mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@57148 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1396 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1396 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===---------------- PBQP.cpp --------- PBQP Solver ------------*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // Developed by:                   Bernhard Scholz
 | |
| //                             The University of Sydney
 | |
| //                         http://www.it.usyd.edu.au/~scholz
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "PBQP.h"
 | |
| #include "llvm/Config/alloca.h"
 | |
| #include <limits>
 | |
| #include <cassert>
 | |
| #include <cstring>
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| /**************************************************************************
 | |
|  * Data Structures 
 | |
|  **************************************************************************/
 | |
| 
 | |
| /* edge of PBQP graph */
 | |
| typedef struct adjnode {
 | |
|   struct adjnode *prev,      /* doubly chained list */ 
 | |
|                  *succ, 
 | |
|                  *reverse;   /* reverse edge */
 | |
|   int adj;                   /* adj. node */
 | |
|   PBQPMatrix *costs;         /* cost matrix of edge */
 | |
| 
 | |
|   bool tc_valid;              /* flag whether following fields are valid */
 | |
|   int *tc_safe_regs;          /* safe registers */
 | |
|   int tc_impact;              /* impact */ 
 | |
| } adjnode;
 | |
| 
 | |
| /* bucket node */
 | |
| typedef struct bucketnode {
 | |
|   struct bucketnode *prev;   /* doubly chained list */
 | |
|   struct bucketnode *succ;   
 | |
|   int u;                     /* node */
 | |
| } bucketnode;
 | |
| 
 | |
| /* data structure of partitioned boolean quadratic problem */
 | |
| struct pbqp {
 | |
|   int num_nodes;             /* number of nodes */
 | |
|   int max_deg;               /* maximal degree of a node */
 | |
|   bool solved;               /* flag that indicates whether PBQP has been solved yet */
 | |
|   bool optimal;              /* flag that indicates whether PBQP is optimal */
 | |
|   PBQPNum min;
 | |
|   bool changed;              /* flag whether graph has changed in simplification */
 | |
| 
 | |
|                              /* node fields */
 | |
|   PBQPVector **node_costs;   /* cost vectors of nodes */
 | |
|   int *node_deg;             /* node degree of nodes */
 | |
|   int *solution;             /* solution for node */
 | |
|   adjnode **adj_list;        /* adj. list */
 | |
|   bucketnode **bucket_ptr;   /* bucket pointer of a node */
 | |
| 
 | |
|                              /* node stack */
 | |
|   int *stack;                /* stack of nodes */
 | |
|   int stack_ptr;             /* stack pointer */
 | |
| 
 | |
|                              /* bucket fields */
 | |
|   bucketnode **bucket_list;  /* bucket list */
 | |
| 
 | |
|   int num_r0;                /* counters for number statistics */
 | |
|   int num_ri;
 | |
|   int num_rii;
 | |
|   int num_rn; 
 | |
|   int num_rn_special;      
 | |
| };
 | |
| 
 | |
| bool isInf(PBQPNum n) { return n == std::numeric_limits<PBQPNum>::infinity(); } 
 | |
| 
 | |
| /*****************************************************************************
 | |
|  * allocation/de-allocation of pbqp problem 
 | |
|  ****************************************************************************/
 | |
| 
 | |
| /* allocate new partitioned boolean quadratic program problem */
 | |
| pbqp *alloc_pbqp(int num_nodes)
 | |
| {
 | |
|   pbqp *this_;
 | |
|   int u;
 | |
|   
 | |
|   assert(num_nodes > 0);
 | |
|   
 | |
|   /* allocate memory for pbqp data structure */   
 | |
|   this_ = (pbqp *)malloc(sizeof(pbqp));
 | |
| 
 | |
|   /* Initialize pbqp fields */
 | |
|   this_->num_nodes = num_nodes;
 | |
|   this_->solved = false;
 | |
|   this_->optimal = true;
 | |
|   this_->min = 0.0;
 | |
|   this_->max_deg = 0;
 | |
|   this_->changed = false;
 | |
|   this_->num_r0 = 0;
 | |
|   this_->num_ri = 0;
 | |
|   this_->num_rii = 0;
 | |
|   this_->num_rn = 0;
 | |
|   this_->num_rn_special = 0;
 | |
|   
 | |
|   /* initialize/allocate stack fields of pbqp */ 
 | |
|   this_->stack = (int *) malloc(sizeof(int)*num_nodes);
 | |
|   this_->stack_ptr = 0;
 | |
|   
 | |
|   /* initialize/allocate node fields of pbqp */
 | |
|   this_->adj_list = (adjnode **) malloc(sizeof(adjnode *)*num_nodes);
 | |
|   this_->node_deg = (int *) malloc(sizeof(int)*num_nodes);
 | |
|   this_->solution = (int *) malloc(sizeof(int)*num_nodes);
 | |
|   this_->bucket_ptr = (bucketnode **) malloc(sizeof(bucketnode **)*num_nodes);
 | |
|   this_->node_costs = (PBQPVector**) malloc(sizeof(PBQPVector*) * num_nodes);
 | |
|   for(u=0;u<num_nodes;u++) {
 | |
|     this_->solution[u]=-1;
 | |
|     this_->adj_list[u]=NULL;
 | |
|     this_->node_deg[u]=0;
 | |
|     this_->bucket_ptr[u]=NULL;
 | |
|     this_->node_costs[u]=NULL;
 | |
|   }
 | |
|   
 | |
|   /* initialize bucket list */
 | |
|   this_->bucket_list = NULL;
 | |
|   
 | |
|   return this_;
 | |
| }
 | |
| 
 | |
| /* free pbqp problem */
 | |
| void free_pbqp(pbqp *this_)
 | |
| {
 | |
|   int u;
 | |
|   int deg;
 | |
|   adjnode *adj_ptr,*adj_next;
 | |
|   bucketnode *bucket,*bucket_next;
 | |
|   
 | |
|   assert(this_ != NULL);
 | |
|   
 | |
|   /* free node cost fields */
 | |
|   for(u=0;u < this_->num_nodes;u++) {
 | |
|     delete this_->node_costs[u];
 | |
|   }
 | |
|   free(this_->node_costs);
 | |
|   
 | |
|   /* free bucket list */
 | |
|   for(deg=0;deg<=this_->max_deg;deg++) {
 | |
|     for(bucket=this_->bucket_list[deg];bucket!=NULL;bucket=bucket_next) {
 | |
|       this_->bucket_ptr[bucket->u] = NULL;
 | |
|       bucket_next = bucket-> succ;
 | |
|       free(bucket);
 | |
|     }
 | |
|   }
 | |
|   free(this_->bucket_list);
 | |
|   
 | |
|   /* free adj. list */
 | |
|   assert(this_->adj_list != NULL);
 | |
|   for(u=0;u < this_->num_nodes; u++) {
 | |
|     for(adj_ptr = this_->adj_list[u]; adj_ptr != NULL; adj_ptr = adj_next) {
 | |
|       adj_next = adj_ptr -> succ;
 | |
|       if (u < adj_ptr->adj) {
 | |
|         assert(adj_ptr != NULL);
 | |
|         delete adj_ptr->costs;
 | |
|       }
 | |
|       if (adj_ptr -> tc_safe_regs != NULL) {
 | |
|            free(adj_ptr -> tc_safe_regs);
 | |
|       }
 | |
|       free(adj_ptr);
 | |
|     }
 | |
|   }
 | |
|   free(this_->adj_list);
 | |
|   
 | |
|   /* free other node fields */
 | |
|   free(this_->node_deg);
 | |
|   free(this_->solution);
 | |
|   free(this_->bucket_ptr);
 | |
| 
 | |
|   /* free stack */
 | |
|   free(this_->stack);
 | |
| 
 | |
|   /* free pbqp data structure itself */
 | |
|   free(this_);
 | |
| }
 | |
| 
 | |
| 
 | |
| /****************************************************************************
 | |
|  * adj. node routines 
 | |
|  ****************************************************************************/
 | |
| 
 | |
| /* find data structure of adj. node of a given node */
 | |
| static
 | |
| adjnode *find_adjnode(pbqp *this_,int u,int v)
 | |
| {
 | |
|   adjnode *adj_ptr;
 | |
|   
 | |
|   assert (this_ != NULL);
 | |
|   assert (u >= 0 && u < this_->num_nodes);
 | |
|   assert (v >= 0 && v < this_->num_nodes);
 | |
|   assert(this_->adj_list != NULL);
 | |
| 
 | |
|   for(adj_ptr = this_ -> adj_list[u];adj_ptr != NULL; adj_ptr = adj_ptr -> succ) {
 | |
|     if (adj_ptr->adj == v) {
 | |
|       return adj_ptr;
 | |
|     }
 | |
|   }
 | |
|   return NULL;
 | |
| }
 | |
| 
 | |
| /* allocate a new data structure for adj. node */
 | |
| static
 | |
| adjnode *alloc_adjnode(pbqp *this_,int u, PBQPMatrix *costs)
 | |
| {
 | |
|   adjnode *p;
 | |
| 
 | |
|   assert(this_ != NULL);
 | |
|   assert(costs != NULL);
 | |
|   assert(u >= 0 && u < this_->num_nodes);
 | |
| 
 | |
|   p = (adjnode *)malloc(sizeof(adjnode));
 | |
|   assert(p != NULL);
 | |
|   
 | |
|   p->adj = u;
 | |
|   p->costs = costs;  
 | |
| 
 | |
|   p->tc_valid= false;
 | |
|   p->tc_safe_regs = NULL;
 | |
|   p->tc_impact = 0;
 | |
| 
 | |
|   return p;
 | |
| }
 | |
| 
 | |
| /* insert adjacence node to adj. list */
 | |
| static
 | |
| void insert_adjnode(pbqp *this_, int u, adjnode *adj_ptr)
 | |
| {
 | |
| 
 | |
|   assert(this_ != NULL);
 | |
|   assert(adj_ptr != NULL);
 | |
|   assert(u >= 0 && u < this_->num_nodes);
 | |
| 
 | |
|   /* if adjacency list of node is not empty -> update
 | |
|      first node of the list */
 | |
|   if (this_ -> adj_list[u] != NULL) {
 | |
|     assert(this_->adj_list[u]->prev == NULL);
 | |
|     this_->adj_list[u] -> prev = adj_ptr;
 | |
|   }
 | |
| 
 | |
|   /* update doubly chained list pointers of pointers */
 | |
|   adj_ptr -> succ = this_->adj_list[u];
 | |
|   adj_ptr -> prev = NULL;
 | |
| 
 | |
|   /* update adjacency list pointer of node u */
 | |
|   this_->adj_list[u] = adj_ptr;
 | |
| }
 | |
| 
 | |
| /* remove entry in an adj. list */
 | |
| static
 | |
| void remove_adjnode(pbqp *this_, int u, adjnode *adj_ptr)
 | |
| {
 | |
|   assert(this_!= NULL);
 | |
|   assert(u >= 0 && u <= this_->num_nodes);
 | |
|   assert(this_->adj_list != NULL);
 | |
|   assert(adj_ptr != NULL);
 | |
|   
 | |
|   if (adj_ptr -> prev == NULL) {
 | |
|     this_->adj_list[u] = adj_ptr -> succ;
 | |
|   } else {
 | |
|     adj_ptr -> prev -> succ = adj_ptr -> succ;
 | |
|   } 
 | |
| 
 | |
|   if (adj_ptr -> succ != NULL) {
 | |
|     adj_ptr -> succ -> prev = adj_ptr -> prev;
 | |
|   }
 | |
| 
 | |
|   if(adj_ptr->reverse != NULL) {
 | |
|     adjnode *rev = adj_ptr->reverse;
 | |
|     rev->reverse = NULL;
 | |
|   }
 | |
| 
 | |
|   if (adj_ptr -> tc_safe_regs != NULL) {
 | |
|      free(adj_ptr -> tc_safe_regs);
 | |
|   }
 | |
| 
 | |
|   free(adj_ptr);
 | |
| }
 | |
| 
 | |
| /*****************************************************************************
 | |
|  * node functions 
 | |
|  ****************************************************************************/
 | |
| 
 | |
| /* get degree of a node */
 | |
| static
 | |
| int get_deg(pbqp *this_,int u)
 | |
| {
 | |
|   adjnode *adj_ptr;
 | |
|   int deg = 0;
 | |
|   
 | |
|   assert(this_ != NULL);
 | |
|   assert(u >= 0 && u < this_->num_nodes);
 | |
|   assert(this_->adj_list != NULL);
 | |
| 
 | |
|   for(adj_ptr = this_ -> adj_list[u];adj_ptr != NULL; adj_ptr = adj_ptr -> succ) {
 | |
|     deg ++;
 | |
|   }
 | |
|   return deg;
 | |
| }
 | |
| 
 | |
| /* reinsert node */
 | |
| static
 | |
| void reinsert_node(pbqp *this_,int u)
 | |
| {
 | |
|   adjnode *adj_u,
 | |
|           *adj_v;
 | |
| 
 | |
|   assert(this_!= NULL);
 | |
|   assert(u >= 0 && u <= this_->num_nodes);
 | |
|   assert(this_->adj_list != NULL);
 | |
| 
 | |
|   for(adj_u = this_ -> adj_list[u]; adj_u != NULL; adj_u = adj_u -> succ) {
 | |
|     int v = adj_u -> adj;
 | |
|     adj_v = alloc_adjnode(this_,u,adj_u->costs);
 | |
|     insert_adjnode(this_,v,adj_v);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* remove node */
 | |
| static
 | |
| void remove_node(pbqp *this_,int u)
 | |
| {
 | |
|   adjnode *adj_ptr;
 | |
| 
 | |
|   assert(this_!= NULL);
 | |
|   assert(u >= 0 && u <= this_->num_nodes);
 | |
|   assert(this_->adj_list != NULL);
 | |
| 
 | |
|   for(adj_ptr = this_ -> adj_list[u]; adj_ptr != NULL; adj_ptr = adj_ptr -> succ) {
 | |
|     remove_adjnode(this_,adj_ptr->adj,adj_ptr -> reverse);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*****************************************************************************
 | |
|  * edge functions
 | |
|  ****************************************************************************/
 | |
| 
 | |
| /* insert edge to graph */
 | |
| /* (does not check whether edge exists in graph */
 | |
| static
 | |
| void insert_edge(pbqp *this_, int u, int v, PBQPMatrix *costs)
 | |
| {
 | |
|   adjnode *adj_u,
 | |
|           *adj_v;
 | |
|   
 | |
|   /* create adjanceny entry for u */
 | |
|   adj_u = alloc_adjnode(this_,v,costs);
 | |
|   insert_adjnode(this_,u,adj_u);
 | |
| 
 | |
| 
 | |
|   /* create adjanceny entry for v */
 | |
|   adj_v = alloc_adjnode(this_,u,costs);
 | |
|   insert_adjnode(this_,v,adj_v);
 | |
|   
 | |
|   /* create link for reverse edge */
 | |
|   adj_u -> reverse = adj_v;
 | |
|   adj_v -> reverse = adj_u;
 | |
| }
 | |
| 
 | |
| /* delete edge */
 | |
| static
 | |
| void delete_edge(pbqp *this_,int u,int v)
 | |
| {
 | |
|   adjnode *adj_ptr;
 | |
|   adjnode *rev;
 | |
|   
 | |
|   assert(this_ != NULL);
 | |
|   assert( u >= 0 && u < this_->num_nodes);
 | |
|   assert( v >= 0 && v < this_->num_nodes);
 | |
| 
 | |
|   adj_ptr=find_adjnode(this_,u,v);
 | |
|   assert(adj_ptr != NULL);
 | |
|   assert(adj_ptr->reverse != NULL);
 | |
| 
 | |
|   delete adj_ptr -> costs;
 | |
|  
 | |
|   rev = adj_ptr->reverse; 
 | |
|   remove_adjnode(this_,u,adj_ptr);
 | |
|   remove_adjnode(this_,v,rev);
 | |
| } 
 | |
| 
 | |
| /*****************************************************************************
 | |
|  * cost functions 
 | |
|  ****************************************************************************/
 | |
| 
 | |
| /* Note: Since cost(u,v) = transpose(cost(v,u)), it would be necessary to store 
 | |
|    two matrices for both edges (u,v) and (v,u). However, we only store the 
 | |
|    matrix for the case u < v. For the other case we transpose the stored matrix
 | |
|    if required. 
 | |
| */
 | |
| 
 | |
| /* add costs to cost vector of a node */
 | |
| void add_pbqp_nodecosts(pbqp *this_,int u, PBQPVector *costs)
 | |
| {
 | |
|   assert(this_ != NULL);
 | |
|   assert(costs != NULL);
 | |
|   assert(u >= 0 && u <= this_->num_nodes);
 | |
|   
 | |
|   if (!this_->node_costs[u]) {
 | |
|     this_->node_costs[u] = new PBQPVector(*costs);
 | |
|   } else {
 | |
|     *this_->node_costs[u] += *costs;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* get cost matrix ptr */
 | |
| static
 | |
| PBQPMatrix *get_costmatrix_ptr(pbqp *this_, int u, int v)
 | |
| {
 | |
|   adjnode *adj_ptr;
 | |
|   PBQPMatrix *m = NULL;
 | |
| 
 | |
|   assert (this_ != NULL);
 | |
|   assert (u >= 0 && u < this_->num_nodes);
 | |
|   assert (v >= 0 && v < this_->num_nodes); 
 | |
| 
 | |
|   adj_ptr = find_adjnode(this_,u,v);
 | |
| 
 | |
|   if (adj_ptr != NULL) {
 | |
|     m = adj_ptr -> costs;
 | |
|   } 
 | |
| 
 | |
|   return m;
 | |
| }
 | |
| 
 | |
| /* get cost matrix ptr */
 | |
| /* Note: only the pointer is returned for 
 | |
|    cost(u,v), if u < v.
 | |
| */ 
 | |
| static
 | |
| PBQPMatrix *pbqp_get_costmatrix(pbqp *this_, int u, int v)
 | |
| {
 | |
|   adjnode *adj_ptr = find_adjnode(this_,u,v);
 | |
|   
 | |
|   if (adj_ptr != NULL) {
 | |
|     if ( u < v) {
 | |
|       return new PBQPMatrix(*adj_ptr->costs);
 | |
|     } else {
 | |
|       return new PBQPMatrix(adj_ptr->costs->transpose());
 | |
|     }
 | |
|   } else {
 | |
|     return NULL;
 | |
|   }  
 | |
| }
 | |
| 
 | |
| /* add costs to cost matrix of an edge */
 | |
| void add_pbqp_edgecosts(pbqp *this_,int u,int v, PBQPMatrix *costs)
 | |
| {
 | |
|   PBQPMatrix *adj_costs;
 | |
| 
 | |
|   assert(this_!= NULL);
 | |
|   assert(costs != NULL);
 | |
|   assert(u >= 0 && u <= this_->num_nodes);
 | |
|   assert(v >= 0 && v <= this_->num_nodes);
 | |
|   
 | |
|   /* does the edge u-v exists ? */
 | |
|   if (u == v) {
 | |
|     PBQPVector *diag = new PBQPVector(costs->diagonalize());
 | |
|     add_pbqp_nodecosts(this_,v,diag);
 | |
|     delete diag;
 | |
|   } else if ((adj_costs = get_costmatrix_ptr(this_,u,v))!=NULL) {
 | |
|     if ( u < v) {
 | |
|       *adj_costs += *costs;
 | |
|     } else {
 | |
|       *adj_costs += costs->transpose();
 | |
|     }
 | |
|   } else {
 | |
|     adj_costs = new PBQPMatrix((u < v) ? *costs : costs->transpose());
 | |
|     insert_edge(this_,u,v,adj_costs);
 | |
|   } 
 | |
| }
 | |
| 
 | |
| /* remove bucket from bucket list */
 | |
| static
 | |
| void pbqp_remove_bucket(pbqp *this_, bucketnode *bucket)
 | |
| {
 | |
|   int u = bucket->u;
 | |
|   
 | |
|   assert(this_ != NULL);
 | |
|   assert(u >= 0 && u < this_->num_nodes);
 | |
|   assert(this_->bucket_list != NULL);
 | |
|   assert(this_->bucket_ptr[u] != NULL);
 | |
|   
 | |
|   /* update predecessor node in bucket list 
 | |
|      (if no preceeding bucket exists, then
 | |
|      the bucket_list pointer needs to be 
 | |
|      updated.)
 | |
|   */    
 | |
|   if (bucket->prev != NULL) {
 | |
|     bucket->prev-> succ = bucket->succ; 
 | |
|   } else {
 | |
|     this_->bucket_list[this_->node_deg[u]] = bucket -> succ;
 | |
|   }
 | |
|   
 | |
|   /* update successor node in bucket list */ 
 | |
|   if (bucket->succ != NULL) { 
 | |
|     bucket->succ-> prev = bucket->prev;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /**********************************************************************************
 | |
|  * pop functions
 | |
|  **********************************************************************************/
 | |
| 
 | |
| /* pop node of given degree */
 | |
| static
 | |
| int pop_node(pbqp *this_,int deg)
 | |
| {
 | |
|   bucketnode *bucket;
 | |
|   int u;
 | |
| 
 | |
|   assert(this_ != NULL);
 | |
|   assert(deg >= 0 && deg <= this_->max_deg);
 | |
|   assert(this_->bucket_list != NULL);
 | |
|    
 | |
|   /* get first bucket of bucket list */
 | |
|   bucket = this_->bucket_list[deg];
 | |
|   assert(bucket != NULL);
 | |
| 
 | |
|   /* remove bucket */
 | |
|   pbqp_remove_bucket(this_,bucket);
 | |
|   u = bucket->u;
 | |
|   free(bucket);
 | |
|   return u;
 | |
| }
 | |
| 
 | |
| /**********************************************************************************
 | |
|  * reorder functions
 | |
|  **********************************************************************************/
 | |
| 
 | |
| /* add bucket to bucketlist */
 | |
| static
 | |
| void add_to_bucketlist(pbqp *this_,bucketnode *bucket, int deg)
 | |
| {
 | |
|   bucketnode *old_head;
 | |
|   
 | |
|   assert(bucket != NULL);
 | |
|   assert(this_ != NULL);
 | |
|   assert(deg >= 0 && deg <= this_->max_deg);
 | |
|   assert(this_->bucket_list != NULL);
 | |
| 
 | |
|   /* store node degree (for re-ordering purposes)*/
 | |
|   this_->node_deg[bucket->u] = deg;
 | |
|   
 | |
|   /* put bucket to front of doubly chained list */
 | |
|   old_head = this_->bucket_list[deg];
 | |
|   bucket -> prev = NULL;
 | |
|   bucket -> succ = old_head;
 | |
|   this_ -> bucket_list[deg] = bucket;
 | |
|   if (bucket -> succ != NULL ) {
 | |
|     assert ( old_head -> prev == NULL);
 | |
|     old_head -> prev = bucket;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /* reorder node in bucket list according to 
 | |
|    current node degree */
 | |
| static
 | |
| void reorder_node(pbqp *this_, int u)
 | |
| {
 | |
|   int deg; 
 | |
|   
 | |
|   assert(this_ != NULL);
 | |
|   assert(u>= 0 && u < this_->num_nodes);
 | |
|   assert(this_->bucket_list != NULL);
 | |
|   assert(this_->bucket_ptr[u] != NULL);
 | |
| 
 | |
|   /* get current node degree */
 | |
|   deg = get_deg(this_,u);
 | |
|   
 | |
|   /* remove bucket from old bucket list only
 | |
|      if degree of node has changed. */
 | |
|   if (deg != this_->node_deg[u]) {
 | |
|     pbqp_remove_bucket(this_,this_->bucket_ptr[u]);
 | |
|     add_to_bucketlist(this_,this_->bucket_ptr[u],deg);
 | |
|   } 
 | |
| }
 | |
| 
 | |
| /* reorder adj. nodes of a node */
 | |
| static
 | |
| void reorder_adjnodes(pbqp *this_,int u)
 | |
| {
 | |
|   adjnode *adj_ptr;
 | |
|   
 | |
|   assert(this_!= NULL);
 | |
|   assert(u >= 0 && u <= this_->num_nodes);
 | |
|   assert(this_->adj_list != NULL);
 | |
| 
 | |
|   for(adj_ptr = this_ -> adj_list[u]; adj_ptr != NULL; adj_ptr = adj_ptr -> succ) {
 | |
|     reorder_node(this_,adj_ptr->adj);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /**********************************************************************************
 | |
|  * creation functions
 | |
|  **********************************************************************************/
 | |
| 
 | |
| /* create new bucket entry */
 | |
| /* consistency of the bucket list is not checked! */
 | |
| static
 | |
| void create_bucket(pbqp *this_,int u,int deg)
 | |
| {
 | |
|   bucketnode *bucket;
 | |
|   
 | |
|   assert(this_ != NULL);
 | |
|   assert(u >= 0 && u < this_->num_nodes);
 | |
|   assert(this_->bucket_list != NULL);
 | |
|   
 | |
|   bucket = (bucketnode *)malloc(sizeof(bucketnode));
 | |
|   assert(bucket != NULL);
 | |
| 
 | |
|   bucket -> u = u;
 | |
|   this_->bucket_ptr[u] = bucket;
 | |
| 
 | |
|   add_to_bucketlist(this_,bucket,deg);
 | |
| }
 | |
| 
 | |
| /* create bucket list */
 | |
| static
 | |
| void create_bucketlist(pbqp *this_)
 | |
| {
 | |
|   int u;
 | |
|   int max_deg;
 | |
|   int deg;
 | |
| 
 | |
|   assert(this_ != NULL);
 | |
|   assert(this_->bucket_list == NULL);
 | |
| 
 | |
|   /* determine max. degree of the nodes */
 | |
|   max_deg = 2;  /* at least of degree two! */
 | |
|   for(u=0;u<this_->num_nodes;u++) {
 | |
|     deg = this_->node_deg[u] = get_deg(this_,u);
 | |
|     if (deg > max_deg) {
 | |
|       max_deg = deg;
 | |
|     }
 | |
|   }
 | |
|   this_->max_deg = max_deg;
 | |
|   
 | |
|   /* allocate bucket list */
 | |
|   this_ -> bucket_list = (bucketnode **)malloc(sizeof(bucketnode *)*(max_deg + 1));
 | |
|   memset(this_->bucket_list,0,sizeof(bucketnode *)*(max_deg + 1));
 | |
|   assert(this_->bucket_list != NULL);
 | |
|   
 | |
|   /* insert nodes to the list */
 | |
|   for(u=0;u<this_->num_nodes;u++) {
 | |
|     create_bucket(this_,u,this_->node_deg[u]);  
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*****************************************************************************
 | |
|  * PBQP simplification for trivial nodes
 | |
|  ****************************************************************************/
 | |
| 
 | |
| /* remove trivial node with cost vector length of one */
 | |
| static
 | |
| void disconnect_trivialnode(pbqp *this_,int u)
 | |
| {
 | |
|   int v;
 | |
|   adjnode *adj_ptr, 
 | |
|           *next;
 | |
|   PBQPMatrix *c_uv;
 | |
|   PBQPVector *c_v;
 | |
|   
 | |
|   assert(this_ != NULL);
 | |
|   assert(this_->node_costs != NULL);
 | |
|   assert(u >= 0 && u < this_ -> num_nodes);
 | |
|   assert(this_->node_costs[u]->getLength() == 1);
 | |
|   
 | |
|   /* add edge costs to node costs of adj. nodes */
 | |
|   for(adj_ptr = this_->adj_list[u]; adj_ptr != NULL; adj_ptr = next){
 | |
|     next = adj_ptr -> succ;
 | |
|     v = adj_ptr -> adj;
 | |
|     assert(v >= 0 && v < this_ -> num_nodes);
 | |
|     
 | |
|     /* convert matrix to cost vector offset for adj. node */
 | |
|     c_uv = pbqp_get_costmatrix(this_,u,v);
 | |
|     c_v = new PBQPVector(c_uv->getRowAsVector(0));
 | |
|     *this_->node_costs[v] += *c_v;
 | |
|     
 | |
|     /* delete edge & free vec/mat */
 | |
|     delete c_v;
 | |
|     delete c_uv;
 | |
|     delete_edge(this_,u,v);
 | |
|   }   
 | |
| }
 | |
| 
 | |
| /* find all trivial nodes and disconnect them */
 | |
| static   
 | |
| void eliminate_trivial_nodes(pbqp *this_)
 | |
| {
 | |
|    int u;
 | |
|    
 | |
|    assert(this_ != NULL);
 | |
|    assert(this_ -> node_costs != NULL);
 | |
|    
 | |
|    for(u=0;u < this_ -> num_nodes; u++) {
 | |
|      if (this_->node_costs[u]->getLength() == 1) {
 | |
|        disconnect_trivialnode(this_,u); 
 | |
|      }
 | |
|    }
 | |
| }
 | |
| 
 | |
| /*****************************************************************************
 | |
|  * Normal form for PBQP 
 | |
|  ****************************************************************************/
 | |
| 
 | |
| /* simplify a cost matrix. If the matrix
 | |
|    is independent, then simplify_matrix
 | |
|    returns true - otherwise false. In
 | |
|    vectors u and v the offset values of
 | |
|    the decomposition are stored. 
 | |
| */
 | |
| 
 | |
| static
 | |
| bool normalize_matrix(PBQPMatrix *m, PBQPVector *u, PBQPVector *v)
 | |
| {
 | |
|   assert( m != NULL);
 | |
|   assert( u != NULL);
 | |
|   assert( v != NULL);
 | |
|   assert( u->getLength() > 0);
 | |
|   assert( v->getLength() > 0);
 | |
|   
 | |
|   assert(m->getRows() == u->getLength());
 | |
|   assert(m->getCols() == v->getLength());
 | |
| 
 | |
|   /* determine u vector */
 | |
|   for(unsigned r = 0; r < m->getRows(); ++r) {
 | |
|     PBQPNum min = m->getRowMin(r);
 | |
|     (*u)[r] += min;
 | |
|     if (!isInf(min)) {
 | |
|       m->subFromRow(r, min);
 | |
|     } else {
 | |
|       m->setRow(r, 0);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   /* determine v vector */
 | |
|   for(unsigned c = 0; c < m->getCols(); ++c) {
 | |
|     PBQPNum min = m->getColMin(c);
 | |
|     (*v)[c] += min;
 | |
|     if (!isInf(min)) {
 | |
|       m->subFromCol(c, min);
 | |
|     } else {
 | |
|       m->setCol(c, 0);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   /* determine whether matrix is 
 | |
|      independent or not. 
 | |
|     */
 | |
|   return m->isZero();
 | |
| }
 | |
| 
 | |
| /* simplify single edge */
 | |
| static
 | |
| void simplify_edge(pbqp *this_,int u,int v)
 | |
| {
 | |
|   PBQPMatrix *costs;
 | |
|   bool is_zero; 
 | |
|   
 | |
|   assert (this_ != NULL);
 | |
|   assert (u >= 0 && u <this_->num_nodes);
 | |
|   assert (v >= 0 && v <this_->num_nodes);
 | |
|   assert (u != v);
 | |
| 
 | |
|   /* swap u and v  if u > v in order to avoid un-necessary
 | |
|      tranpositions of the cost matrix */
 | |
|   
 | |
|   if (u > v) {
 | |
|     int swap = u;
 | |
|     u = v;
 | |
|     v = swap;
 | |
|   }
 | |
|   
 | |
|   /* get cost matrix and simplify it */  
 | |
|   costs = get_costmatrix_ptr(this_,u,v);
 | |
|   is_zero=normalize_matrix(costs,this_->node_costs[u],this_->node_costs[v]);
 | |
| 
 | |
|   /* delete edge */
 | |
|   if(is_zero){
 | |
|     delete_edge(this_,u,v);
 | |
|     this_->changed = true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* normalize cost matrices and remove 
 | |
|    edges in PBQP if they ary independent, 
 | |
|    i.e. can be decomposed into two 
 | |
|    cost vectors.
 | |
| */
 | |
| static
 | |
| void eliminate_independent_edges(pbqp *this_)
 | |
| {
 | |
|   int u,v;
 | |
|   adjnode *adj_ptr,*next;
 | |
|   
 | |
|   assert(this_ != NULL);
 | |
|   assert(this_ -> adj_list != NULL);
 | |
| 
 | |
|   this_->changed = false;
 | |
|   for(u=0;u < this_->num_nodes;u++) {
 | |
|     for (adj_ptr = this_ -> adj_list[u]; adj_ptr != NULL; adj_ptr = next) {
 | |
|       next = adj_ptr -> succ;
 | |
|       v = adj_ptr -> adj;
 | |
|       assert(v >= 0 && v < this_->num_nodes);
 | |
|       if (u < v) {
 | |
|         simplify_edge(this_,u,v);
 | |
|       } 
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /*****************************************************************************
 | |
|  * PBQP reduction rules 
 | |
|  ****************************************************************************/
 | |
| 
 | |
| /* RI reduction
 | |
|    This reduction rule is applied for nodes 
 | |
|    of degree one. */
 | |
| 
 | |
| static
 | |
| void apply_RI(pbqp *this_,int x)
 | |
| {
 | |
|   int y;
 | |
|   unsigned xlen,
 | |
|            ylen;
 | |
|   PBQPMatrix *c_yx;
 | |
|   PBQPVector *c_x, *delta;
 | |
|   
 | |
|   assert(this_ != NULL);
 | |
|   assert(x >= 0 && x < this_->num_nodes);
 | |
|   assert(this_ -> adj_list[x] != NULL);
 | |
|   assert(this_ -> adj_list[x] -> succ == NULL);
 | |
| 
 | |
|   /* get adjacence matrix */
 | |
|   y = this_ -> adj_list[x] -> adj;
 | |
|   assert(y >= 0 && y < this_->num_nodes);
 | |
|   
 | |
|   /* determine length of cost vectors for node x and y */
 | |
|   xlen = this_ -> node_costs[x]->getLength();
 | |
|   ylen = this_ -> node_costs[y]->getLength();
 | |
| 
 | |
|   /* get cost vector c_x and matrix c_yx */
 | |
|   c_x = this_ -> node_costs[x];
 | |
|   c_yx = pbqp_get_costmatrix(this_,y,x); 
 | |
|   assert (c_yx != NULL);
 | |
| 
 | |
|   
 | |
|   /* allocate delta vector */
 | |
|   delta = new PBQPVector(ylen);
 | |
| 
 | |
|   /* compute delta vector */
 | |
|   for(unsigned i = 0; i < ylen; ++i) {
 | |
|     PBQPNum min =  (*c_yx)[i][0] + (*c_x)[0];
 | |
|     for(unsigned j = 1; j < xlen; ++j) {
 | |
|       PBQPNum c =  (*c_yx)[i][j] + (*c_x)[j];
 | |
|       if ( c < min )  
 | |
|          min = c;
 | |
|     }
 | |
|     (*delta)[i] = min; 
 | |
|   } 
 | |
| 
 | |
|   /* add delta vector */
 | |
|   *this_ -> node_costs[y] += *delta;
 | |
| 
 | |
|   /* delete node x */
 | |
|   remove_node(this_,x);
 | |
| 
 | |
|   /* reorder adj. nodes of node x */
 | |
|   reorder_adjnodes(this_,x);
 | |
| 
 | |
|   /* push node x on stack */
 | |
|   assert(this_ -> stack_ptr < this_ -> num_nodes);
 | |
|   this_->stack[this_ -> stack_ptr++] = x;
 | |
| 
 | |
|   /* free vec/mat */
 | |
|   delete c_yx;
 | |
|   delete delta;
 | |
| 
 | |
|   /* increment counter for number statistic */
 | |
|   this_->num_ri++;
 | |
| }
 | |
| 
 | |
| /* RII reduction
 | |
|    This reduction rule is applied for nodes 
 | |
|    of degree two. */
 | |
| 
 | |
| static
 | |
| void apply_RII(pbqp *this_,int x)
 | |
| {
 | |
|   int y,z; 
 | |
|   unsigned xlen,ylen,zlen;
 | |
|   adjnode *adj_yz;
 | |
| 
 | |
|   PBQPMatrix *c_yx, *c_zx;
 | |
|   PBQPVector *cx;
 | |
|   PBQPMatrix *delta;
 | |
|  
 | |
|   assert(this_ != NULL);
 | |
|   assert(x >= 0 && x < this_->num_nodes);
 | |
|   assert(this_ -> adj_list[x] != NULL);
 | |
|   assert(this_ -> adj_list[x] -> succ != NULL);
 | |
|   assert(this_ -> adj_list[x] -> succ -> succ == NULL);
 | |
| 
 | |
|   /* get adjacence matrix */
 | |
|   y = this_ -> adj_list[x] -> adj;
 | |
|   z = this_ -> adj_list[x] -> succ -> adj;
 | |
|   assert(y >= 0 && y < this_->num_nodes);
 | |
|   assert(z >= 0 && z < this_->num_nodes);
 | |
|   
 | |
|   /* determine length of cost vectors for node x and y */
 | |
|   xlen = this_ -> node_costs[x]->getLength();
 | |
|   ylen = this_ -> node_costs[y]->getLength();
 | |
|   zlen = this_ -> node_costs[z]->getLength();
 | |
| 
 | |
|   /* get cost vector c_x and matrix c_yx */
 | |
|   cx = this_ -> node_costs[x];
 | |
|   c_yx = pbqp_get_costmatrix(this_,y,x); 
 | |
|   c_zx = pbqp_get_costmatrix(this_,z,x); 
 | |
|   assert(c_yx != NULL);
 | |
|   assert(c_zx != NULL);
 | |
| 
 | |
|   /* Colour Heuristic */
 | |
|   if ( (adj_yz = find_adjnode(this_,y,z)) != NULL) {
 | |
|     adj_yz->tc_valid = false;
 | |
|     adj_yz->reverse->tc_valid = false; 
 | |
|   }
 | |
| 
 | |
|   /* allocate delta matrix */
 | |
|   delta = new PBQPMatrix(ylen, zlen);
 | |
| 
 | |
|   /* compute delta matrix */
 | |
|   for(unsigned i=0;i<ylen;i++) {
 | |
|     for(unsigned j=0;j<zlen;j++) {
 | |
|       PBQPNum min = (*c_yx)[i][0] + (*c_zx)[j][0] + (*cx)[0];
 | |
|       for(unsigned k=1;k<xlen;k++) {
 | |
|         PBQPNum c = (*c_yx)[i][k] + (*c_zx)[j][k] + (*cx)[k];
 | |
|         if ( c < min ) {
 | |
|           min = c;
 | |
|         }
 | |
|       }
 | |
|       (*delta)[i][j] = min;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* add delta matrix */
 | |
|   add_pbqp_edgecosts(this_,y,z,delta);
 | |
| 
 | |
|   /* delete node x */
 | |
|   remove_node(this_,x);
 | |
| 
 | |
|   /* simplify cost matrix c_yz */
 | |
|   simplify_edge(this_,y,z);
 | |
| 
 | |
|   /* reorder adj. nodes */
 | |
|   reorder_adjnodes(this_,x);
 | |
| 
 | |
|   /* push node x on stack */
 | |
|   assert(this_ -> stack_ptr < this_ -> num_nodes);
 | |
|   this_->stack[this_ -> stack_ptr++] = x;
 | |
| 
 | |
|   /* free vec/mat */
 | |
|   delete c_yx;
 | |
|   delete c_zx;
 | |
|   delete delta;
 | |
| 
 | |
|   /* increment counter for number statistic */
 | |
|   this_->num_rii++;
 | |
| 
 | |
| }
 | |
| 
 | |
| /* RN reduction */
 | |
| static
 | |
| void apply_RN(pbqp *this_,int x)
 | |
| {
 | |
|   unsigned xlen;
 | |
| 
 | |
|   assert(this_ != NULL);
 | |
|   assert(x >= 0 && x < this_->num_nodes);
 | |
|   assert(this_ -> node_costs[x] != NULL);
 | |
| 
 | |
|   xlen = this_ -> node_costs[x] -> getLength();
 | |
| 
 | |
|   /* after application of RN rule no optimality
 | |
|      can be guaranteed! */
 | |
|   this_ -> optimal = false;
 | |
|   
 | |
|   /* push node x on stack */
 | |
|   assert(this_ -> stack_ptr < this_ -> num_nodes);
 | |
|   this_->stack[this_ -> stack_ptr++] = x;
 | |
| 
 | |
|   /* delete node x */ 
 | |
|   remove_node(this_,x);
 | |
| 
 | |
|   /* reorder adj. nodes of node x */
 | |
|   reorder_adjnodes(this_,x);
 | |
| 
 | |
|   /* increment counter for number statistic */
 | |
|   this_->num_rn++;
 | |
| }
 | |
| 
 | |
| 
 | |
| static
 | |
| void compute_tc_info(pbqp *this_, adjnode *p)
 | |
| {
 | |
|    adjnode *r;
 | |
|    PBQPMatrix *m;
 | |
|    int x,y;
 | |
|    PBQPVector *c_x, *c_y;
 | |
|    int *row_inf_counts;
 | |
| 
 | |
|    assert(p->reverse != NULL);
 | |
| 
 | |
|    /* set flags */ 
 | |
|    r = p->reverse;
 | |
|    p->tc_valid = true;
 | |
|    r->tc_valid = true;
 | |
| 
 | |
|    /* get edge */
 | |
|    x = r->adj;
 | |
|    y = p->adj;
 | |
| 
 | |
|    /* get cost vectors */
 | |
|    c_x = this_ -> node_costs[x];
 | |
|    c_y = this_ -> node_costs[y];
 | |
| 
 | |
|    /* get cost matrix */
 | |
|    m = pbqp_get_costmatrix(this_, x, y);
 | |
| 
 | |
|   
 | |
|    /* allocate allowed set for edge (x,y) and (y,x) */
 | |
|    if (p->tc_safe_regs == NULL) {
 | |
|      p->tc_safe_regs = (int *) malloc(sizeof(int) * c_x->getLength());
 | |
|    } 
 | |
| 
 | |
|    if (r->tc_safe_regs == NULL ) {
 | |
|      r->tc_safe_regs = (int *) malloc(sizeof(int) * c_y->getLength());
 | |
|    }
 | |
| 
 | |
|    p->tc_impact = r->tc_impact = 0;
 | |
| 
 | |
|    row_inf_counts = (int *) alloca(sizeof(int) * c_x->getLength());
 | |
| 
 | |
|    /* init arrays */
 | |
|    p->tc_safe_regs[0] = 0;
 | |
|    row_inf_counts[0] = 0;
 | |
|    for(unsigned i = 1; i < c_x->getLength(); ++i){
 | |
|      p->tc_safe_regs[i] = 1;
 | |
|      row_inf_counts[i] = 0;
 | |
|    }
 | |
| 
 | |
|    r->tc_safe_regs[0] = 0;
 | |
|    for(unsigned j = 1; j < c_y->getLength(); ++j){
 | |
|      r->tc_safe_regs[j] = 1;
 | |
|    }
 | |
| 
 | |
|    for(unsigned j = 0; j < c_y->getLength(); ++j) {
 | |
|       int col_inf_counts = 0;
 | |
|       for (unsigned i = 0; i < c_x->getLength(); ++i) {
 | |
|          if (isInf((*m)[i][j])) {
 | |
|               ++col_inf_counts;
 | |
|               ++row_inf_counts[i];
 | |
|          
 | |
|               p->tc_safe_regs[i] = 0;
 | |
|               r->tc_safe_regs[j] = 0;
 | |
|          }
 | |
|       }
 | |
|       if (col_inf_counts > p->tc_impact) {
 | |
|            p->tc_impact = col_inf_counts;
 | |
|       }
 | |
|    }
 | |
| 
 | |
|    for(unsigned i = 0; i < c_x->getLength(); ++i){
 | |
|      if (row_inf_counts[i] > r->tc_impact)
 | |
|      {
 | |
|            r->tc_impact = row_inf_counts[i];
 | |
|      }
 | |
|    }
 | |
|            
 | |
|    delete m;
 | |
| }
 | |
| 
 | |
| /* 
 | |
|  * Checks whether node x can be locally coloured. 
 | |
|  */
 | |
| static 
 | |
| int is_colorable(pbqp *this_,int x)
 | |
| {
 | |
|   adjnode *adj_ptr;
 | |
|   PBQPVector *c_x;
 | |
|   int result = 1;
 | |
|   int *allowed;
 | |
|   int num_allowed = 0;
 | |
|   unsigned total_impact = 0;
 | |
| 
 | |
|   assert(this_ != NULL);
 | |
|   assert(x >= 0 && x < this_->num_nodes);
 | |
|   assert(this_ -> node_costs[x] != NULL);
 | |
| 
 | |
|   c_x = this_ -> node_costs[x];
 | |
| 
 | |
|   /* allocate allowed set */
 | |
|   allowed = (int *)malloc(sizeof(int) * c_x->getLength());
 | |
|   for(unsigned i = 0; i < c_x->getLength(); ++i){
 | |
|     if (!isInf((*c_x)[i]) && i > 0) {
 | |
|       allowed[i] = 1;
 | |
|       ++num_allowed;
 | |
|     } else { 
 | |
|       allowed[i] = 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* determine local minimum */
 | |
|   for(adj_ptr=this_->adj_list[x] ;adj_ptr != NULL; adj_ptr = adj_ptr -> succ) {
 | |
|       if (!adj_ptr -> tc_valid) { 
 | |
|           compute_tc_info(this_, adj_ptr);
 | |
|       }
 | |
| 
 | |
|       total_impact += adj_ptr->tc_impact;
 | |
| 
 | |
|       if (num_allowed > 0) {
 | |
|           for (unsigned i = 1; i < c_x->getLength(); ++i){
 | |
|             if (allowed[i]){
 | |
|               if (!adj_ptr->tc_safe_regs[i]){
 | |
|                 allowed[i] = 0;
 | |
|                 --num_allowed;
 | |
|                 if (num_allowed == 0)
 | |
|                     break;
 | |
|               }
 | |
|             }
 | |
|           }
 | |
|       }
 | |
|       
 | |
|       if ( total_impact >= c_x->getLength() - 1 && num_allowed == 0 ) {
 | |
|          result = 0;
 | |
|          break;
 | |
|       }
 | |
|   }
 | |
|   free(allowed);
 | |
| 
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| /* use briggs heuristic 
 | |
|   note: this_ is not a general heuristic. it only is useful for 
 | |
|   interference graphs.
 | |
|  */
 | |
| int pop_colorablenode(pbqp *this_)
 | |
| {
 | |
|   int deg;
 | |
|   bucketnode *min_bucket=NULL;
 | |
|   PBQPNum min = std::numeric_limits<PBQPNum>::infinity();
 | |
|  
 | |
|   /* select node where the number of colors is less than the node degree */
 | |
|   for(deg=this_->max_deg;deg > 2;deg--) {
 | |
|     bucketnode *bucket;
 | |
|     for(bucket=this_->bucket_list[deg];bucket!= NULL;bucket = bucket -> succ) {
 | |
|       int u = bucket->u;
 | |
|       if (is_colorable(this_,u)) {
 | |
|         pbqp_remove_bucket(this_,bucket);
 | |
|         this_->num_rn_special++;
 | |
|         free(bucket);
 | |
|         return u; 
 | |
|       } 
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* select node with minimal ratio between average node costs and degree of node */
 | |
|   for(deg=this_->max_deg;deg >2; deg--) {
 | |
|     bucketnode *bucket;
 | |
|     for(bucket=this_->bucket_list[deg];bucket!= NULL;bucket = bucket -> succ) {
 | |
|       PBQPNum h;
 | |
|       int u;
 | |
|  
 | |
|       u = bucket->u;
 | |
|       assert(u>=0 && u < this_->num_nodes);
 | |
|       h = (*this_->node_costs[u])[0] / (PBQPNum) deg;
 | |
|       if (h < min) {
 | |
|         min_bucket = bucket;
 | |
|         min = h;
 | |
|       } 
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* return node and free bucket */
 | |
|   if (min_bucket != NULL) {
 | |
|     int u;
 | |
| 
 | |
|     pbqp_remove_bucket(this_,min_bucket);
 | |
|     u = min_bucket->u;
 | |
|     free(min_bucket);
 | |
|     return u;
 | |
|   } else {
 | |
|     return -1;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /*****************************************************************************
 | |
|  * PBQP graph parsing
 | |
|  ****************************************************************************/
 | |
|  
 | |
| /* reduce pbqp problem (first phase) */
 | |
| static
 | |
| void reduce_pbqp(pbqp *this_)
 | |
| {
 | |
|   int u;
 | |
| 
 | |
|   assert(this_ != NULL);
 | |
|   assert(this_->bucket_list != NULL);
 | |
| 
 | |
|   for(;;){
 | |
| 
 | |
|     if (this_->bucket_list[1] != NULL) {
 | |
|       u = pop_node(this_,1);
 | |
|       apply_RI(this_,u); 
 | |
|     } else if (this_->bucket_list[2] != NULL) {
 | |
|       u = pop_node(this_,2);
 | |
|       apply_RII(this_,u);
 | |
|     } else if ((u = pop_colorablenode(this_)) != -1) {
 | |
|       apply_RN(this_,u);
 | |
|     } else {
 | |
|       break;
 | |
|     }
 | |
|   } 
 | |
| }
 | |
| 
 | |
| /*****************************************************************************
 | |
|  * PBQP back propagation
 | |
|  ****************************************************************************/
 | |
| 
 | |
| /* determine solution of a reduced node. Either
 | |
|    RI or RII was applied for this_ node. */
 | |
| static
 | |
| void determine_solution(pbqp *this_,int x)
 | |
| {
 | |
|   PBQPVector *v = new PBQPVector(*this_ -> node_costs[x]);
 | |
|   adjnode *adj_ptr;
 | |
| 
 | |
|   assert(this_ != NULL);
 | |
|   assert(x >= 0 && x < this_->num_nodes);
 | |
|   assert(this_ -> adj_list != NULL);
 | |
|   assert(this_ -> solution != NULL);
 | |
| 
 | |
|   for(adj_ptr=this_->adj_list[x] ;adj_ptr != NULL; adj_ptr = adj_ptr -> succ) {
 | |
|     int y = adj_ptr -> adj;
 | |
|     int y_sol = this_ -> solution[y];
 | |
| 
 | |
|     PBQPMatrix *c_yx = pbqp_get_costmatrix(this_,y,x);
 | |
|     assert(y_sol >= 0 && y_sol < (int)this_->node_costs[y]->getLength());
 | |
|     (*v) += c_yx->getRowAsVector(y_sol);
 | |
|     delete c_yx;
 | |
|   }
 | |
|   this_ -> solution[x] = v->minIndex();
 | |
| 
 | |
|   delete v;
 | |
| }
 | |
| 
 | |
| /* back popagation phase of PBQP */
 | |
| static
 | |
| void back_propagate(pbqp *this_)
 | |
| {
 | |
|    int i;
 | |
| 
 | |
|    assert(this_ != NULL);
 | |
|    assert(this_->stack != NULL);
 | |
|    assert(this_->stack_ptr < this_->num_nodes);
 | |
| 
 | |
|    for(i=this_ -> stack_ptr-1;i>=0;i--) {
 | |
|       int x = this_ -> stack[i];
 | |
|       assert( x >= 0 && x < this_ -> num_nodes);
 | |
|       reinsert_node(this_,x);
 | |
|       determine_solution(this_,x);
 | |
|    }
 | |
| }
 | |
| 
 | |
| /* solve trivial nodes of degree zero */
 | |
| static
 | |
| void determine_trivialsolution(pbqp *this_)
 | |
| {
 | |
|   int u;
 | |
|   PBQPNum delta;
 | |
| 
 | |
|   assert( this_ != NULL);
 | |
|   assert( this_ -> bucket_list != NULL);
 | |
| 
 | |
|   /* determine trivial solution */
 | |
|   while (this_->bucket_list[0] != NULL) {
 | |
|     u = pop_node(this_,0);
 | |
| 
 | |
|     assert( u >= 0 && u < this_ -> num_nodes);
 | |
| 
 | |
|     this_->solution[u] = this_->node_costs[u]->minIndex();
 | |
|     delta = (*this_->node_costs[u])[this_->solution[u]];
 | |
|     this_->min = this_->min + delta;
 | |
| 
 | |
|     /* increment counter for number statistic */
 | |
|     this_->num_r0++;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*****************************************************************************
 | |
|  * debug facilities
 | |
|  ****************************************************************************/
 | |
| static
 | |
| void check_pbqp(pbqp *this_)
 | |
| {
 | |
|   int u,v;
 | |
|   PBQPMatrix *costs;
 | |
|   adjnode *adj_ptr;
 | |
|   
 | |
|   assert( this_ != NULL);
 | |
|   
 | |
|   for(u=0;u< this_->num_nodes; u++) {
 | |
|     assert (this_ -> node_costs[u] != NULL);
 | |
|     for(adj_ptr = this_ -> adj_list[u];adj_ptr != NULL; adj_ptr = adj_ptr -> succ) {
 | |
|       v = adj_ptr -> adj;
 | |
|       assert( v>= 0 && v < this_->num_nodes);
 | |
|       if (u < v ) {
 | |
|         costs = adj_ptr -> costs;
 | |
|         assert( costs->getRows() == this_->node_costs[u]->getLength() &&
 | |
|                 costs->getCols() == this_->node_costs[v]->getLength());
 | |
|       }           
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*****************************************************************************
 | |
|  * PBQP solve routines 
 | |
|  ****************************************************************************/
 | |
| 
 | |
| /* solve PBQP problem */
 | |
| void solve_pbqp(pbqp *this_)
 | |
| {
 | |
|   assert(this_ != NULL);
 | |
|   assert(!this_->solved); 
 | |
|   
 | |
|   /* check vector & matrix dimensions */
 | |
|   check_pbqp(this_);
 | |
| 
 | |
|   /* simplify PBQP problem */  
 | |
|   
 | |
|   /* eliminate trivial nodes, i.e.
 | |
|      nodes with cost vectors of length one.  */
 | |
|   eliminate_trivial_nodes(this_); 
 | |
| 
 | |
|   /* eliminate edges with independent 
 | |
|      cost matrices and normalize matrices */
 | |
|   eliminate_independent_edges(this_);
 | |
|   
 | |
|   /* create bucket list for graph parsing */
 | |
|   create_bucketlist(this_);
 | |
|   
 | |
|   /* reduce phase */
 | |
|   reduce_pbqp(this_);
 | |
|   
 | |
|   /* solve trivial nodes */
 | |
|   determine_trivialsolution(this_);
 | |
| 
 | |
|   /* back propagation phase */
 | |
|   back_propagate(this_); 
 | |
|   
 | |
|   this_->solved = true;
 | |
| }
 | |
| 
 | |
| /* get solution of a node */
 | |
| int get_pbqp_solution(pbqp *this_,int x)
 | |
| {
 | |
|   assert(this_ != NULL);
 | |
|   assert(this_->solution != NULL);
 | |
|   assert(this_ -> solved);
 | |
|   
 | |
|   return this_->solution[x];
 | |
| }
 | |
| 
 | |
| /* is solution optimal? */
 | |
| bool is_pbqp_optimal(pbqp *this_)
 | |
| {
 | |
|   assert(this_ -> solved);
 | |
|   return this_->optimal;
 | |
| }
 | |
| 
 | |
| } 
 | |
| 
 | |
| /* end of pbqp.c */
 |