mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	This is necessary if the client wants to be able to mutate TargetOptions (for example, fast FP math mode) after the initial creation of the ExecutionEngine. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@153342 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			624 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			624 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- ExecutionEngine.h - Abstract Execution Engine Interface --*- C++ -*-===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file defines the abstract interface that implements execution support
 | 
						|
// for LLVM.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#ifndef LLVM_EXECUTION_ENGINE_H
 | 
						|
#define LLVM_EXECUTION_ENGINE_H
 | 
						|
 | 
						|
#include "llvm/MC/MCCodeGenInfo.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/StringRef.h"
 | 
						|
#include "llvm/ADT/ValueMap.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/ValueHandle.h"
 | 
						|
#include "llvm/Support/Mutex.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include "llvm/Target/TargetOptions.h"
 | 
						|
#include <vector>
 | 
						|
#include <map>
 | 
						|
#include <string>
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
 | 
						|
struct GenericValue;
 | 
						|
class Constant;
 | 
						|
class ExecutionEngine;
 | 
						|
class Function;
 | 
						|
class GlobalVariable;
 | 
						|
class GlobalValue;
 | 
						|
class JITEventListener;
 | 
						|
class JITMemoryManager;
 | 
						|
class MachineCodeInfo;
 | 
						|
class Module;
 | 
						|
class MutexGuard;
 | 
						|
class TargetData;
 | 
						|
class Triple;
 | 
						|
class Type;
 | 
						|
 | 
						|
/// \brief Helper class for helping synchronize access to the global address map
 | 
						|
/// table.
 | 
						|
class ExecutionEngineState {
 | 
						|
public:
 | 
						|
  struct AddressMapConfig : public ValueMapConfig<const GlobalValue*> {
 | 
						|
    typedef ExecutionEngineState *ExtraData;
 | 
						|
    static sys::Mutex *getMutex(ExecutionEngineState *EES);
 | 
						|
    static void onDelete(ExecutionEngineState *EES, const GlobalValue *Old);
 | 
						|
    static void onRAUW(ExecutionEngineState *, const GlobalValue *,
 | 
						|
                       const GlobalValue *);
 | 
						|
  };
 | 
						|
 | 
						|
  typedef ValueMap<const GlobalValue *, void *, AddressMapConfig>
 | 
						|
      GlobalAddressMapTy;
 | 
						|
 | 
						|
private:
 | 
						|
  ExecutionEngine &EE;
 | 
						|
 | 
						|
  /// GlobalAddressMap - A mapping between LLVM global values and their
 | 
						|
  /// actualized version...
 | 
						|
  GlobalAddressMapTy GlobalAddressMap;
 | 
						|
 | 
						|
  /// GlobalAddressReverseMap - This is the reverse mapping of GlobalAddressMap,
 | 
						|
  /// used to convert raw addresses into the LLVM global value that is emitted
 | 
						|
  /// at the address.  This map is not computed unless getGlobalValueAtAddress
 | 
						|
  /// is called at some point.
 | 
						|
  std::map<void *, AssertingVH<const GlobalValue> > GlobalAddressReverseMap;
 | 
						|
 | 
						|
public:
 | 
						|
  ExecutionEngineState(ExecutionEngine &EE);
 | 
						|
 | 
						|
  GlobalAddressMapTy &getGlobalAddressMap(const MutexGuard &) {
 | 
						|
    return GlobalAddressMap;
 | 
						|
  }
 | 
						|
 | 
						|
  std::map<void*, AssertingVH<const GlobalValue> > &
 | 
						|
  getGlobalAddressReverseMap(const MutexGuard &) {
 | 
						|
    return GlobalAddressReverseMap;
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Erase an entry from the mapping table.
 | 
						|
  ///
 | 
						|
  /// \returns The address that \arg ToUnmap was happed to.
 | 
						|
  void *RemoveMapping(const MutexGuard &, const GlobalValue *ToUnmap);
 | 
						|
};
 | 
						|
 | 
						|
/// \brief Abstract interface for implementation execution of LLVM modules,
 | 
						|
/// designed to support both interpreter and just-in-time (JIT) compiler
 | 
						|
/// implementations.
 | 
						|
class ExecutionEngine {
 | 
						|
  /// The state object holding the global address mapping, which must be
 | 
						|
  /// accessed synchronously.
 | 
						|
  //
 | 
						|
  // FIXME: There is no particular need the entire map needs to be
 | 
						|
  // synchronized.  Wouldn't a reader-writer design be better here?
 | 
						|
  ExecutionEngineState EEState;
 | 
						|
 | 
						|
  /// The target data for the platform for which execution is being performed.
 | 
						|
  const TargetData *TD;
 | 
						|
 | 
						|
  /// Whether lazy JIT compilation is enabled.
 | 
						|
  bool CompilingLazily;
 | 
						|
 | 
						|
  /// Whether JIT compilation of external global variables is allowed.
 | 
						|
  bool GVCompilationDisabled;
 | 
						|
 | 
						|
  /// Whether the JIT should perform lookups of external symbols (e.g.,
 | 
						|
  /// using dlsym).
 | 
						|
  bool SymbolSearchingDisabled;
 | 
						|
 | 
						|
  friend class EngineBuilder;  // To allow access to JITCtor and InterpCtor.
 | 
						|
 | 
						|
protected:
 | 
						|
  /// The list of Modules that we are JIT'ing from.  We use a SmallVector to
 | 
						|
  /// optimize for the case where there is only one module.
 | 
						|
  SmallVector<Module*, 1> Modules;
 | 
						|
 | 
						|
  void setTargetData(const TargetData *td) { TD = td; }
 | 
						|
 | 
						|
  /// getMemoryforGV - Allocate memory for a global variable.
 | 
						|
  virtual char *getMemoryForGV(const GlobalVariable *GV);
 | 
						|
 | 
						|
  // To avoid having libexecutionengine depend on the JIT and interpreter
 | 
						|
  // libraries, the execution engine implementations set these functions to ctor
 | 
						|
  // pointers at startup time if they are linked in.
 | 
						|
  static ExecutionEngine *(*JITCtor)(
 | 
						|
    Module *M,
 | 
						|
    std::string *ErrorStr,
 | 
						|
    JITMemoryManager *JMM,
 | 
						|
    bool GVsWithCode,
 | 
						|
    TargetMachine *TM);
 | 
						|
  static ExecutionEngine *(*MCJITCtor)(
 | 
						|
    Module *M,
 | 
						|
    std::string *ErrorStr,
 | 
						|
    JITMemoryManager *JMM,
 | 
						|
    bool GVsWithCode,
 | 
						|
    TargetMachine *TM);
 | 
						|
  static ExecutionEngine *(*InterpCtor)(Module *M, std::string *ErrorStr);
 | 
						|
 | 
						|
  /// LazyFunctionCreator - If an unknown function is needed, this function
 | 
						|
  /// pointer is invoked to create it.  If this returns null, the JIT will
 | 
						|
  /// abort.
 | 
						|
  void *(*LazyFunctionCreator)(const std::string &);
 | 
						|
 | 
						|
  /// ExceptionTableRegister - If Exception Handling is set, the JIT will
 | 
						|
  /// register dwarf tables with this function.
 | 
						|
  typedef void (*EERegisterFn)(void*);
 | 
						|
  EERegisterFn ExceptionTableRegister;
 | 
						|
  EERegisterFn ExceptionTableDeregister;
 | 
						|
  /// This maps functions to their exception tables frames.
 | 
						|
  DenseMap<const Function*, void*> AllExceptionTables;
 | 
						|
 | 
						|
 | 
						|
public:
 | 
						|
  /// lock - This lock protects the ExecutionEngine, JIT, JITResolver and
 | 
						|
  /// JITEmitter classes.  It must be held while changing the internal state of
 | 
						|
  /// any of those classes.
 | 
						|
  sys::Mutex lock;
 | 
						|
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
  //  ExecutionEngine Startup
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
 | 
						|
  virtual ~ExecutionEngine();
 | 
						|
 | 
						|
  /// create - This is the factory method for creating an execution engine which
 | 
						|
  /// is appropriate for the current machine.  This takes ownership of the
 | 
						|
  /// module.
 | 
						|
  ///
 | 
						|
  /// \param GVsWithCode - Allocating globals with code breaks
 | 
						|
  /// freeMachineCodeForFunction and is probably unsafe and bad for performance.
 | 
						|
  /// However, we have clients who depend on this behavior, so we must support
 | 
						|
  /// it.  Eventually, when we're willing to break some backwards compatibility,
 | 
						|
  /// this flag should be flipped to false, so that by default
 | 
						|
  /// freeMachineCodeForFunction works.
 | 
						|
  static ExecutionEngine *create(Module *M,
 | 
						|
                                 bool ForceInterpreter = false,
 | 
						|
                                 std::string *ErrorStr = 0,
 | 
						|
                                 CodeGenOpt::Level OptLevel =
 | 
						|
                                 CodeGenOpt::Default,
 | 
						|
                                 bool GVsWithCode = true);
 | 
						|
 | 
						|
  /// createJIT - This is the factory method for creating a JIT for the current
 | 
						|
  /// machine, it does not fall back to the interpreter.  This takes ownership
 | 
						|
  /// of the Module and JITMemoryManager if successful.
 | 
						|
  ///
 | 
						|
  /// Clients should make sure to initialize targets prior to calling this
 | 
						|
  /// function.
 | 
						|
  static ExecutionEngine *createJIT(Module *M,
 | 
						|
                                    std::string *ErrorStr = 0,
 | 
						|
                                    JITMemoryManager *JMM = 0,
 | 
						|
                                    CodeGenOpt::Level OptLevel =
 | 
						|
                                    CodeGenOpt::Default,
 | 
						|
                                    bool GVsWithCode = true,
 | 
						|
                                    Reloc::Model RM = Reloc::Default,
 | 
						|
                                    CodeModel::Model CMM =
 | 
						|
                                    CodeModel::JITDefault);
 | 
						|
 | 
						|
  /// addModule - Add a Module to the list of modules that we can JIT from.
 | 
						|
  /// Note that this takes ownership of the Module: when the ExecutionEngine is
 | 
						|
  /// destroyed, it destroys the Module as well.
 | 
						|
  virtual void addModule(Module *M) {
 | 
						|
    Modules.push_back(M);
 | 
						|
  }
 | 
						|
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
 | 
						|
  const TargetData *getTargetData() const { return TD; }
 | 
						|
 | 
						|
  /// removeModule - Remove a Module from the list of modules.  Returns true if
 | 
						|
  /// M is found.
 | 
						|
  virtual bool removeModule(Module *M);
 | 
						|
 | 
						|
  /// FindFunctionNamed - Search all of the active modules to find the one that
 | 
						|
  /// defines FnName.  This is very slow operation and shouldn't be used for
 | 
						|
  /// general code.
 | 
						|
  Function *FindFunctionNamed(const char *FnName);
 | 
						|
 | 
						|
  /// runFunction - Execute the specified function with the specified arguments,
 | 
						|
  /// and return the result.
 | 
						|
  virtual GenericValue runFunction(Function *F,
 | 
						|
                                const std::vector<GenericValue> &ArgValues) = 0;
 | 
						|
 | 
						|
  /// getPointerToNamedFunction - This method returns the address of the
 | 
						|
  /// specified function by using the dlsym function call.  As such it is only
 | 
						|
  /// useful for resolving library symbols, not code generated symbols.
 | 
						|
  ///
 | 
						|
  /// If AbortOnFailure is false and no function with the given name is
 | 
						|
  /// found, this function silently returns a null pointer. Otherwise,
 | 
						|
  /// it prints a message to stderr and aborts.
 | 
						|
  ///
 | 
						|
  virtual void *getPointerToNamedFunction(const std::string &Name,
 | 
						|
                                          bool AbortOnFailure = true) = 0;
 | 
						|
 | 
						|
  /// mapSectionAddress - map a section to its target address space value.
 | 
						|
  /// Map the address of a JIT section as returned from the memory manager
 | 
						|
  /// to the address in the target process as the running code will see it.
 | 
						|
  /// This is the address which will be used for relocation resolution.
 | 
						|
  virtual void mapSectionAddress(void *LocalAddress, uint64_t TargetAddress) {
 | 
						|
    llvm_unreachable("Re-mapping of section addresses not supported with this "
 | 
						|
                     "EE!");
 | 
						|
  }
 | 
						|
 | 
						|
  /// runStaticConstructorsDestructors - This method is used to execute all of
 | 
						|
  /// the static constructors or destructors for a program.
 | 
						|
  ///
 | 
						|
  /// \param isDtors - Run the destructors instead of constructors.
 | 
						|
  void runStaticConstructorsDestructors(bool isDtors);
 | 
						|
 | 
						|
  /// runStaticConstructorsDestructors - This method is used to execute all of
 | 
						|
  /// the static constructors or destructors for a particular module.
 | 
						|
  ///
 | 
						|
  /// \param isDtors - Run the destructors instead of constructors.
 | 
						|
  void runStaticConstructorsDestructors(Module *module, bool isDtors);
 | 
						|
 | 
						|
 | 
						|
  /// runFunctionAsMain - This is a helper function which wraps runFunction to
 | 
						|
  /// handle the common task of starting up main with the specified argc, argv,
 | 
						|
  /// and envp parameters.
 | 
						|
  int runFunctionAsMain(Function *Fn, const std::vector<std::string> &argv,
 | 
						|
                        const char * const * envp);
 | 
						|
 | 
						|
 | 
						|
  /// addGlobalMapping - Tell the execution engine that the specified global is
 | 
						|
  /// at the specified location.  This is used internally as functions are JIT'd
 | 
						|
  /// and as global variables are laid out in memory.  It can and should also be
 | 
						|
  /// used by clients of the EE that want to have an LLVM global overlay
 | 
						|
  /// existing data in memory.  Mappings are automatically removed when their
 | 
						|
  /// GlobalValue is destroyed.
 | 
						|
  void addGlobalMapping(const GlobalValue *GV, void *Addr);
 | 
						|
 | 
						|
  /// clearAllGlobalMappings - Clear all global mappings and start over again,
 | 
						|
  /// for use in dynamic compilation scenarios to move globals.
 | 
						|
  void clearAllGlobalMappings();
 | 
						|
 | 
						|
  /// clearGlobalMappingsFromModule - Clear all global mappings that came from a
 | 
						|
  /// particular module, because it has been removed from the JIT.
 | 
						|
  void clearGlobalMappingsFromModule(Module *M);
 | 
						|
 | 
						|
  /// updateGlobalMapping - Replace an existing mapping for GV with a new
 | 
						|
  /// address.  This updates both maps as required.  If "Addr" is null, the
 | 
						|
  /// entry for the global is removed from the mappings.  This returns the old
 | 
						|
  /// value of the pointer, or null if it was not in the map.
 | 
						|
  void *updateGlobalMapping(const GlobalValue *GV, void *Addr);
 | 
						|
 | 
						|
  /// getPointerToGlobalIfAvailable - This returns the address of the specified
 | 
						|
  /// global value if it is has already been codegen'd, otherwise it returns
 | 
						|
  /// null.
 | 
						|
  void *getPointerToGlobalIfAvailable(const GlobalValue *GV);
 | 
						|
 | 
						|
  /// getPointerToGlobal - This returns the address of the specified global
 | 
						|
  /// value. This may involve code generation if it's a function.
 | 
						|
  void *getPointerToGlobal(const GlobalValue *GV);
 | 
						|
 | 
						|
  /// getPointerToFunction - The different EE's represent function bodies in
 | 
						|
  /// different ways.  They should each implement this to say what a function
 | 
						|
  /// pointer should look like.  When F is destroyed, the ExecutionEngine will
 | 
						|
  /// remove its global mapping and free any machine code.  Be sure no threads
 | 
						|
  /// are running inside F when that happens.
 | 
						|
  virtual void *getPointerToFunction(Function *F) = 0;
 | 
						|
 | 
						|
  /// getPointerToBasicBlock - The different EE's represent basic blocks in
 | 
						|
  /// different ways.  Return the representation for a blockaddress of the
 | 
						|
  /// specified block.
 | 
						|
  virtual void *getPointerToBasicBlock(BasicBlock *BB) = 0;
 | 
						|
 | 
						|
  /// getPointerToFunctionOrStub - If the specified function has been
 | 
						|
  /// code-gen'd, return a pointer to the function.  If not, compile it, or use
 | 
						|
  /// a stub to implement lazy compilation if available.  See
 | 
						|
  /// getPointerToFunction for the requirements on destroying F.
 | 
						|
  virtual void *getPointerToFunctionOrStub(Function *F) {
 | 
						|
    // Default implementation, just codegen the function.
 | 
						|
    return getPointerToFunction(F);
 | 
						|
  }
 | 
						|
 | 
						|
  // The JIT overrides a version that actually does this.
 | 
						|
  virtual void runJITOnFunction(Function *, MachineCodeInfo * = 0) { }
 | 
						|
 | 
						|
  /// getGlobalValueAtAddress - Return the LLVM global value object that starts
 | 
						|
  /// at the specified address.
 | 
						|
  ///
 | 
						|
  const GlobalValue *getGlobalValueAtAddress(void *Addr);
 | 
						|
 | 
						|
  /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr.
 | 
						|
  /// Ptr is the address of the memory at which to store Val, cast to
 | 
						|
  /// GenericValue *.  It is not a pointer to a GenericValue containing the
 | 
						|
  /// address at which to store Val.
 | 
						|
  void StoreValueToMemory(const GenericValue &Val, GenericValue *Ptr,
 | 
						|
                          Type *Ty);
 | 
						|
 | 
						|
  void InitializeMemory(const Constant *Init, void *Addr);
 | 
						|
 | 
						|
  /// recompileAndRelinkFunction - This method is used to force a function which
 | 
						|
  /// has already been compiled to be compiled again, possibly after it has been
 | 
						|
  /// modified.  Then the entry to the old copy is overwritten with a branch to
 | 
						|
  /// the new copy.  If there was no old copy, this acts just like
 | 
						|
  /// VM::getPointerToFunction().
 | 
						|
  virtual void *recompileAndRelinkFunction(Function *F) = 0;
 | 
						|
 | 
						|
  /// freeMachineCodeForFunction - Release memory in the ExecutionEngine
 | 
						|
  /// corresponding to the machine code emitted to execute this function, useful
 | 
						|
  /// for garbage-collecting generated code.
 | 
						|
  virtual void freeMachineCodeForFunction(Function *F) = 0;
 | 
						|
 | 
						|
  /// getOrEmitGlobalVariable - Return the address of the specified global
 | 
						|
  /// variable, possibly emitting it to memory if needed.  This is used by the
 | 
						|
  /// Emitter.
 | 
						|
  virtual void *getOrEmitGlobalVariable(const GlobalVariable *GV) {
 | 
						|
    return getPointerToGlobal((GlobalValue*)GV);
 | 
						|
  }
 | 
						|
 | 
						|
  /// Registers a listener to be called back on various events within
 | 
						|
  /// the JIT.  See JITEventListener.h for more details.  Does not
 | 
						|
  /// take ownership of the argument.  The argument may be NULL, in
 | 
						|
  /// which case these functions do nothing.
 | 
						|
  virtual void RegisterJITEventListener(JITEventListener *) {}
 | 
						|
  virtual void UnregisterJITEventListener(JITEventListener *) {}
 | 
						|
 | 
						|
  /// DisableLazyCompilation - When lazy compilation is off (the default), the
 | 
						|
  /// JIT will eagerly compile every function reachable from the argument to
 | 
						|
  /// getPointerToFunction.  If lazy compilation is turned on, the JIT will only
 | 
						|
  /// compile the one function and emit stubs to compile the rest when they're
 | 
						|
  /// first called.  If lazy compilation is turned off again while some lazy
 | 
						|
  /// stubs are still around, and one of those stubs is called, the program will
 | 
						|
  /// abort.
 | 
						|
  ///
 | 
						|
  /// In order to safely compile lazily in a threaded program, the user must
 | 
						|
  /// ensure that 1) only one thread at a time can call any particular lazy
 | 
						|
  /// stub, and 2) any thread modifying LLVM IR must hold the JIT's lock
 | 
						|
  /// (ExecutionEngine::lock) or otherwise ensure that no other thread calls a
 | 
						|
  /// lazy stub.  See http://llvm.org/PR5184 for details.
 | 
						|
  void DisableLazyCompilation(bool Disabled = true) {
 | 
						|
    CompilingLazily = !Disabled;
 | 
						|
  }
 | 
						|
  bool isCompilingLazily() const {
 | 
						|
    return CompilingLazily;
 | 
						|
  }
 | 
						|
  // Deprecated in favor of isCompilingLazily (to reduce double-negatives).
 | 
						|
  // Remove this in LLVM 2.8.
 | 
						|
  bool isLazyCompilationDisabled() const {
 | 
						|
    return !CompilingLazily;
 | 
						|
  }
 | 
						|
 | 
						|
  /// DisableGVCompilation - If called, the JIT will abort if it's asked to
 | 
						|
  /// allocate space and populate a GlobalVariable that is not internal to
 | 
						|
  /// the module.
 | 
						|
  void DisableGVCompilation(bool Disabled = true) {
 | 
						|
    GVCompilationDisabled = Disabled;
 | 
						|
  }
 | 
						|
  bool isGVCompilationDisabled() const {
 | 
						|
    return GVCompilationDisabled;
 | 
						|
  }
 | 
						|
 | 
						|
  /// DisableSymbolSearching - If called, the JIT will not try to lookup unknown
 | 
						|
  /// symbols with dlsym.  A client can still use InstallLazyFunctionCreator to
 | 
						|
  /// resolve symbols in a custom way.
 | 
						|
  void DisableSymbolSearching(bool Disabled = true) {
 | 
						|
    SymbolSearchingDisabled = Disabled;
 | 
						|
  }
 | 
						|
  bool isSymbolSearchingDisabled() const {
 | 
						|
    return SymbolSearchingDisabled;
 | 
						|
  }
 | 
						|
 | 
						|
  /// InstallLazyFunctionCreator - If an unknown function is needed, the
 | 
						|
  /// specified function pointer is invoked to create it.  If it returns null,
 | 
						|
  /// the JIT will abort.
 | 
						|
  void InstallLazyFunctionCreator(void* (*P)(const std::string &)) {
 | 
						|
    LazyFunctionCreator = P;
 | 
						|
  }
 | 
						|
 | 
						|
  /// InstallExceptionTableRegister - The JIT will use the given function
 | 
						|
  /// to register the exception tables it generates.
 | 
						|
  void InstallExceptionTableRegister(EERegisterFn F) {
 | 
						|
    ExceptionTableRegister = F;
 | 
						|
  }
 | 
						|
  void InstallExceptionTableDeregister(EERegisterFn F) {
 | 
						|
    ExceptionTableDeregister = F;
 | 
						|
  }
 | 
						|
 | 
						|
  /// RegisterTable - Registers the given pointer as an exception table.  It
 | 
						|
  /// uses the ExceptionTableRegister function.
 | 
						|
  void RegisterTable(const Function *fn, void* res) {
 | 
						|
    if (ExceptionTableRegister) {
 | 
						|
      ExceptionTableRegister(res);
 | 
						|
      AllExceptionTables[fn] = res;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /// DeregisterTable - Deregisters the exception frame previously registered
 | 
						|
  /// for the given function.
 | 
						|
  void DeregisterTable(const Function *Fn) {
 | 
						|
    if (ExceptionTableDeregister) {
 | 
						|
      DenseMap<const Function*, void*>::iterator frame =
 | 
						|
        AllExceptionTables.find(Fn);
 | 
						|
      if(frame != AllExceptionTables.end()) {
 | 
						|
        ExceptionTableDeregister(frame->second);
 | 
						|
        AllExceptionTables.erase(frame);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /// DeregisterAllTables - Deregisters all previously registered pointers to an
 | 
						|
  /// exception tables.  It uses the ExceptionTableoDeregister function.
 | 
						|
  void DeregisterAllTables();
 | 
						|
 | 
						|
protected:
 | 
						|
  explicit ExecutionEngine(Module *M);
 | 
						|
 | 
						|
  void emitGlobals();
 | 
						|
 | 
						|
  void EmitGlobalVariable(const GlobalVariable *GV);
 | 
						|
 | 
						|
  GenericValue getConstantValue(const Constant *C);
 | 
						|
  void LoadValueFromMemory(GenericValue &Result, GenericValue *Ptr,
 | 
						|
                           Type *Ty);
 | 
						|
};
 | 
						|
 | 
						|
namespace EngineKind {
 | 
						|
  // These are actually bitmasks that get or-ed together.
 | 
						|
  enum Kind {
 | 
						|
    JIT         = 0x1,
 | 
						|
    Interpreter = 0x2
 | 
						|
  };
 | 
						|
  const static Kind Either = (Kind)(JIT | Interpreter);
 | 
						|
}
 | 
						|
 | 
						|
/// EngineBuilder - Builder class for ExecutionEngines.  Use this by
 | 
						|
/// stack-allocating a builder, chaining the various set* methods, and
 | 
						|
/// terminating it with a .create() call.
 | 
						|
class EngineBuilder {
 | 
						|
private:
 | 
						|
  Module *M;
 | 
						|
  EngineKind::Kind WhichEngine;
 | 
						|
  std::string *ErrorStr;
 | 
						|
  CodeGenOpt::Level OptLevel;
 | 
						|
  JITMemoryManager *JMM;
 | 
						|
  bool AllocateGVsWithCode;
 | 
						|
  TargetOptions Options;
 | 
						|
  Reloc::Model RelocModel;
 | 
						|
  CodeModel::Model CMModel;
 | 
						|
  std::string MArch;
 | 
						|
  std::string MCPU;
 | 
						|
  SmallVector<std::string, 4> MAttrs;
 | 
						|
  bool UseMCJIT;
 | 
						|
 | 
						|
  /// InitEngine - Does the common initialization of default options.
 | 
						|
  void InitEngine() {
 | 
						|
    WhichEngine = EngineKind::Either;
 | 
						|
    ErrorStr = NULL;
 | 
						|
    OptLevel = CodeGenOpt::Default;
 | 
						|
    JMM = NULL;
 | 
						|
    Options = TargetOptions();
 | 
						|
    AllocateGVsWithCode = false;
 | 
						|
    RelocModel = Reloc::Default;
 | 
						|
    CMModel = CodeModel::JITDefault;
 | 
						|
    UseMCJIT = false;
 | 
						|
  }
 | 
						|
 | 
						|
public:
 | 
						|
  /// EngineBuilder - Constructor for EngineBuilder.  If create() is called and
 | 
						|
  /// is successful, the created engine takes ownership of the module.
 | 
						|
  EngineBuilder(Module *m) : M(m) {
 | 
						|
    InitEngine();
 | 
						|
  }
 | 
						|
 | 
						|
  /// setEngineKind - Controls whether the user wants the interpreter, the JIT,
 | 
						|
  /// or whichever engine works.  This option defaults to EngineKind::Either.
 | 
						|
  EngineBuilder &setEngineKind(EngineKind::Kind w) {
 | 
						|
    WhichEngine = w;
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  /// setJITMemoryManager - Sets the memory manager to use.  This allows
 | 
						|
  /// clients to customize their memory allocation policies.  If create() is
 | 
						|
  /// called and is successful, the created engine takes ownership of the
 | 
						|
  /// memory manager.  This option defaults to NULL.
 | 
						|
  EngineBuilder &setJITMemoryManager(JITMemoryManager *jmm) {
 | 
						|
    JMM = jmm;
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  /// setErrorStr - Set the error string to write to on error.  This option
 | 
						|
  /// defaults to NULL.
 | 
						|
  EngineBuilder &setErrorStr(std::string *e) {
 | 
						|
    ErrorStr = e;
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  /// setOptLevel - Set the optimization level for the JIT.  This option
 | 
						|
  /// defaults to CodeGenOpt::Default.
 | 
						|
  EngineBuilder &setOptLevel(CodeGenOpt::Level l) {
 | 
						|
    OptLevel = l;
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  /// setTargetOptions - Set the target options that the ExecutionEngine
 | 
						|
  /// target is using. Defaults to TargetOptions().
 | 
						|
  EngineBuilder &setTargetOptions(const TargetOptions &Opts) {
 | 
						|
    Options = Opts;
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  /// setRelocationModel - Set the relocation model that the ExecutionEngine
 | 
						|
  /// target is using. Defaults to target specific default "Reloc::Default".
 | 
						|
  EngineBuilder &setRelocationModel(Reloc::Model RM) {
 | 
						|
    RelocModel = RM;
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  /// setCodeModel - Set the CodeModel that the ExecutionEngine target
 | 
						|
  /// data is using. Defaults to target specific default
 | 
						|
  /// "CodeModel::JITDefault".
 | 
						|
  EngineBuilder &setCodeModel(CodeModel::Model M) {
 | 
						|
    CMModel = M;
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  /// setAllocateGVsWithCode - Sets whether global values should be allocated
 | 
						|
  /// into the same buffer as code.  For most applications this should be set
 | 
						|
  /// to false.  Allocating globals with code breaks freeMachineCodeForFunction
 | 
						|
  /// and is probably unsafe and bad for performance.  However, we have clients
 | 
						|
  /// who depend on this behavior, so we must support it.  This option defaults
 | 
						|
  /// to false so that users of the new API can safely use the new memory
 | 
						|
  /// manager and free machine code.
 | 
						|
  EngineBuilder &setAllocateGVsWithCode(bool a) {
 | 
						|
    AllocateGVsWithCode = a;
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  /// setMArch - Override the architecture set by the Module's triple.
 | 
						|
  EngineBuilder &setMArch(StringRef march) {
 | 
						|
    MArch.assign(march.begin(), march.end());
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  /// setMCPU - Target a specific cpu type.
 | 
						|
  EngineBuilder &setMCPU(StringRef mcpu) {
 | 
						|
    MCPU.assign(mcpu.begin(), mcpu.end());
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  /// setUseMCJIT - Set whether the MC-JIT implementation should be used
 | 
						|
  /// (experimental).
 | 
						|
  EngineBuilder &setUseMCJIT(bool Value) {
 | 
						|
    UseMCJIT = Value;
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  /// setMAttrs - Set cpu-specific attributes.
 | 
						|
  template<typename StringSequence>
 | 
						|
  EngineBuilder &setMAttrs(const StringSequence &mattrs) {
 | 
						|
    MAttrs.clear();
 | 
						|
    MAttrs.append(mattrs.begin(), mattrs.end());
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  TargetMachine *selectTarget();
 | 
						|
 | 
						|
  /// selectTarget - Pick a target either via -march or by guessing the native
 | 
						|
  /// arch.  Add any CPU features specified via -mcpu or -mattr.
 | 
						|
  TargetMachine *selectTarget(const Triple &TargetTriple,
 | 
						|
                              StringRef MArch,
 | 
						|
                              StringRef MCPU,
 | 
						|
                              const SmallVectorImpl<std::string>& MAttrs);
 | 
						|
 | 
						|
  ExecutionEngine *create() {
 | 
						|
    return create(selectTarget());
 | 
						|
  }
 | 
						|
 | 
						|
  ExecutionEngine *create(TargetMachine *TM);
 | 
						|
};
 | 
						|
 | 
						|
} // End llvm namespace
 | 
						|
 | 
						|
#endif
 |