHSShiftAmt).Val;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotr x, y)
 | |
|   // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotl x, (sub 32, y))
 | |
|   if (LHSShiftAmt.getOpcode() == ISD::SUB &&
 | |
|       RHSShiftAmt == LHSShiftAmt.getOperand(1)) {
 | |
|     if (ConstantSDNode *SUBC = 
 | |
|           dyn_cast<ConstantSDNode>(LHSShiftAmt.getOperand(0))) {
 | |
|       if (SUBC->getValue() == OpSizeInBits)
 | |
|         if (HasROTL)
 | |
|           return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt).Val;
 | |
|         else
 | |
|           return DAG.getNode(ISD::ROTR, VT, LHSShiftArg, RHSShiftAmt).Val;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Look for sign/zext/any-extended cases:
 | |
|   if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND
 | |
|        || LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND
 | |
|        || LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND) &&
 | |
|       (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND
 | |
|        || RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND
 | |
|        || RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND)) {
 | |
|     SDOperand LExtOp0 = LHSShiftAmt.getOperand(0);
 | |
|     SDOperand RExtOp0 = RHSShiftAmt.getOperand(0);
 | |
|     if (RExtOp0.getOpcode() == ISD::SUB &&
 | |
|         RExtOp0.getOperand(1) == LExtOp0) {
 | |
|       // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
 | |
|       //   (rotr x, y)
 | |
|       // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
 | |
|       //   (rotl x, (sub 32, y))
 | |
|       if (ConstantSDNode *SUBC = cast<ConstantSDNode>(RExtOp0.getOperand(0))) {
 | |
|         if (SUBC->getValue() == OpSizeInBits) {
 | |
|           if (HasROTL)
 | |
|             return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt).Val;
 | |
|           else
 | |
|             return DAG.getNode(ISD::ROTR, VT, LHSShiftArg, RHSShiftAmt).Val;
 | |
|         }
 | |
|       }
 | |
|     } else if (LExtOp0.getOpcode() == ISD::SUB &&
 | |
|                RExtOp0 == LExtOp0.getOperand(1)) {
 | |
|       // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext r))) -> 
 | |
|       //   (rotl x, y)
 | |
|       // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext r))) ->
 | |
|       //   (rotr x, (sub 32, y))
 | |
|       if (ConstantSDNode *SUBC = cast<ConstantSDNode>(LExtOp0.getOperand(0))) {
 | |
|         if (SUBC->getValue() == OpSizeInBits) {
 | |
|           if (HasROTL)
 | |
|             return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, RHSShiftAmt).Val;
 | |
|           else
 | |
|             return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt).Val;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| SDOperand DAGCombiner::visitXOR(SDNode *N) {
 | |
|   SDOperand N0 = N->getOperand(0);
 | |
|   SDOperand N1 = N->getOperand(1);
 | |
|   SDOperand LHS, RHS, CC;
 | |
|   ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
 | |
|   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
 | |
|   MVT::ValueType VT = N0.getValueType();
 | |
|   
 | |
|   // fold (xor c1, c2) -> c1^c2
 | |
|   if (N0C && N1C)
 | |
|     return DAG.getNode(ISD::XOR, VT, N0, N1);
 | |
|   // canonicalize constant to RHS
 | |
|   if (N0C && !N1C)
 | |
|     return DAG.getNode(ISD::XOR, VT, N1, N0);
 | |
|   // fold (xor x, 0) -> x
 | |
|   if (N1C && N1C->isNullValue())
 | |
|     return N0;
 | |
|   // reassociate xor
 | |
|   SDOperand RXOR = ReassociateOps(ISD::XOR, N0, N1);
 | |
|   if (RXOR.Val != 0)
 | |
|     return RXOR;
 | |
|   // fold !(x cc y) -> (x !cc y)
 | |
|   if (N1C && N1C->getValue() == 1 && isSetCCEquivalent(N0, LHS, RHS, CC)) {
 | |
|     bool isInt = MVT::isInteger(LHS.getValueType());
 | |
|     ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
 | |
|                                                isInt);
 | |
|     if (N0.getOpcode() == ISD::SETCC)
 | |
|       return DAG.getSetCC(VT, LHS, RHS, NotCC);
 | |
|     if (N0.getOpcode() == ISD::SELECT_CC)
 | |
|       return DAG.getSelectCC(LHS, RHS, N0.getOperand(2),N0.getOperand(3),NotCC);
 | |
|     assert(0 && "Unhandled SetCC Equivalent!");
 | |
|     abort();
 | |
|   }
 | |
|   // fold !(x or y) -> (!x and !y) iff x or y are setcc
 | |
|   if (N1C && N1C->getValue() == 1 && VT == MVT::i1 &&
 | |
|       (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
 | |
|     SDOperand LHS = N0.getOperand(0), RHS = N0.getOperand(1);
 | |
|     if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) {
 | |
|       unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
 | |
|       LHS = DAG.getNode(ISD::XOR, VT, LHS, N1);  // RHS = ~LHS
 | |
|       RHS = DAG.getNode(ISD::XOR, VT, RHS, N1);  // RHS = ~RHS
 | |
|       AddToWorkList(LHS.Val); AddToWorkList(RHS.Val);
 | |
|       return DAG.getNode(NewOpcode, VT, LHS, RHS);
 | |
|     }
 | |
|   }
 | |
|   // fold !(x or y) -> (!x and !y) iff x or y are constants
 | |
|   if (N1C && N1C->isAllOnesValue() && 
 | |
|       (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
 | |
|     SDOperand LHS = N0.getOperand(0), RHS = N0.getOperand(1);
 | |
|     if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) {
 | |
|       unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
 | |
|       LHS = DAG.getNode(ISD::XOR, VT, LHS, N1);  // RHS = ~LHS
 | |
|       RHS = DAG.getNode(ISD::XOR, VT, RHS, N1);  // RHS = ~RHS
 | |
|       AddToWorkList(LHS.Val); AddToWorkList(RHS.Val);
 | |
|       return DAG.getNode(NewOpcode, VT, LHS, RHS);
 | |
|     }
 | |
|   }
 | |
|   // fold (xor (xor x, c1), c2) -> (xor x, c1^c2)
 | |
|   if (N1C && N0.getOpcode() == ISD::XOR) {
 | |
|     ConstantSDNode *N00C = dyn_cast<ConstantSDNode>(N0.getOperand(0));
 | |
|     ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
 | |
|     if (N00C)
 | |
|       return DAG.getNode(ISD::XOR, VT, N0.getOperand(1),
 | |
|                          DAG.getConstant(N1C->getValue()^N00C->getValue(), VT));
 | |
|     if (N01C)
 | |
|       return DAG.getNode(ISD::XOR, VT, N0.getOperand(0),
 | |
|                          DAG.getConstant(N1C->getValue()^N01C->getValue(), VT));
 | |
|   }
 | |
|   // fold (xor x, x) -> 0
 | |
|   if (N0 == N1) {
 | |
|     if (!MVT::isVector(VT)) {
 | |
|       return DAG.getConstant(0, VT);
 | |
|     } else if (!AfterLegalize || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) {
 | |
|       // Produce a vector of zeros.
 | |
|       SDOperand El = DAG.getConstant(0, MVT::getVectorBaseType(VT));
 | |
|       std::vector<SDOperand> Ops(MVT::getVectorNumElements(VT), El);
 | |
|       return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Simplify: xor (op x...), (op y...)  -> (op (xor x, y))
 | |
|   if (N0.getOpcode() == N1.getOpcode()) {
 | |
|     SDOperand Tmp = SimplifyBinOpWithSameOpcodeHands(N);
 | |
|     if (Tmp.Val) return Tmp;
 | |
|   }
 | |
|   
 | |
|   // Simplify the expression using non-local knowledge.
 | |
|   if (!MVT::isVector(VT) &&
 | |
|       SimplifyDemandedBits(SDOperand(N, 0)))
 | |
|     return SDOperand(N, 0);
 | |
|   
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| SDOperand DAGCombiner::visitSHL(SDNode *N) {
 | |
|   SDOperand N0 = N->getOperand(0);
 | |
|   SDOperand N1 = N->getOperand(1);
 | |
|   ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
 | |
|   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
 | |
|   MVT::ValueType VT = N0.getValueType();
 | |
|   unsigned OpSizeInBits = MVT::getSizeInBits(VT);
 | |
|   
 | |
|   // fold (shl c1, c2) -> c1<<c2
 | |
|   if (N0C && N1C)
 | |
|     return DAG.getNode(ISD::SHL, VT, N0, N1);
 | |
|   // fold (shl 0, x) -> 0
 | |
|   if (N0C && N0C->isNullValue())
 | |
|     return N0;
 | |
|   // fold (shl x, c >= size(x)) -> undef
 | |
|   if (N1C && N1C->getValue() >= OpSizeInBits)
 | |
|     return DAG.getNode(ISD::UNDEF, VT);
 | |
|   // fold (shl x, 0) -> x
 | |
|   if (N1C && N1C->isNullValue())
 | |
|     return N0;
 | |
|   // if (shl x, c) is known to be zero, return 0
 | |
|   if (TLI.MaskedValueIsZero(SDOperand(N, 0), MVT::getIntVTBitMask(VT)))
 | |
|     return DAG.getConstant(0, VT);
 | |
|   if (N1C && SimplifyDemandedBits(SDOperand(N, 0)))
 | |
|     return SDOperand(N, 0);
 | |
|   // fold (shl (shl x, c1), c2) -> 0 or (shl x, c1+c2)
 | |
|   if (N1C && N0.getOpcode() == ISD::SHL && 
 | |
|       N0.getOperand(1).getOpcode() == ISD::Constant) {
 | |
|     uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
 | |
|     uint64_t c2 = N1C->getValue();
 | |
|     if (c1 + c2 > OpSizeInBits)
 | |
|       return DAG.getConstant(0, VT);
 | |
|     return DAG.getNode(ISD::SHL, VT, N0.getOperand(0), 
 | |
|                        DAG.getConstant(c1 + c2, N1.getValueType()));
 | |
|   }
 | |
|   // fold (shl (srl x, c1), c2) -> (shl (and x, -1 << c1), c2-c1) or
 | |
|   //                               (srl (and x, -1 << c1), c1-c2)
 | |
|   if (N1C && N0.getOpcode() == ISD::SRL && 
 | |
|       N0.getOperand(1).getOpcode() == ISD::Constant) {
 | |
|     uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
 | |
|     uint64_t c2 = N1C->getValue();
 | |
|     SDOperand Mask = DAG.getNode(ISD::AND, VT, N0.getOperand(0),
 | |
|                                  DAG.getConstant(~0ULL << c1, VT));
 | |
|     if (c2 > c1)
 | |
|       return DAG.getNode(ISD::SHL, VT, Mask, 
 | |
|                          DAG.getConstant(c2-c1, N1.getValueType()));
 | |
|     else
 | |
|       return DAG.getNode(ISD::SRL, VT, Mask, 
 | |
|                          DAG.getConstant(c1-c2, N1.getValueType()));
 | |
|   }
 | |
|   // fold (shl (sra x, c1), c1) -> (and x, -1 << c1)
 | |
|   if (N1C && N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1))
 | |
|     return DAG.getNode(ISD::AND, VT, N0.getOperand(0),
 | |
|                        DAG.getConstant(~0ULL << N1C->getValue(), VT));
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| SDOperand DAGCombiner::visitSRA(SDNode *N) {
 | |
|   SDOperand N0 = N->getOperand(0);
 | |
|   SDOperand N1 = N->getOperand(1);
 | |
|   ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
 | |
|   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
 | |
|   MVT::ValueType VT = N0.getValueType();
 | |
|   
 | |
|   // fold (sra c1, c2) -> c1>>c2
 | |
|   if (N0C && N1C)
 | |
|     return DAG.getNode(ISD::SRA, VT, N0, N1);
 | |
|   // fold (sra 0, x) -> 0
 | |
|   if (N0C && N0C->isNullValue())
 | |
|     return N0;
 | |
|   // fold (sra -1, x) -> -1
 | |
|   if (N0C && N0C->isAllOnesValue())
 | |
|     return N0;
 | |
|   // fold (sra x, c >= size(x)) -> undef
 | |
|   if (N1C && N1C->getValue() >= MVT::getSizeInBits(VT))
 | |
|     return DAG.getNode(ISD::UNDEF, VT);
 | |
|   // fold (sra x, 0) -> x
 | |
|   if (N1C && N1C->isNullValue())
 | |
|     return N0;
 | |
|   // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
 | |
|   // sext_inreg.
 | |
|   if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) {
 | |
|     unsigned LowBits = MVT::getSizeInBits(VT) - (unsigned)N1C->getValue();
 | |
|     MVT::ValueType EVT;
 | |
|     switch (LowBits) {
 | |
|     default: EVT = MVT::Other; break;
 | |
|     case  1: EVT = MVT::i1;    break;
 | |
|     case  8: EVT = MVT::i8;    break;
 | |
|     case 16: EVT = MVT::i16;   break;
 | |
|     case 32: EVT = MVT::i32;   break;
 | |
|     }
 | |
|     if (EVT > MVT::Other && TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, EVT))
 | |
|       return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0.getOperand(0),
 | |
|                          DAG.getValueType(EVT));
 | |
|   }
 | |
|   
 | |
|   // fold (sra (sra x, c1), c2) -> (sra x, c1+c2)
 | |
|   if (N1C && N0.getOpcode() == ISD::SRA) {
 | |
|     if (ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
 | |
|       unsigned Sum = N1C->getValue() + C1->getValue();
 | |
|       if (Sum >= MVT::getSizeInBits(VT)) Sum = MVT::getSizeInBits(VT)-1;
 | |
|       return DAG.getNode(ISD::SRA, VT, N0.getOperand(0),
 | |
|                          DAG.getConstant(Sum, N1C->getValueType(0)));
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Simplify, based on bits shifted out of the LHS. 
 | |
|   if (N1C && SimplifyDemandedBits(SDOperand(N, 0)))
 | |
|     return SDOperand(N, 0);
 | |
|   
 | |
|   
 | |
|   // If the sign bit is known to be zero, switch this to a SRL.
 | |
|   if (TLI.MaskedValueIsZero(N0, MVT::getIntVTSignBit(VT)))
 | |
|     return DAG.getNode(ISD::SRL, VT, N0, N1);
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| SDOperand DAGCombiner::visitSRL(SDNode *N) {
 | |
|   SDOperand N0 = N->getOperand(0);
 | |
|   SDOperand N1 = N->getOperand(1);
 | |
|   ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
 | |
|   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
 | |
|   MVT::ValueType VT = N0.getValueType();
 | |
|   unsigned OpSizeInBits = MVT::getSizeInBits(VT);
 | |
|   
 | |
|   // fold (srl c1, c2) -> c1 >>u c2
 | |
|   if (N0C && N1C)
 | |
|     return DAG.getNode(ISD::SRL, VT, N0, N1);
 | |
|   // fold (srl 0, x) -> 0
 | |
|   if (N0C && N0C->isNullValue())
 | |
|     return N0;
 | |
|   // fold (srl x, c >= size(x)) -> undef
 | |
|   if (N1C && N1C->getValue() >= OpSizeInBits)
 | |
|     return DAG.getNode(ISD::UNDEF, VT);
 | |
|   // fold (srl x, 0) -> x
 | |
|   if (N1C && N1C->isNullValue())
 | |
|     return N0;
 | |
|   // if (srl x, c) is known to be zero, return 0
 | |
|   if (N1C && TLI.MaskedValueIsZero(SDOperand(N, 0), ~0ULL >> (64-OpSizeInBits)))
 | |
|     return DAG.getConstant(0, VT);
 | |
|   
 | |
|   // fold (srl (srl x, c1), c2) -> 0 or (srl x, c1+c2)
 | |
|   if (N1C && N0.getOpcode() == ISD::SRL && 
 | |
|       N0.getOperand(1).getOpcode() == ISD::Constant) {
 | |
|     uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
 | |
|     uint64_t c2 = N1C->getValue();
 | |
|     if (c1 + c2 > OpSizeInBits)
 | |
|       return DAG.getConstant(0, VT);
 | |
|     return DAG.getNode(ISD::SRL, VT, N0.getOperand(0), 
 | |
|                        DAG.getConstant(c1 + c2, N1.getValueType()));
 | |
|   }
 | |
|   
 | |
|   // fold (srl (anyextend x), c) -> (anyextend (srl x, c))
 | |
|   if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
 | |
|     // Shifting in all undef bits?
 | |
|     MVT::ValueType SmallVT = N0.getOperand(0).getValueType();
 | |
|     if (N1C->getValue() >= MVT::getSizeInBits(SmallVT))
 | |
|       return DAG.getNode(ISD::UNDEF, VT);
 | |
| 
 | |
|     SDOperand SmallShift = DAG.getNode(ISD::SRL, SmallVT, N0.getOperand(0), N1);
 | |
|     AddToWorkList(SmallShift.Val);
 | |
|     return DAG.getNode(ISD::ANY_EXTEND, VT, SmallShift);
 | |
|   }
 | |
|   
 | |
|   // fold (srl (sra X, Y), 31) -> (srl X, 31).  This srl only looks at the sign
 | |
|   // bit, which is unmodified by sra.
 | |
|   if (N1C && N1C->getValue()+1 == MVT::getSizeInBits(VT)) {
 | |
|     if (N0.getOpcode() == ISD::SRA)
 | |
|       return DAG.getNode(ISD::SRL, VT, N0.getOperand(0), N1);
 | |
|   }
 | |
|   
 | |
|   // fold (srl (ctlz x), "5") -> x  iff x has one bit set (the low bit).
 | |
|   if (N1C && N0.getOpcode() == ISD::CTLZ && 
 | |
|       N1C->getValue() == Log2_32(MVT::getSizeInBits(VT))) {
 | |
|     uint64_t KnownZero, KnownOne, Mask = MVT::getIntVTBitMask(VT);
 | |
|     TLI.ComputeMaskedBits(N0.getOperand(0), Mask, KnownZero, KnownOne);
 | |
|     
 | |
|     // If any of the input bits are KnownOne, then the input couldn't be all
 | |
|     // zeros, thus the result of the srl will always be zero.
 | |
|     if (KnownOne) return DAG.getConstant(0, VT);
 | |
|     
 | |
|     // If all of the bits input the to ctlz node are known to be zero, then
 | |
|     // the result of the ctlz is "32" and the result of the shift is one.
 | |
|     uint64_t UnknownBits = ~KnownZero & Mask;
 | |
|     if (UnknownBits == 0) return DAG.getConstant(1, VT);
 | |
|     
 | |
|     // Otherwise, check to see if there is exactly one bit input to the ctlz.
 | |
|     if ((UnknownBits & (UnknownBits-1)) == 0) {
 | |
|       // Okay, we know that only that the single bit specified by UnknownBits
 | |
|       // could be set on input to the CTLZ node.  If this bit is set, the SRL
 | |
|       // will return 0, if it is clear, it returns 1.  Change the CTLZ/SRL pair
 | |
|       // to an SRL,XOR pair, which is likely to simplify more.
 | |
|       unsigned ShAmt = CountTrailingZeros_64(UnknownBits);
 | |
|       SDOperand Op = N0.getOperand(0);
 | |
|       if (ShAmt) {
 | |
|         Op = DAG.getNode(ISD::SRL, VT, Op,
 | |
|                          DAG.getConstant(ShAmt, TLI.getShiftAmountTy()));
 | |
|         AddToWorkList(Op.Val);
 | |
|       }
 | |
|       return DAG.getNode(ISD::XOR, VT, Op, DAG.getConstant(1, VT));
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // fold operands of srl based on knowledge that the low bits are not
 | |
|   // demanded.
 | |
|   if (N1C && SimplifyDemandedBits(SDOperand(N, 0)))
 | |
|     return SDOperand(N, 0);
 | |
|   
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| SDOperand DAGCombiner::visitCTLZ(SDNode *N) {
 | |
|   SDOperand N0 = N->getOperand(0);
 | |
|   MVT::ValueType VT = N->getValueType(0);
 | |
| 
 | |
|   // fold (ctlz c1) -> c2
 | |
|   if (isa<ConstantSDNode>(N0))
 | |
|     return DAG.getNode(ISD::CTLZ, VT, N0);
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| SDOperand DAGCombiner::visitCTTZ(SDNode *N) {
 | |
|   SDOperand N0 = N->getOperand(0);
 | |
|   MVT::ValueType VT = N->getValueType(0);
 | |
|   
 | |
|   // fold (cttz c1) -> c2
 | |
|   if (isa<ConstantSDNode>(N0))
 | |
|     return DAG.getNode(ISD::CTTZ, VT, N0);
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| SDOperand DAGCombiner::visitCTPOP(SDNode *N) {
 | |
|   SDOperand N0 = N->getOperand(0);
 | |
|   MVT::ValueType VT = N->getValueType(0);
 | |
|   
 | |
|   // fold (ctpop c1) -> c2
 | |
|   if (isa<ConstantSDNode>(N0))
 | |
|     return DAG.getNode(ISD::CTPOP, VT, N0);
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| SDOperand DAGCombiner::visitSELECT(SDNode *N) {
 | |
|   SDOperand N0 = N->getOperand(0);
 | |
|   SDOperand N1 = N->getOperand(1);
 | |
|   SDOperand N2 = N->getOperand(2);
 | |
|   ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
 | |
|   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
 | |
|   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
 | |
|   MVT::ValueType VT = N->getValueType(0);
 | |
| 
 | |
|   // fold select C, X, X -> X
 | |
|   if (N1 == N2)
 | |
|     return N1;
 | |
|   // fold select true, X, Y -> X
 | |
|   if (N0C && !N0C->isNullValue())
 | |
|     return N1;
 | |
|   // fold select false, X, Y -> Y
 | |
|   if (N0C && N0C->isNullValue())
 | |
|     return N2;
 | |
|   // fold select C, 1, X -> C | X
 | |
|   if (MVT::i1 == VT && N1C && N1C->getValue() == 1)
 | |
|     return DAG.getNode(ISD::OR, VT, N0, N2);
 | |
|   // fold select C, 0, X -> ~C & X
 | |
|   // FIXME: this should check for C type == X type, not i1?
 | |
|   if (MVT::i1 == VT && N1C && N1C->isNullValue()) {
 | |
|     SDOperand XORNode = DAG.getNode(ISD::XOR, VT, N0, DAG.getConstant(1, VT));
 | |
|     AddToWorkList(XORNode.Val);
 | |
|     return DAG.getNode(ISD::AND, VT, XORNode, N2);
 | |
|   }
 | |
|   // fold select C, X, 1 -> ~C | X
 | |
|   if (MVT::i1 == VT && N2C && N2C->getValue() == 1) {
 | |
|     SDOperand XORNode = DAG.getNode(ISD::XOR, VT, N0, DAG.getConstant(1, VT));
 | |
|     AddToWorkList(XORNode.Val);
 | |
|     return DAG.getNode(ISD::OR, VT, XORNode, N1);
 | |
|   }
 | |
|   // fold select C, X, 0 -> C & X
 | |
|   // FIXME: this should check for C type == X type, not i1?
 | |
|   if (MVT::i1 == VT && N2C && N2C->isNullValue())
 | |
|     return DAG.getNode(ISD::AND, VT, N0, N1);
 | |
|   // fold  X ? X : Y --> X ? 1 : Y --> X | Y
 | |
|   if (MVT::i1 == VT && N0 == N1)
 | |
|     return DAG.getNode(ISD::OR, VT, N0, N2);
 | |
|   // fold X ? Y : X --> X ? Y : 0 --> X & Y
 | |
|   if (MVT::i1 == VT && N0 == N2)
 | |
|     return DAG.getNode(ISD::AND, VT, N0, N1);
 | |
|   
 | |
|   // If we can fold this based on the true/false value, do so.
 | |
|   if (SimplifySelectOps(N, N1, N2))
 | |
|     return SDOperand(N, 0);  // Don't revisit N.
 | |
|   
 | |
|   // fold selects based on a setcc into other things, such as min/max/abs
 | |
|   if (N0.getOpcode() == ISD::SETCC)
 | |
|     // FIXME:
 | |
|     // Check against MVT::Other for SELECT_CC, which is a workaround for targets
 | |
|     // having to say they don't support SELECT_CC on every type the DAG knows
 | |
|     // about, since there is no way to mark an opcode illegal at all value types
 | |
|     if (TLI.isOperationLegal(ISD::SELECT_CC, MVT::Other))
 | |
|       return DAG.getNode(ISD::SELECT_CC, VT, N0.getOperand(0), N0.getOperand(1),
 | |
|                          N1, N2, N0.getOperand(2));
 | |
|     else
 | |
|       return SimplifySelect(N0, N1, N2);
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| SDOperand DAGCombiner::visitSELECT_CC(SDNode *N) {
 | |
|   SDOperand N0 = N->getOperand(0);
 | |
|   SDOperand N1 = N->getOperand(1);
 | |
|   SDOperand N2 = N->getOperand(2);
 | |
|   SDOperand N3 = N->getOperand(3);
 | |
|   SDOperand N4 = N->getOperand(4);
 | |
|   ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get();
 | |
|   
 | |
|   // fold select_cc lhs, rhs, x, x, cc -> x
 | |
|   if (N2 == N3)
 | |
|     return N2;
 | |
|   
 | |
|   // Determine if the condition we're dealing with is constant
 | |
|   SDOperand SCC = SimplifySetCC(TLI.getSetCCResultTy(), N0, N1, CC, false);
 | |
|   if (SCC.Val) AddToWorkList(SCC.Val);
 | |
| 
 | |
|   if (ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.Val)) {
 | |
|     if (SCCC->getValue())
 | |
|       return N2;    // cond always true -> true val
 | |
|     else
 | |
|       return N3;    // cond always false -> false val
 | |
|   }
 | |
|   
 | |
|   // Fold to a simpler select_cc
 | |
|   if (SCC.Val && SCC.getOpcode() == ISD::SETCC)
 | |
|     return DAG.getNode(ISD::SELECT_CC, N2.getValueType(), 
 | |
|                        SCC.getOperand(0), SCC.getOperand(1), N2, N3, 
 | |
|                        SCC.getOperand(2));
 | |
|   
 | |
|   // If we can fold this based on the true/false value, do so.
 | |
|   if (SimplifySelectOps(N, N2, N3))
 | |
|     return SDOperand(N, 0);  // Don't revisit N.
 | |
|   
 | |
|   // fold select_cc into other things, such as min/max/abs
 | |
|   return SimplifySelectCC(N0, N1, N2, N3, CC);
 | |
| }
 | |
| 
 | |
| SDOperand DAGCombiner::visitSETCC(SDNode *N) {
 | |
|   return SimplifySetCC(N->getValueType(0), N->getOperand(0), N->getOperand(1),
 | |
|                        cast<CondCodeSDNode>(N->getOperand(2))->get());
 | |
| }
 | |
| 
 | |
| SDOperand DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
 | |
|   SDOperand N0 = N->getOperand(0);
 | |
|   MVT::ValueType VT = N->getValueType(0);
 | |
| 
 | |
|   // fold (sext c1) -> c1
 | |
|   if (isa<ConstantSDNode>(N0))
 | |
|     return DAG.getNode(ISD::SIGN_EXTEND, VT, N0);
 | |
|   
 | |
|   // fold (sext (sext x)) -> (sext x)
 | |
|   // fold (sext (aext x)) -> (sext x)
 | |
|   if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
 | |
|     return DAG.getNode(ISD::SIGN_EXTEND, VT, N0.getOperand(0));
 | |
|   
 | |
|   // fold (sext (truncate (load x))) -> (sext (smaller load x))
 | |
|   // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n)))
 | |
|   if (N0.getOpcode() == ISD::TRUNCATE) {
 | |
|     SDOperand NarrowLoad = ReduceLoadWidth(N0.Val);
 | |
|     if (NarrowLoad.Val) {
 | |
|       if (NarrowLoad.Val != N0.Val)
 | |
|         CombineTo(N0.Val, NarrowLoad);
 | |
|       return DAG.getNode(ISD::SIGN_EXTEND, VT, NarrowLoad);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // See if the value being truncated is already sign extended.  If so, just
 | |
|   // eliminate the trunc/sext pair.
 | |
|   if (N0.getOpcode() == ISD::TRUNCATE) {
 | |
|     SDOperand Op = N0.getOperand(0);
 | |
|     unsigned OpBits   = MVT::getSizeInBits(Op.getValueType());
 | |
|     unsigned MidBits  = MVT::getSizeInBits(N0.getValueType());
 | |
|     unsigned DestBits = MVT::getSizeInBits(VT);
 | |
|     unsigned NumSignBits = TLI.ComputeNumSignBits(Op);
 | |
|     
 | |
|     if (OpBits == DestBits) {
 | |
|       // Op is i32, Mid is i8, and Dest is i32.  If Op has more than 24 sign
 | |
|       // bits, it is already ready.
 | |
|       if (NumSignBits > DestBits-MidBits)
 | |
|         return Op;
 | |
|     } else if (OpBits < DestBits) {
 | |
|       // Op is i32, Mid is i8, and Dest is i64.  If Op has more than 24 sign
 | |
|       // bits, just sext from i32.
 | |
|       if (NumSignBits > OpBits-MidBits)
 | |
|         return DAG.getNode(ISD::SIGN_EXTEND, VT, Op);
 | |
|     } else {
 | |
|       // Op is i64, Mid is i8, and Dest is i32.  If Op has more than 56 sign
 | |
|       // bits, just truncate to i32.
 | |
|       if (NumSignBits > OpBits-MidBits)
 | |
|         return DAG.getNode(ISD::TRUNCATE, VT, Op);
 | |
|     }
 | |
|     
 | |
|     // fold (sext (truncate x)) -> (sextinreg x).
 | |
|     if (!AfterLegalize || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG,
 | |
|                                                N0.getValueType())) {
 | |
|       if (Op.getValueType() < VT)
 | |
|         Op = DAG.getNode(ISD::ANY_EXTEND, VT, Op);
 | |
|       else if (Op.getValueType() > VT)
 | |
|         Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
 | |
|       return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, Op,
 | |
|                          DAG.getValueType(N0.getValueType()));
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // fold (sext (load x)) -> (sext (truncate (sextload x)))
 | |
|   if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() &&
 | |
|       (!AfterLegalize||TLI.isLoadXLegal(ISD::SEXTLOAD, N0.getValueType()))){
 | |
|     LoadSDNode *LN0 = cast<LoadSDNode>(N0);
 | |
|     SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(),
 | |
|                                        LN0->getBasePtr(), LN0->getSrcValue(),
 | |
|                                        LN0->getSrcValueOffset(),
 | |
|                                        N0.getValueType(), 
 | |
|                                        LN0->isVolatile());
 | |
|     CombineTo(N, ExtLoad);
 | |
|     CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
 | |
|               ExtLoad.getValue(1));
 | |
|     return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
 | |
|   }
 | |
| 
 | |
|   // fold (sext (sextload x)) -> (sext (truncate (sextload x)))
 | |
|   // fold (sext ( extload x)) -> (sext (truncate (sextload x)))
 | |
|   if ((ISD::isSEXTLoad(N0.Val) || ISD::isEXTLoad(N0.Val)) &&
 | |
|       ISD::isUNINDEXEDLoad(N0.Val) && N0.hasOneUse()) {
 | |
|     LoadSDNode *LN0 = cast<LoadSDNode>(N0);
 | |
|     MVT::ValueType EVT = LN0->getLoadedVT();
 | |
|     if (!AfterLegalize || TLI.isLoadXLegal(ISD::SEXTLOAD, EVT)) {
 | |
|       SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(),
 | |
|                                          LN0->getBasePtr(), LN0->getSrcValue(),
 | |
|                                          LN0->getSrcValueOffset(), EVT,
 | |
|                                          LN0->isVolatile(), 
 | |
|                                          LN0->getAlignment());
 | |
|       CombineTo(N, ExtLoad);
 | |
|       CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
 | |
|                 ExtLoad.getValue(1));
 | |
|       return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // sext(setcc x,y,cc) -> select_cc x, y, -1, 0, cc
 | |
|   if (N0.getOpcode() == ISD::SETCC) {
 | |
|     SDOperand SCC = 
 | |
|       SimplifySelectCC(N0.getOperand(0), N0.getOperand(1),
 | |
|                        DAG.getConstant(~0ULL, VT), DAG.getConstant(0, VT),
 | |
|                        cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
 | |
|     if (SCC.Val) return SCC;
 | |
|   }
 | |
|   
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| SDOperand DAGCombiner::visitZERO_EXTEND(SDNode *N) {
 | |
|   SDOperand N0 = N->getOperand(0);
 | |
|   MVT::ValueType VT = N->getValueType(0);
 | |
| 
 | |
|   // fold (zext c1) -> c1
 | |
|   if (isa<ConstantSDNode>(N0))
 | |
|     return DAG.getNode(ISD::ZERO_EXTEND, VT, N0);
 | |
|   // fold (zext (zext x)) -> (zext x)
 | |
|   // fold (zext (aext x)) -> (zext x)
 | |
|   if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
 | |
|     return DAG.getNode(ISD::ZERO_EXTEND, VT, N0.getOperand(0));
 | |
| 
 | |
|   // fold (zext (truncate (load x))) -> (zext (smaller load x))
 | |
|   // fold (zext (truncate (srl (load x), c))) -> (zext (small load (x+c/n)))
 | |
|   if (N0.getOpcode() == ISD::TRUNCATE) {
 | |
|     SDOperand NarrowLoad = ReduceLoadWidth(N0.Val);
 | |
|     if (NarrowLoad.Val) {
 | |
|       if (NarrowLoad.Val != N0.Val)
 | |
|         CombineTo(N0.Val, NarrowLoad);
 | |
|       return DAG.getNode(ISD::ZERO_EXTEND, VT, NarrowLoad);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // fold (zext (truncate x)) -> (and x, mask)
 | |
|   if (N0.getOpcode() == ISD::TRUNCATE &&
 | |
|       (!AfterLegalize || TLI.isOperationLegal(ISD::AND, VT))) {
 | |
|     SDOperand Op = N0.getOperand(0);
 | |
|     if (Op.getValueType() < VT) {
 | |
|       Op = DAG.getNode(ISD::ANY_EXTEND, VT, Op);
 | |
|     } else if (Op.getValueType() > VT) {
 | |
|       Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
 | |
|     }
 | |
|     return DAG.getZeroExtendInReg(Op, N0.getValueType());
 | |
|   }
 | |
|   
 | |
|   // fold (zext (and (trunc x), cst)) -> (and x, cst).
 | |
|   if (N0.getOpcode() == ISD::AND &&
 | |
|       N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
 | |
|       N0.getOperand(1).getOpcode() == ISD::Constant) {
 | |
|     SDOperand X = N0.getOperand(0).getOperand(0);
 | |
|     if (X.getValueType() < VT) {
 | |
|       X = DAG.getNode(ISD::ANY_EXTEND, VT, X);
 | |
|     } else if (X.getValueType() > VT) {
 | |
|       X = DAG.getNode(ISD::TRUNCATE, VT, X);
 | |
|     }
 | |
|     uint64_t Mask = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
 | |
|     return DAG.getNode(ISD::AND, VT, X, DAG.getConstant(Mask, VT));
 | |
|   }
 | |
|   
 | |
|   // fold (zext (load x)) -> (zext (truncate (zextload x)))
 | |
|   if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() &&
 | |
|       (!AfterLegalize||TLI.isLoadXLegal(ISD::ZEXTLOAD, N0.getValueType()))) {
 | |
|     LoadSDNode *LN0 = cast<LoadSDNode>(N0);
 | |
|     SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(),
 | |
|                                        LN0->getBasePtr(), LN0->getSrcValue(),
 | |
|                                        LN0->getSrcValueOffset(),
 | |
|                                        N0.getValueType(),
 | |
|                                        LN0->isVolatile(), 
 | |
|                                        LN0->getAlignment());
 | |
|     CombineTo(N, ExtLoad);
 | |
|     CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
 | |
|               ExtLoad.getValue(1));
 | |
|     return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
 | |
|   }
 | |
| 
 | |
|   // fold (zext (zextload x)) -> (zext (truncate (zextload x)))
 | |
|   // fold (zext ( extload x)) -> (zext (truncate (zextload x)))
 | |
|   if ((ISD::isZEXTLoad(N0.Val) || ISD::isEXTLoad(N0.Val)) &&
 | |
|       ISD::isUNINDEXEDLoad(N0.Val) && N0.hasOneUse()) {
 | |
|     LoadSDNode *LN0 = cast<LoadSDNode>(N0);
 | |
|     MVT::ValueType EVT = LN0->getLoadedVT();
 | |
|     SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(),
 | |
|                                        LN0->getBasePtr(), LN0->getSrcValue(),
 | |
|                                        LN0->getSrcValueOffset(), EVT,
 | |
|                                        LN0->isVolatile(), 
 | |
|                                        LN0->getAlignment());
 | |
|     CombineTo(N, ExtLoad);
 | |
|     CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
 | |
|               ExtLoad.getValue(1));
 | |
|     return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
 | |
|   }
 | |
|   
 | |
|   // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
 | |
|   if (N0.getOpcode() == ISD::SETCC) {
 | |
|     SDOperand SCC = 
 | |
|       SimplifySelectCC(N0.getOperand(0), N0.getOperand(1),
 | |
|                        DAG.getConstant(1, VT), DAG.getConstant(0, VT),
 | |
|                        cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
 | |
|     if (SCC.Val) return SCC;
 | |
|   }
 | |
|   
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| SDOperand DAGCombiner::visitANY_EXTEND(SDNode *N) {
 | |
|   SDOperand N0 = N->getOperand(0);
 | |
|   MVT::ValueType VT = N->getValueType(0);
 | |
|   
 | |
|   // fold (aext c1) -> c1
 | |
|   if (isa<ConstantSDNode>(N0))
 | |
|     return DAG.getNode(ISD::ANY_EXTEND, VT, N0);
 | |
|   // fold (aext (aext x)) -> (aext x)
 | |
|   // fold (aext (zext x)) -> (zext x)
 | |
|   // fold (aext (sext x)) -> (sext x)
 | |
|   if (N0.getOpcode() == ISD::ANY_EXTEND  ||
 | |
|       N0.getOpcode() == ISD::ZERO_EXTEND ||
 | |
|       N0.getOpcode() == ISD::SIGN_EXTEND)
 | |
|     return DAG.getNode(N0.getOpcode(), VT, N0.getOperand(0));
 | |
|   
 | |
|   // fold (aext (truncate (load x))) -> (aext (smaller load x))
 | |
|   // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n)))
 | |
|   if (N0.getOpcode() == ISD::TRUNCATE) {
 | |
|     SDOperand NarrowLoad = ReduceLoadWidth(N0.Val);
 | |
|     if (NarrowLoad.Val) {
 | |
|       if (NarrowLoad.Val != N0.Val)
 | |
|         CombineTo(N0.Val, NarrowLoad);
 | |
|       return DAG.getNode(ISD::ANY_EXTEND, VT, NarrowLoad);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // fold (aext (truncate x))
 | |
|   if (N0.getOpcode() == ISD::TRUNCATE) {
 | |
|     SDOperand TruncOp = N0.getOperand(0);
 | |
|     if (TruncOp.getValueType() == VT)
 | |
|       return TruncOp; // x iff x size == zext size.
 | |
|     if (TruncOp.getValueType() > VT)
 | |
|       return DAG.getNode(ISD::TRUNCATE, VT, TruncOp);
 | |
|     return DAG.getNode(ISD::ANY_EXTEND, VT, TruncOp);
 | |
|   }
 | |
|   
 | |
|   // fold (aext (and (trunc x), cst)) -> (and x, cst).
 | |
|   if (N0.getOpcode() == ISD::AND &&
 | |
|       N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
 | |
|       N0.getOperand(1).getOpcode() == ISD::Constant) {
 | |
|     SDOperand X = N0.getOperand(0).getOperand(0);
 | |
|     if (X.getValueType() < VT) {
 | |
|       X = DAG.getNode(ISD::ANY_EXTEND, VT, X);
 | |
|     } else if (X.getValueType() > VT) {
 | |
|       X = DAG.getNode(ISD::TRUNCATE, VT, X);
 | |
|     }
 | |
|     uint64_t Mask = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
 | |
|     return DAG.getNode(ISD::AND, VT, X, DAG.getConstant(Mask, VT));
 | |
|   }
 | |
|   
 | |
|   // fold (aext (load x)) -> (aext (truncate (extload x)))
 | |
|   if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() &&
 | |
|       (!AfterLegalize||TLI.isLoadXLegal(ISD::EXTLOAD, N0.getValueType()))) {
 | |
|     LoadSDNode *LN0 = cast<LoadSDNode>(N0);
 | |
|     SDOperand ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, VT, LN0->getChain(),
 | |
|                                        LN0->getBasePtr(), LN0->getSrcValue(),
 | |
|                                        LN0->getSrcValueOffset(),
 | |
|                                        N0.getValueType(),
 | |
|                                        LN0->isVolatile(), 
 | |
|                                        LN0->getAlignment());
 | |
|     CombineTo(N, ExtLoad);
 | |
|     CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
 | |
|               ExtLoad.getValue(1));
 | |
|     return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
 | |
|   }
 | |
|   
 | |
|   // fold (aext (zextload x)) -> (aext (truncate (zextload x)))
 | |
|   // fold (aext (sextload x)) -> (aext (truncate (sextload x)))
 | |
|   // fold (aext ( extload x)) -> (aext (truncate (extload  x)))
 | |
|   if (N0.getOpcode() == ISD::LOAD &&
 | |
|       !ISD::isNON_EXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val) &&
 | |
|       N0.hasOneUse()) {
 | |
|     LoadSDNode *LN0 = cast<LoadSDNode>(N0);
 | |
|     MVT::ValueType EVT = LN0->getLoadedVT();
 | |
|     SDOperand ExtLoad = DAG.getExtLoad(LN0->getExtensionType(), VT,
 | |
|                                        LN0->getChain(), LN0->getBasePtr(),
 | |
|                                        LN0->getSrcValue(),
 | |
|                                        LN0->getSrcValueOffset(), EVT,
 | |
|                                        LN0->isVolatile(), 
 | |
|                                        LN0->getAlignment());
 | |
|     CombineTo(N, ExtLoad);
 | |
|     CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
 | |
|               ExtLoad.getValue(1));
 | |
|     return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
 | |
|   }
 | |
|   
 | |
|   // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
 | |
|   if (N0.getOpcode() == ISD::SETCC) {
 | |
|     SDOperand SCC = 
 | |
|       SimplifySelectCC(N0.getOperand(0), N0.getOperand(1),
 | |
|                        DAG.getConstant(1, VT), DAG.getConstant(0, VT),
 | |
|                        cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
 | |
|     if (SCC.Val)
 | |
|       return SCC;
 | |
|   }
 | |
|   
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| /// ReduceLoadWidth - If the result of a wider load is shifted to right of N
 | |
| /// bits and then truncated to a narrower type and where N is a multiple
 | |
| /// of number of bits of the narrower type, transform it to a narrower load
 | |
| /// from address + N / num of bits of new type. If the result is to be
 | |
| /// extended, also fold the extension to form a extending load.
 | |
| SDOperand DAGCombiner::ReduceLoadWidth(SDNode *N) {
 | |
|   unsigned Opc = N->getOpcode();
 | |
|   ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
 | |
|   SDOperand N0 = N->getOperand(0);
 | |
|   MVT::ValueType VT = N->getValueType(0);
 | |
|   MVT::ValueType EVT = N->getValueType(0);
 | |
| 
 | |
|   // Special case: SIGN_EXTEND_INREG is basically truncating to EVT then
 | |
|   // extended to VT.
 | |
|   if (Opc == ISD::SIGN_EXTEND_INREG) {
 | |
|     ExtType = ISD::SEXTLOAD;
 | |
|     EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
 | |
|     if (AfterLegalize && !TLI.isLoadXLegal(ISD::SEXTLOAD, EVT))
 | |
|       return SDOperand();
 | |
|   }
 | |
| 
 | |
|   unsigned EVTBits = MVT::getSizeInBits(EVT);
 | |
|   unsigned ShAmt = 0;
 | |
|   bool CombineSRL =  false;
 | |
|   if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
 | |
|     if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
 | |
|       ShAmt = N01->getValue();
 | |
|       // Is the shift amount a multiple of size of VT?
 | |
|       if ((ShAmt & (EVTBits-1)) == 0) {
 | |
|         N0 = N0.getOperand(0);
 | |
|         if (MVT::getSizeInBits(N0.getValueType()) <= EVTBits)
 | |
|           return SDOperand();
 | |
|         CombineSRL = true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() &&
 | |
|       // Do not allow folding to i1 here.  i1 is implicitly stored in memory in
 | |
|       // zero extended form: by shrinking the load, we lose track of the fact
 | |
|       // that it is already zero extended.
 | |
|       // FIXME: This should be reevaluated.
 | |
|       VT != MVT::i1) {
 | |
|     assert(MVT::getSizeInBits(N0.getValueType()) > EVTBits &&
 | |
|            "Cannot truncate to larger type!");
 | |
|     LoadSDNode *LN0 = cast<LoadSDNode>(N0);
 | |
|     MVT::ValueType PtrType = N0.getOperand(1).getValueType();
 | |
|     // For big endian targets, we need to adjust the offset to the pointer to
 | |
|     // load the correct bytes.
 | |
|     if (!TLI.isLittleEndian())
 | |
|       ShAmt = MVT::getSizeInBits(N0.getValueType()) - ShAmt - EVTBits;
 | |
|     uint64_t PtrOff =  ShAmt / 8;
 | |
|     SDOperand NewPtr = DAG.getNode(ISD::ADD, PtrType, LN0->getBasePtr(),
 | |
|                                    DAG.getConstant(PtrOff, PtrType));
 | |
|     AddToWorkList(NewPtr.Val);
 | |
|     SDOperand Load = (ExtType == ISD::NON_EXTLOAD)
 | |
|       ? DAG.getLoad(VT, LN0->getChain(), NewPtr,
 | |
|                     LN0->getSrcValue(), LN0->getSrcValueOffset(),
 | |
|                     LN0->isVolatile(), LN0->getAlignment())
 | |
|       : DAG.getExtLoad(ExtType, VT, LN0->getChain(), NewPtr,
 | |
|                        LN0->getSrcValue(), LN0->getSrcValueOffset(), EVT,
 | |
|                        LN0->isVolatile(), LN0->getAlignment());
 | |
|     AddToWorkList(N);
 | |
|     if (CombineSRL) {
 | |
|       std::vector<SDNode*> NowDead;
 | |
|       DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1), NowDead);
 | |
|       CombineTo(N->getOperand(0).Val, Load);
 | |
|     } else
 | |
|       CombineTo(N0.Val, Load, Load.getValue(1));
 | |
|     if (ShAmt) {
 | |
|       if (Opc == ISD::SIGN_EXTEND_INREG)
 | |
|         return DAG.getNode(Opc, VT, Load, N->getOperand(1));
 | |
|       else
 | |
|         return DAG.getNode(Opc, VT, Load);
 | |
|     }
 | |
|     return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
 | |
|   }
 | |
| 
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| 
 | |
| SDOperand DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
 | |
|   SDOperand N0 = N->getOperand(0);
 | |
|   SDOperand N1 = N->getOperand(1);
 | |
|   MVT::ValueType VT = N->getValueType(0);
 | |
|   MVT::ValueType EVT = cast<VTSDNode>(N1)->getVT();
 | |
|   unsigned EVTBits = MVT::getSizeInBits(EVT);
 | |
|   
 | |
|   // fold (sext_in_reg c1) -> c1
 | |
|   if (isa<ConstantSDNode>(N0) || N0.getOpcode() == ISD::UNDEF)
 | |
|     return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0, N1);
 | |
|   
 | |
|   // If the input is already sign extended, just drop the extension.
 | |
|   if (TLI.ComputeNumSignBits(N0) >= MVT::getSizeInBits(VT)-EVTBits+1)
 | |
|     return N0;
 | |
|   
 | |
|   // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
 | |
|   if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
 | |
|       EVT < cast<VTSDNode>(N0.getOperand(1))->getVT()) {
 | |
|     return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0.getOperand(0), N1);
 | |
|   }
 | |
| 
 | |
|   // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero.
 | |
|   if (TLI.MaskedValueIsZero(N0, 1ULL << (EVTBits-1)))
 | |
|     return DAG.getZeroExtendInReg(N0, EVT);
 | |
|   
 | |
|   // fold operands of sext_in_reg based on knowledge that the top bits are not
 | |
|   // demanded.
 | |
|   if (SimplifyDemandedBits(SDOperand(N, 0)))
 | |
|     return SDOperand(N, 0);
 | |
|   
 | |
|   // fold (sext_in_reg (load x)) -> (smaller sextload x)
 | |
|   // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits))
 | |
|   SDOperand NarrowLoad = ReduceLoadWidth(N);
 | |
|   if (NarrowLoad.Val)
 | |
|     return NarrowLoad;
 | |
| 
 | |
|   // fold (sext_in_reg (srl X, 24), i8) -> sra X, 24
 | |
|   // fold (sext_in_reg (srl X, 23), i8) -> sra X, 23 iff possible.
 | |
|   // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
 | |
|   if (N0.getOpcode() == ISD::SRL) {
 | |
|     if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
 | |
|       if (ShAmt->getValue()+EVTBits <= MVT::getSizeInBits(VT)) {
 | |
|         // We can turn this into an SRA iff the input to the SRL is already sign
 | |
|         // extended enough.
 | |
|         unsigned InSignBits = TLI.ComputeNumSignBits(N0.getOperand(0));
 | |
|         if (MVT::getSizeInBits(VT)-(ShAmt->getValue()+EVTBits) < InSignBits)
 | |
|           return DAG.getNode(ISD::SRA, VT, N0.getOperand(0), N0.getOperand(1));
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   // fold (sext_inreg (extload x)) -> (sextload x)
 | |
|   if (ISD::isEXTLoad(N0.Val) && 
 | |
|       ISD::isUNINDEXEDLoad(N0.Val) &&
 | |
|       EVT == cast<LoadSDNode>(N0)->getLoadedVT() &&
 | |
|       (!AfterLegalize || TLI.isLoadXLegal(ISD::SEXTLOAD, EVT))) {
 | |
|     LoadSDNode *LN0 = cast<LoadSDNode>(N0);
 | |
|     SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(),
 | |
|                                        LN0->getBasePtr(), LN0->getSrcValue(),
 | |
|                                        LN0->getSrcValueOffset(), EVT,
 | |
|                                        LN0->isVolatile(), 
 | |
|                                        LN0->getAlignment());
 | |
|     CombineTo(N, ExtLoad);
 | |
|     CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
 | |
|     return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
 | |
|   }
 | |
|   // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
 | |
|   if (ISD::isZEXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val) &&
 | |
|       N0.hasOneUse() &&
 | |
|       EVT == cast<LoadSDNode>(N0)->getLoadedVT() &&
 | |
|       (!AfterLegalize || TLI.isLoadXLegal(ISD::SEXTLOAD, EVT))) {
 | |
|     LoadSDNode *LN0 = cast<LoadSDNode>(N0);
 | |
|     SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(),
 | |
|                                        LN0->getBasePtr(), LN0->getSrcValue(),
 | |
|                                        LN0->getSrcValueOffset(), EVT,
 | |
|                                        LN0->isVolatile(), 
 | |
|                                        LN0->getAlignment());
 | |
|     CombineTo(N, ExtLoad);
 | |
|     CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
 | |
|     return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
 | |
|   }
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| SDOperand DAGCombiner::visitTRUNCATE(SDNode *N) {
 | |
|   SDOperand N0 = N->getOperand(0);
 | |
|   MVT::ValueType VT = N->getValueType(0);
 | |
| 
 | |
|   // noop truncate
 | |
|   if (N0.getValueType() == N->getValueType(0))
 | |
|     return N0;
 | |
|   // fold (truncate c1) -> c1
 | |
|   if (isa<ConstantSDNode>(N0))
 | |
|     return DAG.getNode(ISD::TRUNCATE, VT, N0);
 | |
|   // fold (truncate (truncate x)) -> (truncate x)
 | |
|   if (N0.getOpcode() == ISD::TRUNCATE)
 | |
|     return DAG.getNode(ISD::TRUNCATE, VT, N0.getOperand(0));
 | |
|   // fold (truncate (ext x)) -> (ext x) or (truncate x) or x
 | |
|   if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::SIGN_EXTEND||
 | |
|       N0.getOpcode() == ISD::ANY_EXTEND) {
 | |
|     if (N0.getOperand(0).getValueType() < VT)
 | |
|       // if the source is smaller than the dest, we still need an extend
 | |
|       return DAG.getNode(N0.getOpcode(), VT, N0.getOperand(0));
 | |
|     else if (N0.getOperand(0).getValueType() > VT)
 | |
|       // if the source is larger than the dest, than we just need the truncate
 | |
|       return DAG.getNode(ISD::TRUNCATE, VT, N0.getOperand(0));
 | |
|     else
 | |
|       // if the source and dest are the same type, we can drop both the extend
 | |
|       // and the truncate
 | |
|       return N0.getOperand(0);
 | |
|   }
 | |
| 
 | |
|   // fold (truncate (load x)) -> (smaller load x)
 | |
|   // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits))
 | |
|   return ReduceLoadWidth(N);
 | |
| }
 | |
| 
 | |
| SDOperand DAGCombiner::visitBIT_CONVERT(SDNode *N) {
 | |
|   SDOperand N0 = N->getOperand(0);
 | |
|   MVT::ValueType VT = N->getValueType(0);
 | |
| 
 | |
|   // If the input is a constant, let getNode() fold it.
 | |
|   if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) {
 | |
|     SDOperand Res = DAG.getNode(ISD::BIT_CONVERT, VT, N0);
 | |
|     if (Res.Val != N) return Res;
 | |
|   }
 | |
|   
 | |
|   if (N0.getOpcode() == ISD::BIT_CONVERT)  // conv(conv(x,t1),t2) -> conv(x,t2)
 | |
|     return DAG.getNode(ISD::BIT_CONVERT, VT, N0.getOperand(0));
 | |
| 
 | |
|   // fold (conv (load x)) -> (load (conv*)x)
 | |
|   // FIXME: These xforms need to know that the resultant load doesn't need a 
 | |
|   // higher alignment than the original!
 | |
|   if (0 && ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse()) {
 | |
|     LoadSDNode *LN0 = cast<LoadSDNode>(N0);
 | |
|     SDOperand Load = DAG.getLoad(VT, LN0->getChain(), LN0->getBasePtr(),
 | |
|                                  LN0->getSrcValue(), LN0->getSrcValueOffset(),
 | |
|                                  LN0->isVolatile(), LN0->getAlignment());
 | |
|     AddToWorkList(N);
 | |
|     CombineTo(N0.Val, DAG.getNode(ISD::BIT_CONVERT, N0.getValueType(), Load),
 | |
|               Load.getValue(1));
 | |
|     return Load;
 | |
|   }
 | |
|   
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| SDOperand DAGCombiner::visitVBIT_CONVERT(SDNode *N) {
 | |
|   SDOperand N0 = N->getOperand(0);
 | |
|   MVT::ValueType VT = N->getValueType(0);
 | |
| 
 | |
|   // If the input is a VBUILD_VECTOR with all constant elements, fold this now.
 | |
|   // First check to see if this is all constant.
 | |
|   if (N0.getOpcode() == ISD::VBUILD_VECTOR && N0.Val->hasOneUse() &&
 | |
|       VT == MVT::Vector) {
 | |
|     bool isSimple = true;
 | |
|     for (unsigned i = 0, e = N0.getNumOperands()-2; i != e; ++i)
 | |
|       if (N0.getOperand(i).getOpcode() != ISD::UNDEF &&
 | |
|           N0.getOperand(i).getOpcode() != ISD::Constant &&
 | |
|           N0.getOperand(i).getOpcode() != ISD::ConstantFP) {
 | |
|         isSimple = false; 
 | |
|         break;
 | |
|       }
 | |
|         
 | |
|     MVT::ValueType DestEltVT = cast<VTSDNode>(N->getOperand(2))->getVT();
 | |
|     if (isSimple && !MVT::isVector(DestEltVT)) {
 | |
|       return ConstantFoldVBIT_CONVERTofVBUILD_VECTOR(N0.Val, DestEltVT);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| /// ConstantFoldVBIT_CONVERTofVBUILD_VECTOR - We know that BV is a vbuild_vector
 | |
| /// node with Constant, ConstantFP or Undef operands.  DstEltVT indicates the 
 | |
| /// destination element value type.
 | |
| SDOperand DAGCombiner::
 | |
| ConstantFoldVBIT_CONVERTofVBUILD_VECTOR(SDNode *BV, MVT::ValueType DstEltVT) {
 | |
|   MVT::ValueType SrcEltVT = BV->getOperand(0).getValueType();
 | |
|   
 | |
|   // If this is already the right type, we're done.
 | |
|   if (SrcEltVT == DstEltVT) return SDOperand(BV, 0);
 | |
|   
 | |
|   unsigned SrcBitSize = MVT::getSizeInBits(SrcEltVT);
 | |
|   unsigned DstBitSize = MVT::getSizeInBits(DstEltVT);
 | |
|   
 | |
|   // If this is a conversion of N elements of one type to N elements of another
 | |
|   // type, convert each element.  This handles FP<->INT cases.
 | |
|   if (SrcBitSize == DstBitSize) {
 | |
|     SmallVector<SDOperand, 8> Ops;
 | |
|     for (unsigned i = 0, e = BV->getNumOperands()-2; i != e; ++i) {
 | |
|       Ops.push_back(DAG.getNode(ISD::BIT_CONVERT, DstEltVT, BV->getOperand(i)));
 | |
|       AddToWorkList(Ops.back().Val);
 | |
|     }
 | |
|     Ops.push_back(*(BV->op_end()-2)); // Add num elements.
 | |
|     Ops.push_back(DAG.getValueType(DstEltVT));
 | |
|     return DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, &Ops[0], Ops.size());
 | |
|   }
 | |
|   
 | |
|   // Otherwise, we're growing or shrinking the elements.  To avoid having to
 | |
|   // handle annoying details of growing/shrinking FP values, we convert them to
 | |
|   // int first.
 | |
|   if (MVT::isFloatingPoint(SrcEltVT)) {
 | |
|     // Convert the input float vector to a int vector where the elements are the
 | |
|     // same sizes.
 | |
|     assert((SrcEltVT == MVT::f32 || SrcEltVT == MVT::f64) && "Unknown FP VT!");
 | |
|     MVT::ValueType IntVT = SrcEltVT == MVT::f32 ? MVT::i32 : MVT::i64;
 | |
|     BV = ConstantFoldVBIT_CONVERTofVBUILD_VECTOR(BV, IntVT).Val;
 | |
|     SrcEltVT = IntVT;
 | |
|   }
 | |
|   
 | |
|   // Now we know the input is an integer vector.  If the output is a FP type,
 | |
|   // convert to integer first, then to FP of the right size.
 | |
|   if (MVT::isFloatingPoint(DstEltVT)) {
 | |
|     assert((DstEltVT == MVT::f32 || DstEltVT == MVT::f64) && "Unknown FP VT!");
 | |
|     MVT::ValueType TmpVT = DstEltVT == MVT::f32 ? MVT::i32 : MVT::i64;
 | |
|     SDNode *Tmp = ConstantFoldVBIT_CONVERTofVBUILD_VECTOR(BV, TmpVT).Val;
 | |
|     
 | |
|     // Next, convert to FP elements of the same size.
 | |
|     return ConstantFoldVBIT_CONVERTofVBUILD_VECTOR(Tmp, DstEltVT);
 | |
|   }
 | |
|   
 | |
|   // Okay, we know the src/dst types are both integers of differing types.
 | |
|   // Handling growing first.
 | |
|   assert(MVT::isInteger(SrcEltVT) && MVT::isInteger(DstEltVT));
 | |
|   if (SrcBitSize < DstBitSize) {
 | |
|     unsigned NumInputsPerOutput = DstBitSize/SrcBitSize;
 | |
|     
 | |
|     SmallVector<SDOperand, 8> Ops;
 | |
|     for (unsigned i = 0, e = BV->getNumOperands()-2; i != e;
 | |
|          i += NumInputsPerOutput) {
 | |
|       bool isLE = TLI.isLittleEndian();
 | |
|       uint64_t NewBits = 0;
 | |
|       bool EltIsUndef = true;
 | |
|       for (unsigned j = 0; j != NumInputsPerOutput; ++j) {
 | |
|         // Shift the previously computed bits over.
 | |
|         NewBits <<= SrcBitSize;
 | |
|         SDOperand Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j));
 | |
|         if (Op.getOpcode() == ISD::UNDEF) continue;
 | |
|         EltIsUndef = false;
 | |
|         
 | |
|         NewBits |= cast<ConstantSDNode>(Op)->getValue();
 | |
|       }
 | |
|       
 | |
|       if (EltIsUndef)
 | |
|         Ops.push_back(DAG.getNode(ISD::UNDEF, DstEltVT));
 | |
|       else
 | |
|         Ops.push_back(DAG.getConstant(NewBits, DstEltVT));
 | |
|     }
 | |
| 
 | |
|     Ops.push_back(DAG.getConstant(Ops.size(), MVT::i32)); // Add num elements.
 | |
|     Ops.push_back(DAG.getValueType(DstEltVT));            // Add element size.
 | |
|     return DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, &Ops[0], Ops.size());
 | |
|   }
 | |
|   
 | |
|   // Finally, this must be the case where we are shrinking elements: each input
 | |
|   // turns into multiple outputs.
 | |
|   unsigned NumOutputsPerInput = SrcBitSize/DstBitSize;
 | |
|   SmallVector<SDOperand, 8> Ops;
 | |
|   for (unsigned i = 0, e = BV->getNumOperands()-2; i != e; ++i) {
 | |
|     if (BV->getOperand(i).getOpcode() == ISD::UNDEF) {
 | |
|       for (unsigned j = 0; j != NumOutputsPerInput; ++j)
 | |
|         Ops.push_back(DAG.getNode(ISD::UNDEF, DstEltVT));
 | |
|       continue;
 | |
|     }
 | |
|     uint64_t OpVal = cast<ConstantSDNode>(BV->getOperand(i))->getValue();
 | |
| 
 | |
|     for (unsigned j = 0; j != NumOutputsPerInput; ++j) {
 | |
|       unsigned ThisVal = OpVal & ((1ULL << DstBitSize)-1);
 | |
|       OpVal >>= DstBitSize;
 | |
|       Ops.push_back(DAG.getConstant(ThisVal, DstEltVT));
 | |
|     }
 | |
| 
 | |
|     // For big endian targets, swap the order of the pieces of each element.
 | |
|     if (!TLI.isLittleEndian())
 | |
|       std::reverse(Ops.end()-NumOutputsPerInput, Ops.end());
 | |
|   }
 | |
|   Ops.push_back(DAG.getConstant(Ops.size(), MVT::i32)); // Add num elements.
 | |
|   Ops.push_back(DAG.getValueType(DstEltVT));            // Add element size.
 | |
|   return DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, &Ops[0], Ops.size());
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| SDOperand DAGCombiner::visitFADD(SDNode *N) {
 | |
|   SDOperand N0 = N->getOperand(0);
 | |
|   SDOperand N1 = N->getOperand(1);
 | |
|   ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
 | |
|   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
 | |
|   MVT::ValueType VT = N->getValueType(0);
 | |
|   
 | |
|   // fold (fadd c1, c2) -> c1+c2
 | |
|   if (N0CFP && N1CFP)
 | |
|     return DAG.getNode(ISD::FADD, VT, N0, N1);
 | |
|   // canonicalize constant to RHS
 | |
|   if (N0CFP && !N1CFP)
 | |
|     return DAG.getNode(ISD::FADD, VT, N1, N0);
 | |
|   // fold (A + (-B)) -> A-B
 | |
|   if (N1.getOpcode() == ISD::FNEG)
 | |
|     return DAG.getNode(ISD::FSUB, VT, N0, N1.getOperand(0));
 | |
|   // fold ((-A) + B) -> B-A
 | |
|   if (N0.getOpcode() == ISD::FNEG)
 | |
|     return DAG.getNode(ISD::FSUB, VT, N1, N0.getOperand(0));
 | |
|   
 | |
|   // If allowed, fold (fadd (fadd x, c1), c2) -> (fadd x, (fadd c1, c2))
 | |
|   if (UnsafeFPMath && N1CFP && N0.getOpcode() == ISD::FADD &&
 | |
|       N0.Val->hasOneUse() && isa<ConstantFPSDNode>(N0.getOperand(1)))
 | |
|     return DAG.getNode(ISD::FADD, VT, N0.getOperand(0),
 | |
|                        DAG.getNode(ISD::FADD, VT, N0.getOperand(1), N1));
 | |
|   
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| SDOperand DAGCombiner::visitFSUB(SDNode *N) {
 | |
|   SDOperand N0 = N->getOperand(0);
 | |
|   SDOperand N1 = N->getOperand(1);
 | |
|   ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
 | |
|   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
 | |
|   MVT::ValueType VT = N->getValueType(0);
 | |
|   
 | |
|   // fold (fsub c1, c2) -> c1-c2
 | |
|   if (N0CFP && N1CFP)
 | |
|     return DAG.getNode(ISD::FSUB, VT, N0, N1);
 | |
|   // fold (A-(-B)) -> A+B
 | |
|   if (N1.getOpcode() == ISD::FNEG)
 | |
|     return DAG.getNode(ISD::FADD, VT, N0, N1.getOperand(0));
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| SDOperand DAGCombiner::visitFMUL(SDNode *N) {
 | |
|   SDOperand N0 = N->getOperand(0);
 | |
|   SDOperand N1 = N->getOperand(1);
 | |
|   ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
 | |
|   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
 | |
|   MVT::ValueType VT = N->getValueType(0);
 | |
| 
 | |
|   // fold (fmul c1, c2) -> c1*c2
 | |
|   if (N0CFP && N1CFP)
 | |
|     return DAG.getNode(ISD::FMUL, VT, N0, N1);
 | |
|   // canonicalize constant to RHS
 | |
|   if (N0CFP && !N1CFP)
 | |
|     return DAG.getNode(ISD::FMUL, VT, N1, N0);
 | |
|   // fold (fmul X, 2.0) -> (fadd X, X)
 | |
|   if (N1CFP && N1CFP->isExactlyValue(+2.0))
 | |
|     return DAG.getNode(ISD::FADD, VT, N0, N0);
 | |
|   
 | |
|   // If allowed, fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2))
 | |
|   if (UnsafeFPMath && N1CFP && N0.getOpcode() == ISD::FMUL &&
 | |
|       N0.Val->hasOneUse() && isa<ConstantFPSDNode>(N0.getOperand(1)))
 | |
|     return DAG.getNode(ISD::FMUL, VT, N0.getOperand(0),
 | |
|                        DAG.getNode(ISD::FMUL, VT, N0.getOperand(1), N1));
 | |
|   
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| SDOperand DAGCombiner::visitFDIV(SDNode *N) {
 | |
|   SDOperand N0 = N->getOperand(0);
 | |
|   SDOperand N1 = N->getOperand(1);
 | |
|   ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
 | |
|   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
 | |
|   MVT::ValueType VT = N->getValueType(0);
 | |
| 
 | |
|   // fold (fdiv c1, c2) -> c1/c2
 | |
|   if (N0CFP && N1CFP)
 | |
|     return DAG.getNode(ISD::FDIV, VT, N0, N1);
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| SDOperand DAGCombiner::visitFREM(SDNode *N) {
 | |
|   SDOperand N0 = N->getOperand(0);
 | |
|   SDOperand N1 = N->getOperand(1);
 | |
|   ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
 | |
|   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
 | |
|   MVT::ValueType VT = N->getValueType(0);
 | |
| 
 | |
|   // fold (frem c1, c2) -> fmod(c1,c2)
 | |
|   if (N0CFP && N1CFP)
 | |
|     return DAG.getNode(ISD::FREM, VT, N0, N1);
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| SDOperand DAGCombiner::visitFCOPYSIGN(SDNode *N) {
 | |
|   SDOperand N0 = N->getOperand(0);
 | |
|   SDOperand N1 = N->getOperand(1);
 | |
|   ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
 | |
|   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
 | |
|   MVT::ValueType VT = N->getValueType(0);
 | |
| 
 | |
|   if (N0CFP && N1CFP)  // Constant fold
 | |
|     return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1);
 | |
|   
 | |
|   if (N1CFP) {
 | |
|     // copysign(x, c1) -> fabs(x)       iff ispos(c1)
 | |
|     // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
 | |
|     union {
 | |
|       double d;
 | |
|       int64_t i;
 | |
|     } u;
 | |
|     u.d = N1CFP->getValue();
 | |
|     if (u.i >= 0)
 | |
|       return DAG.getNode(ISD::FABS, VT, N0);
 | |
|     else
 | |
|       return DAG.getNode(ISD::FNEG, VT, DAG.getNode(ISD::FABS, VT, N0));
 | |
|   }
 | |
|   
 | |
|   // copysign(fabs(x), y) -> copysign(x, y)
 | |
|   // copysign(fneg(x), y) -> copysign(x, y)
 | |
|   // copysign(copysign(x,z), y) -> copysign(x, y)
 | |
|   if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG ||
 | |
|       N0.getOpcode() == ISD::FCOPYSIGN)
 | |
|     return DAG.getNode(ISD::FCOPYSIGN, VT, N0.getOperand(0), N1);
 | |
| 
 | |
|   // copysign(x, abs(y)) -> abs(x)
 | |
|   if (N1.getOpcode() == ISD::FABS)
 | |
|     return DAG.getNode(ISD::FABS, VT, N0);
 | |
|   
 | |
|   // copysign(x, copysign(y,z)) -> copysign(x, z)
 | |
|   if (N1.getOpcode() == ISD::FCOPYSIGN)
 | |
|     return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1.getOperand(1));
 | |
|   
 | |
|   // copysign(x, fp_extend(y)) -> copysign(x, y)
 | |
|   // copysign(x, fp_round(y)) -> copysign(x, y)
 | |
|   if (N1.getOpcode() == ISD::FP_EXTEND || N1.getOpcode() == ISD::FP_ROUND)
 | |
|     return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1.getOperand(0));
 | |
|   
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| SDOperand DAGCombiner::visitSINT_TO_FP(SDNode *N) {
 | |
|   SDOperand N0 = N->getOperand(0);
 | |
|   ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
 | |
|   MVT::ValueType VT = N->getValueType(0);
 | |
|   
 | |
|   // fold (sint_to_fp c1) -> c1fp
 | |
|   if (N0C)
 | |
|     return DAG.getNode(ISD::SINT_TO_FP, VT, N0);
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| SDOperand DAGCombiner::visitUINT_TO_FP(SDNode *N) {
 | |
|   SDOperand N0 = N->getOperand(0);
 | |
|   ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
 | |
|   MVT::ValueType VT = N->getValueType(0);
 | |
| 
 | |
|   // fold (uint_to_fp c1) -> c1fp
 | |
|   if (N0C)
 | |
|     return DAG.getNode(ISD::UINT_TO_FP, VT, N0);
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| SDOperand DAGCombiner::visitFP_TO_SINT(SDNode *N) {
 | |
|   SDOperand N0 = N->getOperand(0);
 | |
|   ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
 | |
|   MVT::ValueType VT = N->getValueType(0);
 | |
|   
 | |
|   // fold (fp_to_sint c1fp) -> c1
 | |
|   if (N0CFP)
 | |
|     return DAG.getNode(ISD::FP_TO_SINT, VT, N0);
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| SDOperand DAGCombiner::visitFP_TO_UINT(SDNode *N) {
 | |
|   SDOperand N0 = N->getOperand(0);
 | |
|   ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
 | |
|   MVT::ValueType VT = N->getValueType(0);
 | |
|   
 | |
|   // fold (fp_to_uint c1fp) -> c1
 | |
|   if (N0CFP)
 | |
|     return DAG.getNode(ISD::FP_TO_UINT, VT, N0);
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| SDOperand DAGCombiner::visitFP_ROUND(SDNode *N) {
 | |
|   SDOperand N0 = N->getOperand(0);
 | |
|   ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
 | |
|   MVT::ValueType VT = N->getValueType(0);
 | |
|   
 | |
|   // fold (fp_round c1fp) -> c1fp
 | |
|   if (N0CFP)
 | |
|     return DAG.getNode(ISD::FP_ROUND, VT, N0);
 | |
|   
 | |
|   // fold (fp_round (fp_extend x)) -> x
 | |
|   if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType())
 | |
|     return N0.getOperand(0);
 | |
|   
 | |
|   // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
 | |
|   if (N0.getOpcode() == ISD::FCOPYSIGN && N0.Val->hasOneUse()) {
 | |
|     SDOperand Tmp = DAG.getNode(ISD::FP_ROUND, VT, N0.getOperand(0));
 | |
|     AddToWorkList(Tmp.Val);
 | |
|     return DAG.getNode(ISD::FCOPYSIGN, VT, Tmp, N0.getOperand(1));
 | |
|   }
 | |
|   
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| SDOperand DAGCombiner::visitFP_ROUND_INREG(SDNode *N) {
 | |
|   SDOperand N0 = N->getOperand(0);
 | |
|   MVT::ValueType VT = N->getValueType(0);
 | |
|   MVT::ValueType EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
 | |
|   ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
 | |
|   
 | |
|   // fold (fp_round_inreg c1fp) -> c1fp
 | |
|   if (N0CFP) {
 | |
|     SDOperand Round = DAG.getConstantFP(N0CFP->getValue(), EVT);
 | |
|     return DAG.getNode(ISD::FP_EXTEND, VT, Round);
 | |
|   }
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| SDOperand DAGCombiner::visitFP_EXTEND(SDNode *N) {
 | |
|   SDOperand N0 = N->getOperand(0);
 | |
|   ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
 | |
|   MVT::ValueType VT = N->getValueType(0);
 | |
|   
 | |
|   // fold (fp_extend c1fp) -> c1fp
 | |
|   if (N0CFP)
 | |
|     return DAG.getNode(ISD::FP_EXTEND, VT, N0);
 | |
|   
 | |
|   // fold (fpext (load x)) -> (fpext (fpround (extload x)))
 | |
|   if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() &&
 | |
|       (!AfterLegalize||TLI.isLoadXLegal(ISD::EXTLOAD, N0.getValueType()))) {
 | |
|     LoadSDNode *LN0 = cast<LoadSDNode>(N0);
 | |
|     SDOperand ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, VT, LN0->getChain(),
 | |
|                                        LN0->getBasePtr(), LN0->getSrcValue(),
 | |
|                                        LN0->getSrcValueOffset(),
 | |
|                                        N0.getValueType(),
 | |
|                                        LN0->isVolatile(), 
 | |
|                                        LN0->getAlignment());
 | |
|     CombineTo(N, ExtLoad);
 | |
|     CombineTo(N0.Val, DAG.getNode(ISD::FP_ROUND, N0.getValueType(), ExtLoad),
 | |
|               ExtLoad.getValue(1));
 | |
|     return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
 | |
|   }
 | |
|   
 | |
|   
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| SDOperand DAGCombiner::visitFNEG(SDNode *N) {
 | |
|   SDOperand N0 = N->getOperand(0);
 | |
|   ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
 | |
|   MVT::ValueType VT = N->getValueType(0);
 | |
| 
 | |
|   // fold (fneg c1) -> -c1
 | |
|   if (N0CFP)
 | |
|     return DAG.getNode(ISD::FNEG, VT, N0);
 | |
|   // fold (fneg (sub x, y)) -> (sub y, x)
 | |
|   if (N0.getOpcode() == ISD::SUB)
 | |
|     return DAG.getNode(ISD::SUB, VT, N0.getOperand(1), N0.getOperand(0));
 | |
|   // fold (fneg (fneg x)) -> x
 | |
|   if (N0.getOpcode() == ISD::FNEG)
 | |
|     return N0.getOperand(0);
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| SDOperand DAGCombiner::visitFABS(SDNode *N) {
 | |
|   SDOperand N0 = N->getOperand(0);
 | |
|   ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
 | |
|   MVT::ValueType VT = N->getValueType(0);
 | |
|   
 | |
|   // fold (fabs c1) -> fabs(c1)
 | |
|   if (N0CFP)
 | |
|     return DAG.getNode(ISD::FABS, VT, N0);
 | |
|   // fold (fabs (fabs x)) -> (fabs x)
 | |
|   if (N0.getOpcode() == ISD::FABS)
 | |
|     return N->getOperand(0);
 | |
|   // fold (fabs (fneg x)) -> (fabs x)
 | |
|   // fold (fabs (fcopysign x, y)) -> (fabs x)
 | |
|   if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN)
 | |
|     return DAG.getNode(ISD::FABS, VT, N0.getOperand(0));
 | |
|   
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| SDOperand DAGCombiner::visitBRCOND(SDNode *N) {
 | |
|   SDOperand Chain = N->getOperand(0);
 | |
|   SDOperand N1 = N->getOperand(1);
 | |
|   SDOperand N2 = N->getOperand(2);
 | |
|   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
 | |
|   
 | |
|   // never taken branch, fold to chain
 | |
|   if (N1C && N1C->isNullValue())
 | |
|     return Chain;
 | |
|   // unconditional branch
 | |
|   if (N1C && N1C->getValue() == 1)
 | |
|     return DAG.getNode(ISD::BR, MVT::Other, Chain, N2);
 | |
|   // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
 | |
|   // on the target.
 | |
|   if (N1.getOpcode() == ISD::SETCC && 
 | |
|       TLI.isOperationLegal(ISD::BR_CC, MVT::Other)) {
 | |
|     return DAG.getNode(ISD::BR_CC, MVT::Other, Chain, N1.getOperand(2),
 | |
|                        N1.getOperand(0), N1.getOperand(1), N2);
 | |
|   }
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| // Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
 | |
| //
 | |
| SDOperand DAGCombiner::visitBR_CC(SDNode *N) {
 | |
|   CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1));
 | |
|   SDOperand CondLHS = N->getOperand(2), CondRHS = N->getOperand(3);
 | |
|   
 | |
|   // Use SimplifySetCC  to simplify SETCC's.
 | |
|   SDOperand Simp = SimplifySetCC(MVT::i1, CondLHS, CondRHS, CC->get(), false);
 | |
|   if (Simp.Val) AddToWorkList(Simp.Val);
 | |
| 
 | |
|   ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(Simp.Val);
 | |
| 
 | |
|   // fold br_cc true, dest -> br dest (unconditional branch)
 | |
|   if (SCCC && SCCC->getValue())
 | |
|     return DAG.getNode(ISD::BR, MVT::Other, N->getOperand(0),
 | |
|                        N->getOperand(4));
 | |
|   // fold br_cc false, dest -> unconditional fall through
 | |
|   if (SCCC && SCCC->isNullValue())
 | |
|     return N->getOperand(0);
 | |
| 
 | |
|   // fold to a simpler setcc
 | |
|   if (Simp.Val && Simp.getOpcode() == ISD::SETCC)
 | |
|     return DAG.getNode(ISD::BR_CC, MVT::Other, N->getOperand(0), 
 | |
|                        Simp.getOperand(2), Simp.getOperand(0),
 | |
|                        Simp.getOperand(1), N->getOperand(4));
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| 
 | |
| /// CombineToPreIndexedLoadStore - Try turning a load / store and a
 | |
| /// pre-indexed load / store when the base pointer is a add or subtract
 | |
| /// and it has other uses besides the load / store. After the
 | |
| /// transformation, the new indexed load / store has effectively folded
 | |
| /// the add / subtract in and all of its other uses are redirected to the
 | |
| /// new load / store.
 | |
| bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) {
 | |
|   if (!AfterLegalize)
 | |
|     return false;
 | |
| 
 | |
|   bool isLoad = true;
 | |
|   SDOperand Ptr;
 | |
|   MVT::ValueType VT;
 | |
|   if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
 | |
|     if (LD->getAddressingMode() != ISD::UNINDEXED)
 | |
|       return false;
 | |
|     VT = LD->getLoadedVT();
 | |
|     if (!TLI.isIndexedLoadLegal(ISD::PRE_INC, VT) &&
 | |
|         !TLI.isIndexedLoadLegal(ISD::PRE_DEC, VT))
 | |
|       return false;
 | |
|     Ptr = LD->getBasePtr();
 | |
|   } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
 | |
|     if (ST->getAddressingMode() != ISD::UNINDEXED)
 | |
|       return false;
 | |
|     VT = ST->getStoredVT();
 | |
|     if (!TLI.isIndexedStoreLegal(ISD::PRE_INC, VT) &&
 | |
|         !TLI.isIndexedStoreLegal(ISD::PRE_DEC, VT))
 | |
|       return false;
 | |
|     Ptr = ST->getBasePtr();
 | |
|     isLoad = false;
 | |
|   } else
 | |
|     return false;
 | |
| 
 | |
|   // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail
 | |
|   // out.  There is no reason to make this a preinc/predec.
 | |
|   if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) ||
 | |
|       Ptr.Val->hasOneUse())
 | |
|     return false;
 | |
| 
 | |
|   // Ask the target to do addressing mode selection.
 | |
|   SDOperand BasePtr;
 | |
|   SDOperand Offset;
 | |
|   ISD::MemIndexedMode AM = ISD::UNINDEXED;
 | |
|   if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG))
 | |
|     return false;
 | |
|   
 | |
|   // Try turning it into a pre-indexed load / store except when:
 | |
|   // 1) The base is a frame index.
 | |
|   // 2) If N is a store and the ptr is either the same as or is a
 | |
|   //    predecessor of the value being stored.
 | |
|   // 3) Another use of base ptr is a predecessor of N. If ptr is folded
 | |
|   //    that would create a cycle.
 | |
|   // 4) All uses are load / store ops that use it as base ptr.
 | |
| 
 | |
|   // Check #1.  Preinc'ing a frame index would require copying the stack pointer
 | |
|   // (plus the implicit offset) to a register to preinc anyway.
 | |
|   if (isa<FrameIndexSDNode>(BasePtr))
 | |
|     return false;
 | |
|   
 | |
|   // Check #2.
 | |
|   if (!isLoad) {
 | |
|     SDOperand Val = cast<StoreSDNode>(N)->getValue();
 | |
|     if (Val == Ptr || Ptr.Val->isPredecessor(Val.Val))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Now check for #2 and #3.
 | |
|   bool RealUse = false;
 | |
|   for (SDNode::use_iterator I = Ptr.Val->use_begin(),
 | |
|          E = Ptr.Val->use_end(); I != E; ++I) {
 | |
|     SDNode *Use = *I;
 | |
|     if (Use == N)
 | |
|       continue;
 | |
|     if (Use->isPredecessor(N))
 | |
|       return false;
 | |
| 
 | |
|     if (!((Use->getOpcode() == ISD::LOAD &&
 | |
|            cast<LoadSDNode>(Use)->getBasePtr() == Ptr) ||
 | |
|           (Use->getOpcode() == ISD::STORE) &&
 | |
|           cast<StoreSDNode>(Use)->getBasePtr() == Ptr))
 | |
|       RealUse = true;
 | |
|   }
 | |
|   if (!RealUse)
 | |
|     return false;
 | |
| 
 | |
|   SDOperand Result;
 | |
|   if (isLoad)
 | |
|     Result = DAG.getIndexedLoad(SDOperand(N,0), BasePtr, Offset, AM);
 | |
|   else
 | |
|     Result = DAG.getIndexedStore(SDOperand(N,0), BasePtr, Offset, AM);
 | |
|   ++PreIndexedNodes;
 | |
|   ++NodesCombined;
 | |
|   DOUT << "\nReplacing.4 "; DEBUG(N->dump());
 | |
|   DOUT << "\nWith: "; DEBUG(Result.Val->dump(&DAG));
 | |
|   DOUT << '\n';
 | |
|   std::vector<SDNode*> NowDead;
 | |
|   if (isLoad) {
 | |
|     DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(0),
 | |
|                                   NowDead);
 | |
|     DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 1), Result.getValue(2),
 | |
|                                   NowDead);
 | |
|   } else {
 | |
|     DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(1),
 | |
|                                   NowDead);
 | |
|   }
 | |
| 
 | |
|   // Nodes can end up on the worklist more than once.  Make sure we do
 | |
|   // not process a node that has been replaced.
 | |
|   for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
 | |
|     removeFromWorkList(NowDead[i]);
 | |
|   // Finally, since the node is now dead, remove it from the graph.
 | |
|   DAG.DeleteNode(N);
 | |
| 
 | |
|   // Replace the uses of Ptr with uses of the updated base value.
 | |
|   DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0),
 | |
|                                 NowDead);
 | |
|   removeFromWorkList(Ptr.Val);
 | |
|   for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
 | |
|     removeFromWorkList(NowDead[i]);
 | |
|   DAG.DeleteNode(Ptr.Val);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// CombineToPostIndexedLoadStore - Try combine a load / store with a
 | |
| /// add / sub of the base pointer node into a post-indexed load / store.
 | |
| /// The transformation folded the add / subtract into the new indexed
 | |
| /// load / store effectively and all of its uses are redirected to the
 | |
| /// new load / store.
 | |
| bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) {
 | |
|   if (!AfterLegalize)
 | |
|     return false;
 | |
| 
 | |
|   bool isLoad = true;
 | |
|   SDOperand Ptr;
 | |
|   MVT::ValueType VT;
 | |
|   if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
 | |
|     if (LD->getAddressingMode() != ISD::UNINDEXED)
 | |
|       return false;
 | |
|     VT = LD->getLoadedVT();
 | |
|     if (!TLI.isIndexedLoadLegal(ISD::POST_INC, VT) &&
 | |
|         !TLI.isIndexedLoadLegal(ISD::POST_DEC, VT))
 | |
|       return false;
 | |
|     Ptr = LD->getBasePtr();
 | |
|   } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
 | |
|     if (ST->getAddressingMode() != ISD::UNINDEXED)
 | |
|       return false;
 | |
|     VT = ST->getStoredVT();
 | |
|     if (!TLI.isIndexedStoreLegal(ISD::POST_INC, VT) &&
 | |
|         !TLI.isIndexedStoreLegal(ISD::POST_DEC, VT))
 | |
|       return false;
 | |
|     Ptr = ST->getBasePtr();
 | |
|     isLoad = false;
 | |
|   } else
 | |
|     return false;
 | |
| 
 | |
|   if (Ptr.Val->hasOneUse())
 | |
|     return false;
 | |
|   
 | |
|   for (SDNode::use_iterator I = Ptr.Val->use_begin(),
 | |
|          E = Ptr.Val->use_end(); I != E; ++I) {
 | |
|     SDNode *Op = *I;
 | |
|     if (Op == N ||
 | |
|         (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB))
 | |
|       continue;
 | |
| 
 | |
|     SDOperand BasePtr;
 | |
|     SDOperand Offset;
 | |
|     ISD::MemIndexedMode AM = ISD::UNINDEXED;
 | |
|     if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) {
 | |
|       if (Ptr == Offset)
 | |
|         std::swap(BasePtr, Offset);
 | |
|       if (Ptr != BasePtr)
 | |
|         continue;
 | |
| 
 | |
|       // Try turning it into a post-indexed load / store except when
 | |
|       // 1) All uses are load / store ops that use it as base ptr.
 | |
|       // 2) Op must be independent of N, i.e. Op is neither a predecessor
 | |
|       //    nor a successor of N. Otherwise, if Op is folded that would
 | |
|       //    create a cycle.
 | |
| 
 | |
|       // Check for #1.
 | |
|       bool TryNext = false;
 | |
|       for (SDNode::use_iterator II = BasePtr.Val->use_begin(),
 | |
|              EE = BasePtr.Val->use_end(); II != EE; ++II) {
 | |
|         SDNode *Use = *II;
 | |
|         if (Use == Ptr.Val)
 | |
|           continue;
 | |
| 
 | |
|         // If all the uses are load / store addresses, then don't do the
 | |
|         // transformation.
 | |
|         if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB){
 | |
|           bool RealUse = false;
 | |
|           for (SDNode::use_iterator III = Use->use_begin(),
 | |
|                  EEE = Use->use_end(); III != EEE; ++III) {
 | |
|             SDNode *UseUse = *III;
 | |
|             if (!((UseUse->getOpcode() == ISD::LOAD &&
 | |
|                    cast<LoadSDNode>(UseUse)->getBasePtr().Val == Use) ||
 | |
|                   (UseUse->getOpcode() == ISD::STORE) &&
 | |
|                   cast<StoreSDNode>(UseUse)->getBasePtr().Val == Use))
 | |
|               RealUse = true;
 | |
|           }
 | |
| 
 | |
|           if (!RealUse) {
 | |
|             TryNext = true;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       if (TryNext)
 | |
|         continue;
 | |
| 
 | |
|       // Check for #2
 | |
|       if (!Op->isPredecessor(N) && !N->isPredecessor(Op)) {
 | |
|         SDOperand Result = isLoad
 | |
|           ? DAG.getIndexedLoad(SDOperand(N,0), BasePtr, Offset, AM)
 | |
|           : DAG.getIndexedStore(SDOperand(N,0), BasePtr, Offset, AM);
 | |
|         ++PostIndexedNodes;
 | |
|         ++NodesCombined;
 | |
|         DOUT << "\nReplacing.5 "; DEBUG(N->dump());
 | |
|         DOUT << "\nWith: "; DEBUG(Result.Val->dump(&DAG));
 | |
|         DOUT << '\n';
 | |
|         std::vector<SDNode*> NowDead;
 | |
|         if (isLoad) {
 | |
|           DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(0),
 | |
|                                         NowDead);
 | |
|           DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 1), Result.getValue(2),
 | |
|                                         NowDead);
 | |
|         } else {
 | |
|           DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(1),
 | |
|                                         NowDead);
 | |
|         }
 | |
| 
 | |
|         // Nodes can end up on the worklist more than once.  Make sure we do
 | |
|         // not process a node that has been replaced.
 | |
|         for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
 | |
|           removeFromWorkList(NowDead[i]);
 | |
|         // Finally, since the node is now dead, remove it from the graph.
 | |
|         DAG.DeleteNode(N);
 | |
| 
 | |
|         // Replace the uses of Use with uses of the updated base value.
 | |
|         DAG.ReplaceAllUsesOfValueWith(SDOperand(Op, 0),
 | |
|                                       Result.getValue(isLoad ? 1 : 0),
 | |
|                                       NowDead);
 | |
|         removeFromWorkList(Op);
 | |
|         for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
 | |
|           removeFromWorkList(NowDead[i]);
 | |
|         DAG.DeleteNode(Op);
 | |
| 
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| SDOperand DAGCombiner::visitLOAD(SDNode *N) {
 | |
|   LoadSDNode *LD  = cast<LoadSDNode>(N);
 | |
|   SDOperand Chain = LD->getChain();
 | |
|   SDOperand Ptr   = LD->getBasePtr();
 | |
| 
 | |
|   // If load is not volatile and there are no uses of the loaded value (and
 | |
|   // the updated indexed value in case of indexed loads), change uses of the
 | |
|   // chain value into uses of the chain input (i.e. delete the dead load).
 | |
|   if (!LD->isVolatile()) {
 | |
|     bool HasUses = false;
 | |
|     SmallVector<MVT::ValueType, 2> VTs;
 | |
|     for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
 | |
|       if (!N->hasNUsesOfValue(0, i)) {
 | |
|         HasUses = true;
 | |
|         break;
 | |
|       }
 | |
|       VTs.push_back(N->getValueType(i));
 | |
|     }
 | |
|     if (!HasUses) {
 | |
|       SmallVector<SDOperand, 1> Ops;
 | |
|       return CombineTo(N, DAG.getNode(ISD::UNDEF, &VTs[0], VTs.size(), 0, 0),
 | |
|                        Chain);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // If this load is directly stored, replace the load value with the stored
 | |
|   // value.
 | |
|   // TODO: Handle store large -> read small portion.
 | |
|   // TODO: Handle TRUNCSTORE/LOADEXT
 | |
|   if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
 | |
|     if (ISD::isNON_TRUNCStore(Chain.Val)) {
 | |
|       StoreSDNode *PrevST = cast<StoreSDNode>(Chain);
 | |
|       if (PrevST->getBasePtr() == Ptr &&
 | |
|           PrevST->getValue().getValueType() == N->getValueType(0))
 | |
|       return CombineTo(N, Chain.getOperand(1), Chain);
 | |
|     }
 | |
|   }
 | |
|     
 | |
|   if (CombinerAA) {
 | |
|     // Walk up chain skipping non-aliasing memory nodes.
 | |
|     SDOperand BetterChain = FindBetterChain(N, Chain);
 | |
|     
 | |
|     // If there is a better chain.
 | |
|     if (Chain != BetterChain) {
 | |
|       SDOperand ReplLoad;
 | |
| 
 | |
|       // Replace the chain to void dependency.
 | |
|       if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
 | |
|         ReplLoad = DAG.getLoad(N->getValueType(0), BetterChain, Ptr,
 | |
|                               LD->getSrcValue(), LD->getSrcValueOffset(),
 | |
|                               LD->isVolatile(), LD->getAlignment());
 | |
|       } else {
 | |
|         ReplLoad = DAG.getExtLoad(LD->getExtensionType(),
 | |
|                                   LD->getValueType(0),
 | |
|                                   BetterChain, Ptr, LD->getSrcValue(),
 | |
|                                   LD->getSrcValueOffset(),
 | |
|                                   LD->getLoadedVT(),
 | |
|                                   LD->isVolatile(), 
 | |
|                                   LD->getAlignment());
 | |
|       }
 | |
| 
 | |
|       // Create token factor to keep old chain connected.
 | |
|       SDOperand Token = DAG.getNode(ISD::TokenFactor, MVT::Other,
 | |
|                                     Chain, ReplLoad.getValue(1));
 | |
|       
 | |
|       // Replace uses with load result and token factor. Don't add users
 | |
|       // to work list.
 | |
|       return CombineTo(N, ReplLoad.getValue(0), Token, false);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Try transforming N to an indexed load.
 | |
|   if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
 | |
|     return SDOperand(N, 0);
 | |
| 
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| SDOperand DAGCombiner::visitSTORE(SDNode *N) {
 | |
|   StoreSDNode *ST  = cast<StoreSDNode>(N);
 | |
|   SDOperand Chain = ST->getChain();
 | |
|   SDOperand Value = ST->getValue();
 | |
|   SDOperand Ptr   = ST->getBasePtr();
 | |
|   
 | |
|   // If this is a store of a bit convert, store the input value.
 | |
|   // FIXME: This needs to know that the resultant store does not need a 
 | |
|   // higher alignment than the original.
 | |
|   if (0 && Value.getOpcode() == ISD::BIT_CONVERT) {
 | |
|     return DAG.getStore(Chain, Value.getOperand(0), Ptr, ST->getSrcValue(),
 | |
|                         ST->getSrcValueOffset());
 | |
|   }
 | |
|   
 | |
|   // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
 | |
|   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Value)) {
 | |
|     if (Value.getOpcode() != ISD::TargetConstantFP) {
 | |
|       SDOperand Tmp;
 | |
|       switch (CFP->getValueType(0)) {
 | |
|       default: assert(0 && "Unknown FP type");
 | |
|       case MVT::f32:
 | |
|         if (!AfterLegalize || TLI.isTypeLegal(MVT::i32)) {
 | |
|           Tmp = DAG.getConstant(FloatToBits(CFP->getValue()), MVT::i32);
 | |
|           return DAG.getStore(Chain, Tmp, Ptr, ST->getSrcValue(),
 | |
|                               ST->getSrcValueOffset());
 | |
|         }
 | |
|         break;
 | |
|       case MVT::f64:
 | |
|         if (!AfterLegalize || TLI.isTypeLegal(MVT::i64)) {
 | |
|           Tmp = DAG.getConstant(DoubleToBits(CFP->getValue()), MVT::i64);
 | |
|           return DAG.getStore(Chain, Tmp, Ptr, ST->getSrcValue(),
 | |
|                               ST->getSrcValueOffset());
 | |
|         } else if (TLI.isTypeLegal(MVT::i32)) {
 | |
|           // Many FP stores are not make apparent until after legalize, e.g. for
 | |
|           // argument passing.  Since this is so common, custom legalize the
 | |
|           // 64-bit integer store into two 32-bit stores.
 | |
|           uint64_t Val = DoubleToBits(CFP->getValue());
 | |
|           SDOperand Lo = DAG.getConstant(Val & 0xFFFFFFFF, MVT::i32);
 | |
|           SDOperand Hi = DAG.getConstant(Val >> 32, MVT::i32);
 | |
|           if (!TLI.isLittleEndian()) std::swap(Lo, Hi);
 | |
| 
 | |
|           SDOperand St0 = DAG.getStore(Chain, Lo, Ptr, ST->getSrcValue(),
 | |
|                                        ST->getSrcValueOffset());
 | |
|           Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr,
 | |
|                             DAG.getConstant(4, Ptr.getValueType()));
 | |
|           SDOperand St1 = DAG.getStore(Chain, Hi, Ptr, ST->getSrcValue(),
 | |
|                                        ST->getSrcValueOffset()+4);
 | |
|           return DAG.getNode(ISD::TokenFactor, MVT::Other, St0, St1);
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (CombinerAA) { 
 | |
|     // Walk up chain skipping non-aliasing memory nodes.
 | |
|     SDOperand BetterChain = FindBetterChain(N, Chain);
 | |
|     
 | |
|     // If there is a better chain.
 | |
|     if (Chain != BetterChain) {
 | |
|       // Replace the chain to avoid dependency.
 | |
|       SDOperand ReplStore;
 | |
|       if (ST->isTruncatingStore()) {
 | |
|         ReplStore = DAG.getTruncStore(BetterChain, Value, Ptr,
 | |
|           ST->getSrcValue(),ST->getSrcValueOffset(), ST->getStoredVT());
 | |
|       } else {
 | |
|         ReplStore = DAG.getStore(BetterChain, Value, Ptr,
 | |
|           ST->getSrcValue(), ST->getSrcValueOffset());
 | |
|       }
 | |
|       
 | |
|       // Create token to keep both nodes around.
 | |
|       SDOperand Token =
 | |
|         DAG.getNode(ISD::TokenFactor, MVT::Other, Chain, ReplStore);
 | |
|         
 | |
|       // Don't add users to work list.
 | |
|       return CombineTo(N, Token, false);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Try transforming N to an indexed store.
 | |
|   if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
 | |
|     return SDOperand(N, 0);
 | |
| 
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| SDOperand DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) {
 | |
|   SDOperand InVec = N->getOperand(0);
 | |
|   SDOperand InVal = N->getOperand(1);
 | |
|   SDOperand EltNo = N->getOperand(2);
 | |
|   
 | |
|   // If the invec is a BUILD_VECTOR and if EltNo is a constant, build a new
 | |
|   // vector with the inserted element.
 | |
|   if (InVec.getOpcode() == ISD::BUILD_VECTOR && isa<ConstantSDNode>(EltNo)) {
 | |
|     unsigned Elt = cast<ConstantSDNode>(EltNo)->getValue();
 | |
|     SmallVector<SDOperand, 8> Ops(InVec.Val->op_begin(), InVec.Val->op_end());
 | |
|     if (Elt < Ops.size())
 | |
|       Ops[Elt] = InVal;
 | |
|     return DAG.getNode(ISD::BUILD_VECTOR, InVec.getValueType(),
 | |
|                        &Ops[0], Ops.size());
 | |
|   }
 | |
|   
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| SDOperand DAGCombiner::visitVINSERT_VECTOR_ELT(SDNode *N) {
 | |
|   SDOperand InVec = N->getOperand(0);
 | |
|   SDOperand InVal = N->getOperand(1);
 | |
|   SDOperand EltNo = N->getOperand(2);
 | |
|   SDOperand NumElts = N->getOperand(3);
 | |
|   SDOperand EltType = N->getOperand(4);
 | |
|   
 | |
|   // If the invec is a VBUILD_VECTOR and if EltNo is a constant, build a new
 | |
|   // vector with the inserted element.
 | |
|   if (InVec.getOpcode() == ISD::VBUILD_VECTOR && isa<ConstantSDNode>(EltNo)) {
 | |
|     unsigned Elt = cast<ConstantSDNode>(EltNo)->getValue();
 | |
|     SmallVector<SDOperand, 8> Ops(InVec.Val->op_begin(), InVec.Val->op_end());
 | |
|     if (Elt < Ops.size()-2)
 | |
|       Ops[Elt] = InVal;
 | |
|     return DAG.getNode(ISD::VBUILD_VECTOR, InVec.getValueType(),
 | |
|                        &Ops[0], Ops.size());
 | |
|   }
 | |
|   
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| SDOperand DAGCombiner::visitVBUILD_VECTOR(SDNode *N) {
 | |
|   unsigned NumInScalars = N->getNumOperands()-2;
 | |
|   SDOperand NumElts = N->getOperand(NumInScalars);
 | |
|   SDOperand EltType = N->getOperand(NumInScalars+1);
 | |
| 
 | |
|   // Check to see if this is a VBUILD_VECTOR of a bunch of VEXTRACT_VECTOR_ELT
 | |
|   // operations.  If so, and if the EXTRACT_ELT vector inputs come from at most
 | |
|   // two distinct vectors, turn this into a shuffle node.
 | |
|   SDOperand VecIn1, VecIn2;
 | |
|   for (unsigned i = 0; i != NumInScalars; ++i) {
 | |
|     // Ignore undef inputs.
 | |
|     if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
 | |
|     
 | |
|     // If this input is something other than a VEXTRACT_VECTOR_ELT with a
 | |
|     // constant index, bail out.
 | |
|     if (N->getOperand(i).getOpcode() != ISD::VEXTRACT_VECTOR_ELT ||
 | |
|         !isa<ConstantSDNode>(N->getOperand(i).getOperand(1))) {
 | |
|       VecIn1 = VecIn2 = SDOperand(0, 0);
 | |
|       break;
 | |
|     }
 | |
|     
 | |
|     // If the input vector type disagrees with the result of the vbuild_vector,
 | |
|     // we can't make a shuffle.
 | |
|     SDOperand ExtractedFromVec = N->getOperand(i).getOperand(0);
 | |
|     if (*(ExtractedFromVec.Val->op_end()-2) != NumElts ||
 | |
|         *(ExtractedFromVec.Val->op_end()-1) != EltType) {
 | |
|       VecIn1 = VecIn2 = SDOperand(0, 0);
 | |
|       break;
 | |
|     }
 | |
|     
 | |
|     // Otherwise, remember this.  We allow up to two distinct input vectors.
 | |
|     if (ExtractedFromVec == VecIn1 || ExtractedFromVec == VecIn2)
 | |
|       continue;
 | |
|     
 | |
|     if (VecIn1.Val == 0) {
 | |
|       VecIn1 = ExtractedFromVec;
 | |
|     } else if (VecIn2.Val == 0) {
 | |
|       VecIn2 = ExtractedFromVec;
 | |
|     } else {
 | |
|       // Too many inputs.
 | |
|       VecIn1 = VecIn2 = SDOperand(0, 0);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // If everything is good, we can make a shuffle operation.
 | |
|   if (VecIn1.Val) {
 | |
|     SmallVector<SDOperand, 8> BuildVecIndices;
 | |
|     for (unsigned i = 0; i != NumInScalars; ++i) {
 | |
|       if (N->getOperand(i).getOpcode() == ISD::UNDEF) {
 | |
|         BuildVecIndices.push_back(DAG.getNode(ISD::UNDEF, TLI.getPointerTy()));
 | |
|         continue;
 | |
|       }
 | |
|       
 | |
|       SDOperand Extract = N->getOperand(i);
 | |
|       
 | |
|       // If extracting from the first vector, just use the index directly.
 | |
|       if (Extract.getOperand(0) == VecIn1) {
 | |
|         BuildVecIndices.push_back(Extract.getOperand(1));
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Otherwise, use InIdx + VecSize
 | |
|       unsigned Idx = cast<ConstantSDNode>(Extract.getOperand(1))->getValue();
 | |
|       BuildVecIndices.push_back(DAG.getConstant(Idx+NumInScalars,
 | |
|                                                 TLI.getPointerTy()));
 | |
|     }
 | |
|     
 | |
|     // Add count and size info.
 | |
|     BuildVecIndices.push_back(NumElts);
 | |
|     BuildVecIndices.push_back(DAG.getValueType(TLI.getPointerTy()));
 | |
|     
 | |
|     // Return the new VVECTOR_SHUFFLE node.
 | |
|     SDOperand Ops[5];
 | |
|     Ops[0] = VecIn1;
 | |
|     if (VecIn2.Val) {
 | |
|       Ops[1] = VecIn2;
 | |
|     } else {
 | |
|        // Use an undef vbuild_vector as input for the second operand.
 | |
|       std::vector<SDOperand> UnOps(NumInScalars,
 | |
|                                    DAG.getNode(ISD::UNDEF, 
 | |
|                                            cast<VTSDNode>(EltType)->getVT()));
 | |
|       UnOps.push_back(NumElts);
 | |
|       UnOps.push_back(EltType);
 | |
|       Ops[1] = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector,
 | |
|                            &UnOps[0], UnOps.size());
 | |
|       AddToWorkList(Ops[1].Val);
 | |
|     }
 | |
|     Ops[2] = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector,
 | |
|                          &BuildVecIndices[0], BuildVecIndices.size());
 | |
|     Ops[3] = NumElts;
 | |
|     Ops[4] = EltType;
 | |
|     return DAG.getNode(ISD::VVECTOR_SHUFFLE, MVT::Vector, Ops, 5);
 | |
|   }
 | |
|   
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| SDOperand DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
 | |
|   SDOperand ShufMask = N->getOperand(2);
 | |
|   unsigned NumElts = ShufMask.getNumOperands();
 | |
| 
 | |
|   // If the shuffle mask is an identity operation on the LHS, return the LHS.
 | |
|   bool isIdentity = true;
 | |
|   for (unsigned i = 0; i != NumElts; ++i) {
 | |
|     if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF &&
 | |
|         cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() != i) {
 | |
|       isIdentity = false;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   if (isIdentity) return N->getOperand(0);
 | |
| 
 | |
|   // If the shuffle mask is an identity operation on the RHS, return the RHS.
 | |
|   isIdentity = true;
 | |
|   for (unsigned i = 0; i != NumElts; ++i) {
 | |
|     if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF &&
 | |
|         cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() != i+NumElts) {
 | |
|       isIdentity = false;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   if (isIdentity) return N->getOperand(1);
 | |
| 
 | |
|   // Check if the shuffle is a unary shuffle, i.e. one of the vectors is not
 | |
|   // needed at all.
 | |
|   bool isUnary = true;
 | |
|   bool isSplat = true;
 | |
|   int VecNum = -1;
 | |
|   unsigned BaseIdx = 0;
 | |
|   for (unsigned i = 0; i != NumElts; ++i)
 | |
|     if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF) {
 | |
|       unsigned Idx = cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue();
 | |
|       int V = (Idx < NumElts) ? 0 : 1;
 | |
|       if (VecNum == -1) {
 | |
|         VecNum = V;
 | |
|         BaseIdx = Idx;
 | |
|       } else {
 | |
|         if (BaseIdx != Idx)
 | |
|           isSplat = false;
 | |
|         if (VecNum != V) {
 | |
|           isUnary = false;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   SDOperand N0 = N->getOperand(0);
 | |
|   SDOperand N1 = N->getOperand(1);
 | |
|   // Normalize unary shuffle so the RHS is undef.
 | |
|   if (isUnary && VecNum == 1)
 | |
|     std::swap(N0, N1);
 | |
| 
 | |
|   // If it is a splat, check if the argument vector is a build_vector with
 | |
|   // all scalar elements the same.
 | |
|   if (isSplat) {
 | |
|     SDNode *V = N0.Val;
 | |
|     if (V->getOpcode() == ISD::BIT_CONVERT)
 | |
|       V = V->getOperand(0).Val;
 | |
|     if (V->getOpcode() == ISD::BUILD_VECTOR) {
 | |
|       unsigned NumElems = V->getNumOperands()-2;
 | |
|       if (NumElems > BaseIdx) {
 | |
|         SDOperand Base;
 | |
|         bool AllSame = true;
 | |
|         for (unsigned i = 0; i != NumElems; ++i) {
 | |
|           if (V->getOperand(i).getOpcode() != ISD::UNDEF) {
 | |
|             Base = V->getOperand(i);
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|         // Splat of <u, u, u, u>, return <u, u, u, u>
 | |
|         if (!Base.Val)
 | |
|           return N0;
 | |
|         for (unsigned i = 0; i != NumElems; ++i) {
 | |
|           if (V->getOperand(i).getOpcode() != ISD::UNDEF &&
 | |
|               V->getOperand(i) != Base) {
 | |
|             AllSame = false;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|         // Splat of <x, x, x, x>, return <x, x, x, x>
 | |
|         if (AllSame)
 | |
|           return N0;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If it is a unary or the LHS and the RHS are the same node, turn the RHS
 | |
|   // into an undef.
 | |
|   if (isUnary || N0 == N1) {
 | |
|     if (N0.getOpcode() == ISD::UNDEF)
 | |
|       return DAG.getNode(ISD::UNDEF, N->getValueType(0));
 | |
|     // Check the SHUFFLE mask, mapping any inputs from the 2nd operand into the
 | |
|     // first operand.
 | |
|     SmallVector<SDOperand, 8> MappedOps;
 | |
|     for (unsigned i = 0, e = ShufMask.getNumOperands(); i != e; ++i) {
 | |
|       if (ShufMask.getOperand(i).getOpcode() == ISD::UNDEF ||
 | |
|           cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() < NumElts) {
 | |
|         MappedOps.push_back(ShufMask.getOperand(i));
 | |
|       } else {
 | |
|         unsigned NewIdx = 
 | |
|            cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() - NumElts;
 | |
|         MappedOps.push_back(DAG.getConstant(NewIdx, MVT::i32));
 | |
|       }
 | |
|     }
 | |
|     ShufMask = DAG.getNode(ISD::BUILD_VECTOR, ShufMask.getValueType(),
 | |
|                            &MappedOps[0], MappedOps.size());
 | |
|     AddToWorkList(ShufMask.Val);
 | |
|     return DAG.getNode(ISD::VECTOR_SHUFFLE, N->getValueType(0),
 | |
|                        N0, 
 | |
|                        DAG.getNode(ISD::UNDEF, N->getValueType(0)),
 | |
|                        ShufMask);
 | |
|   }
 | |
|  
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| SDOperand DAGCombiner::visitVVECTOR_SHUFFLE(SDNode *N) {
 | |
|   SDOperand ShufMask = N->getOperand(2);
 | |
|   unsigned NumElts = ShufMask.getNumOperands()-2;
 | |
|   
 | |
|   // If the shuffle mask is an identity operation on the LHS, return the LHS.
 | |
|   bool isIdentity = true;
 | |
|   for (unsigned i = 0; i != NumElts; ++i) {
 | |
|     if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF &&
 | |
|         cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() != i) {
 | |
|       isIdentity = false;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   if (isIdentity) return N->getOperand(0);
 | |
|   
 | |
|   // If the shuffle mask is an identity operation on the RHS, return the RHS.
 | |
|   isIdentity = true;
 | |
|   for (unsigned i = 0; i != NumElts; ++i) {
 | |
|     if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF &&
 | |
|         cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() != i+NumElts) {
 | |
|       isIdentity = false;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   if (isIdentity) return N->getOperand(1);
 | |
| 
 | |
|   // Check if the shuffle is a unary shuffle, i.e. one of the vectors is not
 | |
|   // needed at all.
 | |
|   bool isUnary = true;
 | |
|   bool isSplat = true;
 | |
|   int VecNum = -1;
 | |
|   unsigned BaseIdx = 0;
 | |
|   for (unsigned i = 0; i != NumElts; ++i)
 | |
|     if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF) {
 | |
|       unsigned Idx = cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue();
 | |
|       int V = (Idx < NumElts) ? 0 : 1;
 | |
|       if (VecNum == -1) {
 | |
|         VecNum = V;
 | |
|         BaseIdx = Idx;
 | |
|       } else {
 | |
|         if (BaseIdx != Idx)
 | |
|           isSplat = false;
 | |
|         if (VecNum != V) {
 | |
|           isUnary = false;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   SDOperand N0 = N->getOperand(0);
 | |
|   SDOperand N1 = N->getOperand(1);
 | |
|   // Normalize unary shuffle so the RHS is undef.
 | |
|   if (isUnary && VecNum == 1)
 | |
|     std::swap(N0, N1);
 | |
| 
 | |
|   // If it is a splat, check if the argument vector is a build_vector with
 | |
|   // all scalar elements the same.
 | |
|   if (isSplat) {
 | |
|     SDNode *V = N0.Val;
 | |
| 
 | |
|     // If this is a vbit convert that changes the element type of the vector but
 | |
|     // not the number of vector elements, look through it.  Be careful not to
 | |
|     // look though conversions that change things like v4f32 to v2f64.
 | |
|     if (V->getOpcode() == ISD::VBIT_CONVERT) {
 | |
|       SDOperand ConvInput = V->getOperand(0);
 | |
|       if (ConvInput.getValueType() == MVT::Vector &&
 | |
|           NumElts ==
 | |
|           ConvInput.getConstantOperandVal(ConvInput.getNumOperands()-2))
 | |
|         V = ConvInput.Val;
 | |
|     }
 | |
| 
 | |
|     if (V->getOpcode() == ISD::VBUILD_VECTOR) {
 | |
|       unsigned NumElems = V->getNumOperands()-2;
 | |
|       if (NumElems > BaseIdx) {
 | |
|         SDOperand Base;
 | |
|         bool AllSame = true;
 | |
|         for (unsigned i = 0; i != NumElems; ++i) {
 | |
|           if (V->getOperand(i).getOpcode() != ISD::UNDEF) {
 | |
|             Base = V->getOperand(i);
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|         // Splat of <u, u, u, u>, return <u, u, u, u>
 | |
|         if (!Base.Val)
 | |
|           return N0;
 | |
|         for (unsigned i = 0; i != NumElems; ++i) {
 | |
|           if (V->getOperand(i).getOpcode() != ISD::UNDEF &&
 | |
|               V->getOperand(i) != Base) {
 | |
|             AllSame = false;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|         // Splat of <x, x, x, x>, return <x, x, x, x>
 | |
|         if (AllSame)
 | |
|           return N0;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If it is a unary or the LHS and the RHS are the same node, turn the RHS
 | |
|   // into an undef.
 | |
|   if (isUnary || N0 == N1) {
 | |
|     // Check the SHUFFLE mask, mapping any inputs from the 2nd operand into the
 | |
|     // first operand.
 | |
|     SmallVector<SDOperand, 8> MappedOps;
 | |
|     for (unsigned i = 0; i != NumElts; ++i) {
 | |
|       if (ShufMask.getOperand(i).getOpcode() == ISD::UNDEF ||
 | |
|           cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() < NumElts) {
 | |
|         MappedOps.push_back(ShufMask.getOperand(i));
 | |
|       } else {
 | |
|         unsigned NewIdx = 
 | |
|           cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() - NumElts;
 | |
|         MappedOps.push_back(DAG.getConstant(NewIdx, MVT::i32));
 | |
|       }
 | |
|     }
 | |
|     // Add the type/#elts values.
 | |
|     MappedOps.push_back(ShufMask.getOperand(NumElts));
 | |
|     MappedOps.push_back(ShufMask.getOperand(NumElts+1));
 | |
| 
 | |
|     ShufMask = DAG.getNode(ISD::VBUILD_VECTOR, ShufMask.getValueType(),
 | |
|                            &MappedOps[0], MappedOps.size());
 | |
|     AddToWorkList(ShufMask.Val);
 | |
|     
 | |
|     // Build the undef vector.
 | |
|     SDOperand UDVal = DAG.getNode(ISD::UNDEF, MappedOps[0].getValueType());
 | |
|     for (unsigned i = 0; i != NumElts; ++i)
 | |
|       MappedOps[i] = UDVal;
 | |
|     MappedOps[NumElts  ] = *(N0.Val->op_end()-2);
 | |
|     MappedOps[NumElts+1] = *(N0.Val->op_end()-1);
 | |
|     UDVal = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector,
 | |
|                         &MappedOps[0], MappedOps.size());
 | |
|     
 | |
|     return DAG.getNode(ISD::VVECTOR_SHUFFLE, MVT::Vector, 
 | |
|                        N0, UDVal, ShufMask,
 | |
|                        MappedOps[NumElts], MappedOps[NumElts+1]);
 | |
|   }
 | |
|   
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| /// XformToShuffleWithZero - Returns a vector_shuffle if it able to transform
 | |
| /// a VAND to a vector_shuffle with the destination vector and a zero vector.
 | |
| /// e.g. VAND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
 | |
| ///      vector_shuffle V, Zero, <0, 4, 2, 4>
 | |
| SDOperand DAGCombiner::XformToShuffleWithZero(SDNode *N) {
 | |
|   SDOperand LHS = N->getOperand(0);
 | |
|   SDOperand RHS = N->getOperand(1);
 | |
|   if (N->getOpcode() == ISD::VAND) {
 | |
|     SDOperand DstVecSize = *(LHS.Val->op_end()-2);
 | |
|     SDOperand DstVecEVT  = *(LHS.Val->op_end()-1);
 | |
|     if (RHS.getOpcode() == ISD::VBIT_CONVERT)
 | |
|       RHS = RHS.getOperand(0);
 | |
|     if (RHS.getOpcode() == ISD::VBUILD_VECTOR) {
 | |
|       std::vector<SDOperand> IdxOps;
 | |
|       unsigned NumOps = RHS.getNumOperands();
 | |
|       unsigned NumElts = NumOps-2;
 | |
|       MVT::ValueType EVT = cast<VTSDNode>(RHS.getOperand(NumOps-1))->getVT();
 | |
|       for (unsigned i = 0; i != NumElts; ++i) {
 | |
|         SDOperand Elt = RHS.getOperand(i);
 | |
|         if (!isa<ConstantSDNode>(Elt))
 | |
|           return SDOperand();
 | |
|         else if (cast<ConstantSDNode>(Elt)->isAllOnesValue())
 | |
|           IdxOps.push_back(DAG.getConstant(i, EVT));
 | |
|         else if (cast<ConstantSDNode>(Elt)->isNullValue())
 | |
|           IdxOps.push_back(DAG.getConstant(NumElts, EVT));
 | |
|         else
 | |
|           return SDOperand();
 | |
|       }
 | |
| 
 | |
|       // Let's see if the target supports this vector_shuffle.
 | |
|       if (!TLI.isVectorClearMaskLegal(IdxOps, EVT, DAG))
 | |
|         return SDOperand();
 | |
| 
 | |
|       // Return the new VVECTOR_SHUFFLE node.
 | |
|       SDOperand NumEltsNode = DAG.getConstant(NumElts, MVT::i32);
 | |
|       SDOperand EVTNode = DAG.getValueType(EVT);
 | |
|       std::vector<SDOperand> Ops;
 | |
|       LHS = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, LHS, NumEltsNode,
 | |
|                         EVTNode);
 | |
|       Ops.push_back(LHS);
 | |
|       AddToWorkList(LHS.Val);
 | |
|       std::vector<SDOperand> ZeroOps(NumElts, DAG.getConstant(0, EVT));
 | |
|       ZeroOps.push_back(NumEltsNode);
 | |
|       ZeroOps.push_back(EVTNode);
 | |
|       Ops.push_back(DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector,
 | |
|                                 &ZeroOps[0], ZeroOps.size()));
 | |
|       IdxOps.push_back(NumEltsNode);
 | |
|       IdxOps.push_back(EVTNode);
 | |
|       Ops.push_back(DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector,
 | |
|                                 &IdxOps[0], IdxOps.size()));
 | |
|       Ops.push_back(NumEltsNode);
 | |
|       Ops.push_back(EVTNode);
 | |
|       SDOperand Result = DAG.getNode(ISD::VVECTOR_SHUFFLE, MVT::Vector,
 | |
|                                      &Ops[0], Ops.size());
 | |
|       if (NumEltsNode != DstVecSize || EVTNode != DstVecEVT) {
 | |
|         Result = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Result,
 | |
|                              DstVecSize, DstVecEVT);
 | |
|       }
 | |
|       return Result;
 | |
|     }
 | |
|   }
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| /// visitVBinOp - Visit a binary vector operation, like VADD.  IntOp indicates
 | |
| /// the scalar operation of the vop if it is operating on an integer vector
 | |
| /// (e.g. ADD) and FPOp indicates the FP version (e.g. FADD).
 | |
| SDOperand DAGCombiner::visitVBinOp(SDNode *N, ISD::NodeType IntOp, 
 | |
|                                    ISD::NodeType FPOp) {
 | |
|   MVT::ValueType EltType = cast<VTSDNode>(*(N->op_end()-1))->getVT();
 | |
|   ISD::NodeType ScalarOp = MVT::isInteger(EltType) ? IntOp : FPOp;
 | |
|   SDOperand LHS = N->getOperand(0);
 | |
|   SDOperand RHS = N->getOperand(1);
 | |
|   SDOperand Shuffle = XformToShuffleWithZero(N);
 | |
|   if (Shuffle.Val) return Shuffle;
 | |
| 
 | |
|   // If the LHS and RHS are VBUILD_VECTOR nodes, see if we can constant fold
 | |
|   // this operation.
 | |
|   if (LHS.getOpcode() == ISD::VBUILD_VECTOR && 
 | |
|       RHS.getOpcode() == ISD::VBUILD_VECTOR) {
 | |
|     SmallVector<SDOperand, 8> Ops;
 | |
|     for (unsigned i = 0, e = LHS.getNumOperands()-2; i != e; ++i) {
 | |
|       SDOperand LHSOp = LHS.getOperand(i);
 | |
|       SDOperand RHSOp = RHS.getOperand(i);
 | |
|       // If these two elements can't be folded, bail out.
 | |
|       if ((LHSOp.getOpcode() != ISD::UNDEF &&
 | |
|            LHSOp.getOpcode() != ISD::Constant &&
 | |
|            LHSOp.getOpcode() != ISD::ConstantFP) ||
 | |
|           (RHSOp.getOpcode() != ISD::UNDEF &&
 | |
|            RHSOp.getOpcode() != ISD::Constant &&
 | |
|            RHSOp.getOpcode() != ISD::ConstantFP))
 | |
|         break;
 | |
|       // Can't fold divide by zero.
 | |
|       if (N->getOpcode() == ISD::VSDIV || N->getOpcode() == ISD::VUDIV) {
 | |
|         if ((RHSOp.getOpcode() == ISD::Constant &&
 | |
|              cast<ConstantSDNode>(RHSOp.Val)->isNullValue()) ||
 | |
|             (RHSOp.getOpcode() == ISD::ConstantFP &&
 | |
|              !cast<ConstantFPSDNode>(RHSOp.Val)->getValue()))
 | |
|           break;
 | |
|       }
 | |
|       Ops.push_back(DAG.getNode(ScalarOp, EltType, LHSOp, RHSOp));
 | |
|       AddToWorkList(Ops.back().Val);
 | |
|       assert((Ops.back().getOpcode() == ISD::UNDEF ||
 | |
|               Ops.back().getOpcode() == ISD::Constant ||
 | |
|               Ops.back().getOpcode() == ISD::ConstantFP) &&
 | |
|              "Scalar binop didn't fold!");
 | |
|     }
 | |
|     
 | |
|     if (Ops.size() == LHS.getNumOperands()-2) {
 | |
|       Ops.push_back(*(LHS.Val->op_end()-2));
 | |
|       Ops.push_back(*(LHS.Val->op_end()-1));
 | |
|       return DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, &Ops[0], Ops.size());
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| SDOperand DAGCombiner::SimplifySelect(SDOperand N0, SDOperand N1, SDOperand N2){
 | |
|   assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!");
 | |
|   
 | |
|   SDOperand SCC = SimplifySelectCC(N0.getOperand(0), N0.getOperand(1), N1, N2,
 | |
|                                  cast<CondCodeSDNode>(N0.getOperand(2))->get());
 | |
|   // If we got a simplified select_cc node back from SimplifySelectCC, then
 | |
|   // break it down into a new SETCC node, and a new SELECT node, and then return
 | |
|   // the SELECT node, since we were called with a SELECT node.
 | |
|   if (SCC.Val) {
 | |
|     // Check to see if we got a select_cc back (to turn into setcc/select).
 | |
|     // Otherwise, just return whatever node we got back, like fabs.
 | |
|     if (SCC.getOpcode() == ISD::SELECT_CC) {
 | |
|       SDOperand SETCC = DAG.getNode(ISD::SETCC, N0.getValueType(),
 | |
|                                     SCC.getOperand(0), SCC.getOperand(1), 
 | |
|                                     SCC.getOperand(4));
 | |
|       AddToWorkList(SETCC.Val);
 | |
|       return DAG.getNode(ISD::SELECT, SCC.getValueType(), SCC.getOperand(2),
 | |
|                          SCC.getOperand(3), SETCC);
 | |
|     }
 | |
|     return SCC;
 | |
|   }
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| /// SimplifySelectOps - Given a SELECT or a SELECT_CC node, where LHS and RHS
 | |
| /// are the two values being selected between, see if we can simplify the
 | |
| /// select.  Callers of this should assume that TheSelect is deleted if this
 | |
| /// returns true.  As such, they should return the appropriate thing (e.g. the
 | |
| /// node) back to the top-level of the DAG combiner loop to avoid it being
 | |
| /// looked at.
 | |
| ///
 | |
| bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDOperand LHS, 
 | |
|                                     SDOperand RHS) {
 | |
|   
 | |
|   // If this is a select from two identical things, try to pull the operation
 | |
|   // through the select.
 | |
|   if (LHS.getOpcode() == RHS.getOpcode() && LHS.hasOneUse() && RHS.hasOneUse()){
 | |
|     // If this is a load and the token chain is identical, replace the select
 | |
|     // of two loads with a load through a select of the address to load from.
 | |
|     // This triggers in things like "select bool X, 10.0, 123.0" after the FP
 | |
|     // constants have been dropped into the constant pool.
 | |
|     if (LHS.getOpcode() == ISD::LOAD &&
 | |
|         // Token chains must be identical.
 | |
|         LHS.getOperand(0) == RHS.getOperand(0)) {
 | |
|       LoadSDNode *LLD = cast<LoadSDNode>(LHS);
 | |
|       LoadSDNode *RLD = cast<LoadSDNode>(RHS);
 | |
| 
 | |
|       // If this is an EXTLOAD, the VT's must match.
 | |
|       if (LLD->getLoadedVT() == RLD->getLoadedVT()) {
 | |
|         // FIXME: this conflates two src values, discarding one.  This is not
 | |
|         // the right thing to do, but nothing uses srcvalues now.  When they do,
 | |
|         // turn SrcValue into a list of locations.
 | |
|         SDOperand Addr;
 | |
|         if (TheSelect->getOpcode() == ISD::SELECT) {
 | |
|           // Check that the condition doesn't reach either load.  If so, folding
 | |
|           // this will induce a cycle into the DAG.
 | |
|           if (!LLD->isPredecessor(TheSelect->getOperand(0).Val) &&
 | |
|               !RLD->isPredecessor(TheSelect->getOperand(0).Val)) {
 | |
|             Addr = DAG.getNode(ISD::SELECT, LLD->getBasePtr().getValueType(),
 | |
|                                TheSelect->getOperand(0), LLD->getBasePtr(),
 | |
|                                RLD->getBasePtr());
 | |
|           }
 | |
|         } else {
 | |
|           // Check that the condition doesn't reach either load.  If so, folding
 | |
|           // this will induce a cycle into the DAG.
 | |
|           if (!LLD->isPredecessor(TheSelect->getOperand(0).Val) &&
 | |
|               !RLD->isPredecessor(TheSelect->getOperand(0).Val) &&
 | |
|               !LLD->isPredecessor(TheSelect->getOperand(1).Val) &&
 | |
|               !RLD->isPredecessor(TheSelect->getOperand(1).Val)) {
 | |
|             Addr = DAG.getNode(ISD::SELECT_CC, LLD->getBasePtr().getValueType(),
 | |
|                              TheSelect->getOperand(0),
 | |
|                              TheSelect->getOperand(1), 
 | |
|                              LLD->getBasePtr(), RLD->getBasePtr(),
 | |
|                              TheSelect->getOperand(4));
 | |
|           }
 | |
|         }
 | |
|         
 | |
|         if (Addr.Val) {
 | |
|           SDOperand Load;
 | |
|           if (LLD->getExtensionType() == ISD::NON_EXTLOAD)
 | |
|             Load = DAG.getLoad(TheSelect->getValueType(0), LLD->getChain(),
 | |
|                                Addr,LLD->getSrcValue(), 
 | |
|                                LLD->getSrcValueOffset(),
 | |
|                                LLD->isVolatile(), 
 | |
|                                LLD->getAlignment());
 | |
|           else {
 | |
|             Load = DAG.getExtLoad(LLD->getExtensionType(),
 | |
|                                   TheSelect->getValueType(0),
 | |
|                                   LLD->getChain(), Addr, LLD->getSrcValue(),
 | |
|                                   LLD->getSrcValueOffset(),
 | |
|                                   LLD->getLoadedVT(),
 | |
|                                   LLD->isVolatile(), 
 | |
|                                   LLD->getAlignment());
 | |
|           }
 | |
|           // Users of the select now use the result of the load.
 | |
|           CombineTo(TheSelect, Load);
 | |
|         
 | |
|           // Users of the old loads now use the new load's chain.  We know the
 | |
|           // old-load value is dead now.
 | |
|           CombineTo(LHS.Val, Load.getValue(0), Load.getValue(1));
 | |
|           CombineTo(RHS.Val, Load.getValue(0), Load.getValue(1));
 | |
|           return true;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| SDOperand DAGCombiner::SimplifySelectCC(SDOperand N0, SDOperand N1, 
 | |
|                                         SDOperand N2, SDOperand N3,
 | |
|                                         ISD::CondCode CC, bool NotExtCompare) {
 | |
|   
 | |
|   MVT::ValueType VT = N2.getValueType();
 | |
|   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
 | |
|   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
 | |
|   ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.Val);
 | |
| 
 | |
|   // Determine if the condition we're dealing with is constant
 | |
|   SDOperand SCC = SimplifySetCC(TLI.getSetCCResultTy(), N0, N1, CC, false);
 | |
|   if (SCC.Val) AddToWorkList(SCC.Val);
 | |
|   ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.Val);
 | |
| 
 | |
|   // fold select_cc true, x, y -> x
 | |
|   if (SCCC && SCCC->getValue())
 | |
|     return N2;
 | |
|   // fold select_cc false, x, y -> y
 | |
|   if (SCCC && SCCC->getValue() == 0)
 | |
|     return N3;
 | |
|   
 | |
|   // Check to see if we can simplify the select into an fabs node
 | |
|   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1)) {
 | |
|     // Allow either -0.0 or 0.0
 | |
|     if (CFP->getValue() == 0.0) {
 | |
|       // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs
 | |
|       if ((CC == ISD::SETGE || CC == ISD::SETGT) &&
 | |
|           N0 == N2 && N3.getOpcode() == ISD::FNEG &&
 | |
|           N2 == N3.getOperand(0))
 | |
|         return DAG.getNode(ISD::FABS, VT, N0);
 | |
|       
 | |
|       // select (setl[te] X, +/-0.0), fneg(X), X -> fabs
 | |
|       if ((CC == ISD::SETLT || CC == ISD::SETLE) &&
 | |
|           N0 == N3 && N2.getOpcode() == ISD::FNEG &&
 | |
|           N2.getOperand(0) == N3)
 | |
|         return DAG.getNode(ISD::FABS, VT, N3);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Check to see if we can perform the "gzip trick", transforming
 | |
|   // select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A
 | |
|   if (N1C && N3C && N3C->isNullValue() && CC == ISD::SETLT &&
 | |
|       MVT::isInteger(N0.getValueType()) && 
 | |
|       MVT::isInteger(N2.getValueType()) && 
 | |
|       (N1C->isNullValue() ||                    // (a < 0) ? b : 0
 | |
|        (N1C->getValue() == 1 && N0 == N2))) {   // (a < 1) ? a : 0
 | |
|     MVT::ValueType XType = N0.getValueType();
 | |
|     MVT::ValueType AType = N2.getValueType();
 | |
|     if (XType >= AType) {
 | |
|       // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a
 | |
|       // single-bit constant.
 | |
|       if (N2C && ((N2C->getValue() & (N2C->getValue()-1)) == 0)) {
 | |
|         unsigned ShCtV = Log2_64(N2C->getValue());
 | |
|         ShCtV = MVT::getSizeInBits(XType)-ShCtV-1;
 | |
|         SDOperand ShCt = DAG.getConstant(ShCtV, TLI.getShiftAmountTy());
 | |
|         SDOperand Shift = DAG.getNode(ISD::SRL, XType, N0, ShCt);
 | |
|         AddToWorkList(Shift.Val);
 | |
|         if (XType > AType) {
 | |
|           Shift = DAG.getNode(ISD::TRUNCATE, AType, Shift);
 | |
|           AddToWorkList(Shift.Val);
 | |
|         }
 | |
|         return DAG.getNode(ISD::AND, AType, Shift, N2);
 | |
|       }
 | |
|       SDOperand Shift = DAG.getNode(ISD::SRA, XType, N0,
 | |
|                                     DAG.getConstant(MVT::getSizeInBits(XType)-1,
 | |
|                                                     TLI.getShiftAmountTy()));
 | |
|       AddToWorkList(Shift.Val);
 | |
|       if (XType > AType) {
 | |
|         Shift = DAG.getNode(ISD::TRUNCATE, AType, Shift);
 | |
|         AddToWorkList(Shift.Val);
 | |
|       }
 | |
|       return DAG.getNode(ISD::AND, AType, Shift, N2);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // fold select C, 16, 0 -> shl C, 4
 | |
|   if (N2C && N3C && N3C->isNullValue() && isPowerOf2_64(N2C->getValue()) &&
 | |
|       TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult) {
 | |
|     
 | |
|     // If the caller doesn't want us to simplify this into a zext of a compare,
 | |
|     // don't do it.
 | |
|     if (NotExtCompare && N2C->getValue() == 1)
 | |
|       return SDOperand();
 | |
|     
 | |
|     // Get a SetCC of the condition
 | |
|     // FIXME: Should probably make sure that setcc is legal if we ever have a
 | |
|     // target where it isn't.
 | |
|     SDOperand Temp, SCC;
 | |
|     // cast from setcc result type to select result type
 | |
|     if (AfterLegalize) {
 | |
|       SCC  = DAG.getSetCC(TLI.getSetCCResultTy(), N0, N1, CC);
 | |
|       if (N2.getValueType() < SCC.getValueType())
 | |
|         Temp = DAG.getZeroExtendInReg(SCC, N2.getValueType());
 | |
|       else
 | |
|         Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getValueType(), SCC);
 | |
|     } else {
 | |
|       SCC  = DAG.getSetCC(MVT::i1, N0, N1, CC);
 | |
|       Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getValueType(), SCC);
 | |
|     }
 | |
|     AddToWorkList(SCC.Val);
 | |
|     AddToWorkList(Temp.Val);
 | |
|     
 | |
|     if (N2C->getValue() == 1)
 | |
|       return Temp;
 | |
|     // shl setcc result by log2 n2c
 | |
|     return DAG.getNode(ISD::SHL, N2.getValueType(), Temp,
 | |
|                        DAG.getConstant(Log2_64(N2C->getValue()),
 | |
|                                        TLI.getShiftAmountTy()));
 | |
|   }
 | |
|     
 | |
|   // Check to see if this is the equivalent of setcc
 | |
|   // FIXME: Turn all of these into setcc if setcc if setcc is legal
 | |
|   // otherwise, go ahead with the folds.
 | |
|   if (0 && N3C && N3C->isNullValue() && N2C && (N2C->getValue() == 1ULL)) {
 | |
|     MVT::ValueType XType = N0.getValueType();
 | |
|     if (TLI.isOperationLegal(ISD::SETCC, TLI.getSetCCResultTy())) {
 | |
|       SDOperand Res = DAG.getSetCC(TLI.getSetCCResultTy(), N0, N1, CC);
 | |
|       if (Res.getValueType() != VT)
 | |
|         Res = DAG.getNode(ISD::ZERO_EXTEND, VT, Res);
 | |
|       return Res;
 | |
|     }
 | |
|     
 | |
|     // seteq X, 0 -> srl (ctlz X, log2(size(X)))
 | |
|     if (N1C && N1C->isNullValue() && CC == ISD::SETEQ && 
 | |
|         TLI.isOperationLegal(ISD::CTLZ, XType)) {
 | |
|       SDOperand Ctlz = DAG.getNode(ISD::CTLZ, XType, N0);
 | |
|       return DAG.getNode(ISD::SRL, XType, Ctlz, 
 | |
|                          DAG.getConstant(Log2_32(MVT::getSizeInBits(XType)),
 | |
|                                          TLI.getShiftAmountTy()));
 | |
|     }
 | |
|     // setgt X, 0 -> srl (and (-X, ~X), size(X)-1)
 | |
|     if (N1C && N1C->isNullValue() && CC == ISD::SETGT) { 
 | |
|       SDOperand NegN0 = DAG.getNode(ISD::SUB, XType, DAG.getConstant(0, XType),
 | |
|                                     N0);
 | |
|       SDOperand NotN0 = DAG.getNode(ISD::XOR, XType, N0, 
 | |
|                                     DAG.getConstant(~0ULL, XType));
 | |
|       return DAG.getNode(ISD::SRL, XType, 
 | |
|                          DAG.getNode(ISD::AND, XType, NegN0, NotN0),
 | |
|                          DAG.getConstant(MVT::getSizeInBits(XType)-1,
 | |
|                                          TLI.getShiftAmountTy()));
 | |
|     }
 | |
|     // setgt X, -1 -> xor (srl (X, size(X)-1), 1)
 | |
|     if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT) {
 | |
|       SDOperand Sign = DAG.getNode(ISD::SRL, XType, N0,
 | |
|                                    DAG.getConstant(MVT::getSizeInBits(XType)-1,
 | |
|                                                    TLI.getShiftAmountTy()));
 | |
|       return DAG.getNode(ISD::XOR, XType, Sign, DAG.getConstant(1, XType));
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Check to see if this is an integer abs. select_cc setl[te] X, 0, -X, X ->
 | |
|   // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
 | |
|   if (N1C && N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE) &&
 | |
|       N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1) &&
 | |
|       N2.getOperand(0) == N1 && MVT::isInteger(N0.getValueType())) {
 | |
|     MVT::ValueType XType = N0.getValueType();
 | |
|     SDOperand Shift = DAG.getNode(ISD::SRA, XType, N0,
 | |
|                                   DAG.getConstant(MVT::getSizeInBits(XType)-1,
 | |
|                                                   TLI.getShiftAmountTy()));
 | |
|     SDOperand Add = DAG.getNode(ISD::ADD, XType, N0, Shift);
 | |
|     AddToWorkList(Shift.Val);
 | |
|     AddToWorkList(Add.Val);
 | |
|     return DAG.getNode(ISD::XOR, XType, Add, Shift);
 | |
|   }
 | |
|   // Check to see if this is an integer abs. select_cc setgt X, -1, X, -X ->
 | |
|   // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
 | |
|   if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT &&
 | |
|       N0 == N2 && N3.getOpcode() == ISD::SUB && N0 == N3.getOperand(1)) {
 | |
|     if (ConstantSDNode *SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0))) {
 | |
|       MVT::ValueType XType = N0.getValueType();
 | |
|       if (SubC->isNullValue() && MVT::isInteger(XType)) {
 | |
|         SDOperand Shift = DAG.getNode(ISD::SRA, XType, N0,
 | |
|                                     DAG.getConstant(MVT::getSizeInBits(XType)-1,
 | |
|                                                       TLI.getShiftAmountTy()));
 | |
|         SDOperand Add = DAG.getNode(ISD::ADD, XType, N0, Shift);
 | |
|         AddToWorkList(Shift.Val);
 | |
|         AddToWorkList(Add.Val);
 | |
|         return DAG.getNode(ISD::XOR, XType, Add, Shift);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| /// SimplifySetCC - This is a stub for TargetLowering::SimplifySetCC.
 | |
| SDOperand DAGCombiner::SimplifySetCC(MVT::ValueType VT, SDOperand N0,
 | |
|                                      SDOperand N1, ISD::CondCode Cond,
 | |
|                                      bool foldBooleans) {
 | |
|   TargetLowering::DAGCombinerInfo 
 | |
|     DagCombineInfo(DAG, !AfterLegalize, false, this);
 | |
|   return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo);
 | |
| }
 | |
| 
 | |
| /// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
 | |
| /// return a DAG expression to select that will generate the same value by
 | |
| /// multiplying by a magic number.  See:
 | |
| /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
 | |
| SDOperand DAGCombiner::BuildSDIV(SDNode *N) {
 | |
|   std::vector<SDNode*> Built;
 | |
|   SDOperand S = TLI.BuildSDIV(N, DAG, &Built);
 | |
| 
 | |
|   for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
 | |
|        ii != ee; ++ii)
 | |
|     AddToWorkList(*ii);
 | |
|   return S;
 | |
| }
 | |
| 
 | |
| /// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
 | |
| /// return a DAG expression to select that will generate the same value by
 | |
| /// multiplying by a magic number.  See:
 | |
| /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
 | |
| SDOperand DAGCombiner::BuildUDIV(SDNode *N) {
 | |
|   std::vector<SDNode*> Built;
 | |
|   SDOperand S = TLI.BuildUDIV(N, DAG, &Built);
 | |
| 
 | |
|   for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
 | |
|        ii != ee; ++ii)
 | |
|     AddToWorkList(*ii);
 | |
|   return S;
 | |
| }
 | |
| 
 | |
| /// FindBaseOffset - Return true if base is known not to alias with anything
 | |
| /// but itself.  Provides base object and offset as results.
 | |
| static bool FindBaseOffset(SDOperand Ptr, SDOperand &Base, int64_t &Offset) {
 | |
|   // Assume it is a primitive operation.
 | |
|   Base = Ptr; Offset = 0;
 | |
|   
 | |
|   // If it's an adding a simple constant then integrate the offset.
 | |
|   if (Base.getOpcode() == ISD::ADD) {
 | |
|     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Base.getOperand(1))) {
 | |
|       Base = Base.getOperand(0);
 | |
|       Offset += C->getValue();
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // If it's any of the following then it can't alias with anything but itself.
 | |
|   return isa<FrameIndexSDNode>(Base) ||
 | |
|          isa<ConstantPoolSDNode>(Base) ||
 | |
|          isa<GlobalAddressSDNode>(Base);
 | |
| }
 | |
| 
 | |
| /// isAlias - Return true if there is any possibility that the two addresses
 | |
| /// overlap.
 | |
| bool DAGCombiner::isAlias(SDOperand Ptr1, int64_t Size1,
 | |
|                           const Value *SrcValue1, int SrcValueOffset1,
 | |
|                           SDOperand Ptr2, int64_t Size2,
 | |
|                           const Value *SrcValue2, int SrcValueOffset2)
 | |
| {
 | |
|   // If they are the same then they must be aliases.
 | |
|   if (Ptr1 == Ptr2) return true;
 | |
|   
 | |
|   // Gather base node and offset information.
 | |
|   SDOperand Base1, Base2;
 | |
|   int64_t Offset1, Offset2;
 | |
|   bool KnownBase1 = FindBaseOffset(Ptr1, Base1, Offset1);
 | |
|   bool KnownBase2 = FindBaseOffset(Ptr2, Base2, Offset2);
 | |
|   
 | |
|   // If they have a same base address then...
 | |
|   if (Base1 == Base2) {
 | |
|     // Check to see if the addresses overlap.
 | |
|     return!((Offset1 + Size1) <= Offset2 || (Offset2 + Size2) <= Offset1);
 | |
|   }
 | |
|   
 | |
|   // If we know both bases then they can't alias.
 | |
|   if (KnownBase1 && KnownBase2) return false;
 | |
| 
 | |
|   if (CombinerGlobalAA) {
 | |
|     // Use alias analysis information.
 | |
|     int Overlap1 = Size1 + SrcValueOffset1 + Offset1;
 | |
|     int Overlap2 = Size2 + SrcValueOffset2 + Offset2;
 | |
|     AliasAnalysis::AliasResult AAResult = 
 | |
|                              AA.alias(SrcValue1, Overlap1, SrcValue2, Overlap2);
 | |
|     if (AAResult == AliasAnalysis::NoAlias)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Otherwise we have to assume they alias.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// FindAliasInfo - Extracts the relevant alias information from the memory
 | |
| /// node.  Returns true if the operand was a load.
 | |
| bool DAGCombiner::FindAliasInfo(SDNode *N,
 | |
|                         SDOperand &Ptr, int64_t &Size,
 | |
|                         const Value *&SrcValue, int &SrcValueOffset) {
 | |
|   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
 | |
|     Ptr = LD->getBasePtr();
 | |
|     Size = MVT::getSizeInBits(LD->getLoadedVT()) >> 3;
 | |
|     SrcValue = LD->getSrcValue();
 | |
|     SrcValueOffset = LD->getSrcValueOffset();
 | |
|     return true;
 | |
|   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
 | |
|     Ptr = ST->getBasePtr();
 | |
|     Size = MVT::getSizeInBits(ST->getStoredVT()) >> 3;
 | |
|     SrcValue = ST->getSrcValue();
 | |
|     SrcValueOffset = ST->getSrcValueOffset();
 | |
|   } else {
 | |
|     assert(0 && "FindAliasInfo expected a memory operand");
 | |
|   }
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
 | |
| /// looking for aliasing nodes and adding them to the Aliases vector.
 | |
| void DAGCombiner::GatherAllAliases(SDNode *N, SDOperand OriginalChain,
 | |
|                                    SmallVector<SDOperand, 8> &Aliases) {
 | |
|   SmallVector<SDOperand, 8> Chains;     // List of chains to visit.
 | |
|   std::set<SDNode *> Visited;           // Visited node set.
 | |
|   
 | |
|   // Get alias information for node.
 | |
|   SDOperand Ptr;
 | |
|   int64_t Size;
 | |
|   const Value *SrcValue;
 | |
|   int SrcValueOffset;
 | |
|   bool IsLoad = FindAliasInfo(N, Ptr, Size, SrcValue, SrcValueOffset);
 | |
| 
 | |
|   // Starting off.
 | |
|   Chains.push_back(OriginalChain);
 | |
|   
 | |
|   // Look at each chain and determine if it is an alias.  If so, add it to the
 | |
|   // aliases list.  If not, then continue up the chain looking for the next
 | |
|   // candidate.  
 | |
|   while (!Chains.empty()) {
 | |
|     SDOperand Chain = Chains.back();
 | |
|     Chains.pop_back();
 | |
|     
 | |
|      // Don't bother if we've been before.
 | |
|     if (Visited.find(Chain.Val) != Visited.end()) continue;
 | |
|     Visited.insert(Chain.Val);
 | |
|   
 | |
|     switch (Chain.getOpcode()) {
 | |
|     case ISD::EntryToken:
 | |
|       // Entry token is ideal chain operand, but handled in FindBetterChain.
 | |
|       break;
 | |
|       
 | |
|     case ISD::LOAD:
 | |
|     case ISD::STORE: {
 | |
|       // Get alias information for Chain.
 | |
|       SDOperand OpPtr;
 | |
|       int64_t OpSize;
 | |
|       const Value *OpSrcValue;
 | |
|       int OpSrcValueOffset;
 | |
|       bool IsOpLoad = FindAliasInfo(Chain.Val, OpPtr, OpSize,
 | |
|                                     OpSrcValue, OpSrcValueOffset);
 | |
|       
 | |
|       // If chain is alias then stop here.
 | |
|       if (!(IsLoad && IsOpLoad) &&
 | |
|           isAlias(Ptr, Size, SrcValue, SrcValueOffset,
 | |
|                   OpPtr, OpSize, OpSrcValue, OpSrcValueOffset)) {
 | |
|         Aliases.push_back(Chain);
 | |
|       } else {
 | |
|         // Look further up the chain.
 | |
|         Chains.push_back(Chain.getOperand(0));      
 | |
|         // Clean up old chain.
 | |
|         AddToWorkList(Chain.Val);
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     
 | |
|     case ISD::TokenFactor:
 | |
|       // We have to check each of the operands of the token factor, so we queue
 | |
|       // then up.  Adding the  operands to the queue (stack) in reverse order
 | |
|       // maintains the original order and increases the likelihood that getNode
 | |
|       // will find a matching token factor (CSE.)
 | |
|       for (unsigned n = Chain.getNumOperands(); n;)
 | |
|         Chains.push_back(Chain.getOperand(--n));
 | |
|       // Eliminate the token factor if we can.
 | |
|       AddToWorkList(Chain.Val);
 | |
|       break;
 | |
|       
 | |
|     default:
 | |
|       // For all other instructions we will just have to take what we can get.
 | |
|       Aliases.push_back(Chain);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// FindBetterChain - Walk up chain skipping non-aliasing memory nodes, looking
 | |
| /// for a better chain (aliasing node.)
 | |
| SDOperand DAGCombiner::FindBetterChain(SDNode *N, SDOperand OldChain) {
 | |
|   SmallVector<SDOperand, 8> Aliases;  // Ops for replacing token factor.
 | |
|   
 | |
|   // Accumulate all the aliases to this node.
 | |
|   GatherAllAliases(N, OldChain, Aliases);
 | |
|   
 | |
|   if (Aliases.size() == 0) {
 | |
|     // If no operands then chain to entry token.
 | |
|     return DAG.getEntryNode();
 | |
|   } else if (Aliases.size() == 1) {
 | |
|     // If a single operand then chain to it.  We don't need to revisit it.
 | |
|     return Aliases[0];
 | |
|   }
 | |
| 
 | |
|   // Construct a custom tailored token factor.
 | |
|   SDOperand NewChain = DAG.getNode(ISD::TokenFactor, MVT::Other,
 | |
|                                    &Aliases[0], Aliases.size());
 | |
| 
 | |
|   // Make sure the old chain gets cleaned up.
 | |
|   if (NewChain != OldChain) AddToWorkList(OldChain.Val);
 | |
|   
 | |
|   return NewChain;
 | |
| }
 | |
| 
 | |
| // SelectionDAG::Combine - This is the entry point for the file.
 | |
| //
 | |
| void SelectionDAG::Combine(bool RunningAfterLegalize, AliasAnalysis &AA) {
 | |
|   if (!RunningAfterLegalize && ViewDAGCombine1)
 | |
|     viewGraph();
 | |
|   if (RunningAfterLegalize && ViewDAGCombine2)
 | |
|     viewGraph();
 | |
|   /// run - This is the main entry point to this class.
 | |
|   ///
 | |
|   DAGCombiner(*this, AA).Run(RunningAfterLegalize);
 | |
| }
 |