mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	continue past the first conditional branch when looking for a relevant test. This helps it avoid using MAX expressions in loop trip counts in more cases. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@54697 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			3070 lines
		
	
	
		
			120 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			3070 lines
		
	
	
		
			120 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file contains the implementation of the scalar evolution analysis
 | |
| // engine, which is used primarily to analyze expressions involving induction
 | |
| // variables in loops.
 | |
| //
 | |
| // There are several aspects to this library.  First is the representation of
 | |
| // scalar expressions, which are represented as subclasses of the SCEV class.
 | |
| // These classes are used to represent certain types of subexpressions that we
 | |
| // can handle.  These classes are reference counted, managed by the SCEVHandle
 | |
| // class.  We only create one SCEV of a particular shape, so pointer-comparisons
 | |
| // for equality are legal.
 | |
| //
 | |
| // One important aspect of the SCEV objects is that they are never cyclic, even
 | |
| // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
 | |
| // the PHI node is one of the idioms that we can represent (e.g., a polynomial
 | |
| // recurrence) then we represent it directly as a recurrence node, otherwise we
 | |
| // represent it as a SCEVUnknown node.
 | |
| //
 | |
| // In addition to being able to represent expressions of various types, we also
 | |
| // have folders that are used to build the *canonical* representation for a
 | |
| // particular expression.  These folders are capable of using a variety of
 | |
| // rewrite rules to simplify the expressions.
 | |
| //
 | |
| // Once the folders are defined, we can implement the more interesting
 | |
| // higher-level code, such as the code that recognizes PHI nodes of various
 | |
| // types, computes the execution count of a loop, etc.
 | |
| //
 | |
| // TODO: We should use these routines and value representations to implement
 | |
| // dependence analysis!
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // There are several good references for the techniques used in this analysis.
 | |
| //
 | |
| //  Chains of recurrences -- a method to expedite the evaluation
 | |
| //  of closed-form functions
 | |
| //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
 | |
| //
 | |
| //  On computational properties of chains of recurrences
 | |
| //  Eugene V. Zima
 | |
| //
 | |
| //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
 | |
| //  Robert A. van Engelen
 | |
| //
 | |
| //  Efficient Symbolic Analysis for Optimizing Compilers
 | |
| //  Robert A. van Engelen
 | |
| //
 | |
| //  Using the chains of recurrences algebra for data dependence testing and
 | |
| //  induction variable substitution
 | |
| //  MS Thesis, Johnie Birch
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "scalar-evolution"
 | |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/GlobalVariable.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Analysis/ConstantFolding.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Assembly/Writer.h"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/Support/CFG.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/Support/ConstantRange.h"
 | |
| #include "llvm/Support/InstIterator.h"
 | |
| #include "llvm/Support/ManagedStatic.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/Streams.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include <ostream>
 | |
| #include <algorithm>
 | |
| #include <cmath>
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumBruteForceEvaluations,
 | |
|           "Number of brute force evaluations needed to "
 | |
|           "calculate high-order polynomial exit values");
 | |
| STATISTIC(NumArrayLenItCounts,
 | |
|           "Number of trip counts computed with array length");
 | |
| STATISTIC(NumTripCountsComputed,
 | |
|           "Number of loops with predictable loop counts");
 | |
| STATISTIC(NumTripCountsNotComputed,
 | |
|           "Number of loops without predictable loop counts");
 | |
| STATISTIC(NumBruteForceTripCountsComputed,
 | |
|           "Number of loops with trip counts computed by force");
 | |
| 
 | |
| static cl::opt<unsigned>
 | |
| MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
 | |
|                         cl::desc("Maximum number of iterations SCEV will "
 | |
|                                  "symbolically execute a constant derived loop"),
 | |
|                         cl::init(100));
 | |
| 
 | |
| static RegisterPass<ScalarEvolution>
 | |
| R("scalar-evolution", "Scalar Evolution Analysis", false, true);
 | |
| char ScalarEvolution::ID = 0;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                           SCEV class definitions
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Implementation of the SCEV class.
 | |
| //
 | |
| SCEV::~SCEV() {}
 | |
| void SCEV::dump() const {
 | |
|   print(cerr);
 | |
| }
 | |
| 
 | |
| uint32_t SCEV::getBitWidth() const {
 | |
|   if (const IntegerType* ITy = dyn_cast<IntegerType>(getType()))
 | |
|     return ITy->getBitWidth();
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| bool SCEV::isZero() const {
 | |
|   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
 | |
|     return SC->getValue()->isZero();
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute) {}
 | |
| 
 | |
| bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
 | |
|   assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| const Type *SCEVCouldNotCompute::getType() const {
 | |
|   assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
 | |
|   assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| SCEVHandle SCEVCouldNotCompute::
 | |
| replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
 | |
|                                   const SCEVHandle &Conc,
 | |
|                                   ScalarEvolution &SE) const {
 | |
|   return this;
 | |
| }
 | |
| 
 | |
| void SCEVCouldNotCompute::print(std::ostream &OS) const {
 | |
|   OS << "***COULDNOTCOMPUTE***";
 | |
| }
 | |
| 
 | |
| bool SCEVCouldNotCompute::classof(const SCEV *S) {
 | |
|   return S->getSCEVType() == scCouldNotCompute;
 | |
| }
 | |
| 
 | |
| 
 | |
| // SCEVConstants - Only allow the creation of one SCEVConstant for any
 | |
| // particular value.  Don't use a SCEVHandle here, or else the object will
 | |
| // never be deleted!
 | |
| static ManagedStatic<std::map<ConstantInt*, SCEVConstant*> > SCEVConstants;
 | |
| 
 | |
| 
 | |
| SCEVConstant::~SCEVConstant() {
 | |
|   SCEVConstants->erase(V);
 | |
| }
 | |
| 
 | |
| SCEVHandle ScalarEvolution::getConstant(ConstantInt *V) {
 | |
|   SCEVConstant *&R = (*SCEVConstants)[V];
 | |
|   if (R == 0) R = new SCEVConstant(V);
 | |
|   return R;
 | |
| }
 | |
| 
 | |
| SCEVHandle ScalarEvolution::getConstant(const APInt& Val) {
 | |
|   return getConstant(ConstantInt::get(Val));
 | |
| }
 | |
| 
 | |
| const Type *SCEVConstant::getType() const { return V->getType(); }
 | |
| 
 | |
| void SCEVConstant::print(std::ostream &OS) const {
 | |
|   WriteAsOperand(OS, V, false);
 | |
| }
 | |
| 
 | |
| // SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any
 | |
| // particular input.  Don't use a SCEVHandle here, or else the object will
 | |
| // never be deleted!
 | |
| static ManagedStatic<std::map<std::pair<SCEV*, const Type*>, 
 | |
|                      SCEVTruncateExpr*> > SCEVTruncates;
 | |
| 
 | |
| SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty)
 | |
|   : SCEV(scTruncate), Op(op), Ty(ty) {
 | |
|   assert(Op->getType()->isInteger() && Ty->isInteger() &&
 | |
|          "Cannot truncate non-integer value!");
 | |
|   assert(Op->getType()->getPrimitiveSizeInBits() > Ty->getPrimitiveSizeInBits()
 | |
|          && "This is not a truncating conversion!");
 | |
| }
 | |
| 
 | |
| SCEVTruncateExpr::~SCEVTruncateExpr() {
 | |
|   SCEVTruncates->erase(std::make_pair(Op, Ty));
 | |
| }
 | |
| 
 | |
| void SCEVTruncateExpr::print(std::ostream &OS) const {
 | |
|   OS << "(truncate " << *Op << " to " << *Ty << ")";
 | |
| }
 | |
| 
 | |
| // SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any
 | |
| // particular input.  Don't use a SCEVHandle here, or else the object will never
 | |
| // be deleted!
 | |
| static ManagedStatic<std::map<std::pair<SCEV*, const Type*>,
 | |
|                      SCEVZeroExtendExpr*> > SCEVZeroExtends;
 | |
| 
 | |
| SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty)
 | |
|   : SCEV(scZeroExtend), Op(op), Ty(ty) {
 | |
|   assert(Op->getType()->isInteger() && Ty->isInteger() &&
 | |
|          "Cannot zero extend non-integer value!");
 | |
|   assert(Op->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits()
 | |
|          && "This is not an extending conversion!");
 | |
| }
 | |
| 
 | |
| SCEVZeroExtendExpr::~SCEVZeroExtendExpr() {
 | |
|   SCEVZeroExtends->erase(std::make_pair(Op, Ty));
 | |
| }
 | |
| 
 | |
| void SCEVZeroExtendExpr::print(std::ostream &OS) const {
 | |
|   OS << "(zeroextend " << *Op << " to " << *Ty << ")";
 | |
| }
 | |
| 
 | |
| // SCEVSignExtends - Only allow the creation of one SCEVSignExtendExpr for any
 | |
| // particular input.  Don't use a SCEVHandle here, or else the object will never
 | |
| // be deleted!
 | |
| static ManagedStatic<std::map<std::pair<SCEV*, const Type*>,
 | |
|                      SCEVSignExtendExpr*> > SCEVSignExtends;
 | |
| 
 | |
| SCEVSignExtendExpr::SCEVSignExtendExpr(const SCEVHandle &op, const Type *ty)
 | |
|   : SCEV(scSignExtend), Op(op), Ty(ty) {
 | |
|   assert(Op->getType()->isInteger() && Ty->isInteger() &&
 | |
|          "Cannot sign extend non-integer value!");
 | |
|   assert(Op->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits()
 | |
|          && "This is not an extending conversion!");
 | |
| }
 | |
| 
 | |
| SCEVSignExtendExpr::~SCEVSignExtendExpr() {
 | |
|   SCEVSignExtends->erase(std::make_pair(Op, Ty));
 | |
| }
 | |
| 
 | |
| void SCEVSignExtendExpr::print(std::ostream &OS) const {
 | |
|   OS << "(signextend " << *Op << " to " << *Ty << ")";
 | |
| }
 | |
| 
 | |
| // SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any
 | |
| // particular input.  Don't use a SCEVHandle here, or else the object will never
 | |
| // be deleted!
 | |
| static ManagedStatic<std::map<std::pair<unsigned, std::vector<SCEV*> >,
 | |
|                      SCEVCommutativeExpr*> > SCEVCommExprs;
 | |
| 
 | |
| SCEVCommutativeExpr::~SCEVCommutativeExpr() {
 | |
|   SCEVCommExprs->erase(std::make_pair(getSCEVType(),
 | |
|                                       std::vector<SCEV*>(Operands.begin(),
 | |
|                                                          Operands.end())));
 | |
| }
 | |
| 
 | |
| void SCEVCommutativeExpr::print(std::ostream &OS) const {
 | |
|   assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
 | |
|   const char *OpStr = getOperationStr();
 | |
|   OS << "(" << *Operands[0];
 | |
|   for (unsigned i = 1, e = Operands.size(); i != e; ++i)
 | |
|     OS << OpStr << *Operands[i];
 | |
|   OS << ")";
 | |
| }
 | |
| 
 | |
| SCEVHandle SCEVCommutativeExpr::
 | |
| replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
 | |
|                                   const SCEVHandle &Conc,
 | |
|                                   ScalarEvolution &SE) const {
 | |
|   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
 | |
|     SCEVHandle H =
 | |
|       getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
 | |
|     if (H != getOperand(i)) {
 | |
|       std::vector<SCEVHandle> NewOps;
 | |
|       NewOps.reserve(getNumOperands());
 | |
|       for (unsigned j = 0; j != i; ++j)
 | |
|         NewOps.push_back(getOperand(j));
 | |
|       NewOps.push_back(H);
 | |
|       for (++i; i != e; ++i)
 | |
|         NewOps.push_back(getOperand(i)->
 | |
|                          replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
 | |
| 
 | |
|       if (isa<SCEVAddExpr>(this))
 | |
|         return SE.getAddExpr(NewOps);
 | |
|       else if (isa<SCEVMulExpr>(this))
 | |
|         return SE.getMulExpr(NewOps);
 | |
|       else if (isa<SCEVSMaxExpr>(this))
 | |
|         return SE.getSMaxExpr(NewOps);
 | |
|       else if (isa<SCEVUMaxExpr>(this))
 | |
|         return SE.getUMaxExpr(NewOps);
 | |
|       else
 | |
|         assert(0 && "Unknown commutative expr!");
 | |
|     }
 | |
|   }
 | |
|   return this;
 | |
| }
 | |
| 
 | |
| 
 | |
| // SCEVUDivs - Only allow the creation of one SCEVUDivExpr for any particular
 | |
| // input.  Don't use a SCEVHandle here, or else the object will never be
 | |
| // deleted!
 | |
| static ManagedStatic<std::map<std::pair<SCEV*, SCEV*>, 
 | |
|                      SCEVUDivExpr*> > SCEVUDivs;
 | |
| 
 | |
| SCEVUDivExpr::~SCEVUDivExpr() {
 | |
|   SCEVUDivs->erase(std::make_pair(LHS, RHS));
 | |
| }
 | |
| 
 | |
| void SCEVUDivExpr::print(std::ostream &OS) const {
 | |
|   OS << "(" << *LHS << " /u " << *RHS << ")";
 | |
| }
 | |
| 
 | |
| const Type *SCEVUDivExpr::getType() const {
 | |
|   return LHS->getType();
 | |
| }
 | |
| 
 | |
| // SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any
 | |
| // particular input.  Don't use a SCEVHandle here, or else the object will never
 | |
| // be deleted!
 | |
| static ManagedStatic<std::map<std::pair<const Loop *, std::vector<SCEV*> >,
 | |
|                      SCEVAddRecExpr*> > SCEVAddRecExprs;
 | |
| 
 | |
| SCEVAddRecExpr::~SCEVAddRecExpr() {
 | |
|   SCEVAddRecExprs->erase(std::make_pair(L,
 | |
|                                         std::vector<SCEV*>(Operands.begin(),
 | |
|                                                            Operands.end())));
 | |
| }
 | |
| 
 | |
| SCEVHandle SCEVAddRecExpr::
 | |
| replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
 | |
|                                   const SCEVHandle &Conc,
 | |
|                                   ScalarEvolution &SE) const {
 | |
|   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
 | |
|     SCEVHandle H =
 | |
|       getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
 | |
|     if (H != getOperand(i)) {
 | |
|       std::vector<SCEVHandle> NewOps;
 | |
|       NewOps.reserve(getNumOperands());
 | |
|       for (unsigned j = 0; j != i; ++j)
 | |
|         NewOps.push_back(getOperand(j));
 | |
|       NewOps.push_back(H);
 | |
|       for (++i; i != e; ++i)
 | |
|         NewOps.push_back(getOperand(i)->
 | |
|                          replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
 | |
| 
 | |
|       return SE.getAddRecExpr(NewOps, L);
 | |
|     }
 | |
|   }
 | |
|   return this;
 | |
| }
 | |
| 
 | |
| 
 | |
| bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
 | |
|   // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't
 | |
|   // contain L and if the start is invariant.
 | |
|   return !QueryLoop->contains(L->getHeader()) &&
 | |
|          getOperand(0)->isLoopInvariant(QueryLoop);
 | |
| }
 | |
| 
 | |
| 
 | |
| void SCEVAddRecExpr::print(std::ostream &OS) const {
 | |
|   OS << "{" << *Operands[0];
 | |
|   for (unsigned i = 1, e = Operands.size(); i != e; ++i)
 | |
|     OS << ",+," << *Operands[i];
 | |
|   OS << "}<" << L->getHeader()->getName() + ">";
 | |
| }
 | |
| 
 | |
| // SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular
 | |
| // value.  Don't use a SCEVHandle here, or else the object will never be
 | |
| // deleted!
 | |
| static ManagedStatic<std::map<Value*, SCEVUnknown*> > SCEVUnknowns;
 | |
| 
 | |
| SCEVUnknown::~SCEVUnknown() { SCEVUnknowns->erase(V); }
 | |
| 
 | |
| bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
 | |
|   // All non-instruction values are loop invariant.  All instructions are loop
 | |
|   // invariant if they are not contained in the specified loop.
 | |
|   if (Instruction *I = dyn_cast<Instruction>(V))
 | |
|     return !L->contains(I->getParent());
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| const Type *SCEVUnknown::getType() const {
 | |
|   return V->getType();
 | |
| }
 | |
| 
 | |
| void SCEVUnknown::print(std::ostream &OS) const {
 | |
|   WriteAsOperand(OS, V, false);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                               SCEV Utilities
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
|   /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
 | |
|   /// than the complexity of the RHS.  This comparator is used to canonicalize
 | |
|   /// expressions.
 | |
|   struct VISIBILITY_HIDDEN SCEVComplexityCompare {
 | |
|     bool operator()(const SCEV *LHS, const SCEV *RHS) const {
 | |
|       return LHS->getSCEVType() < RHS->getSCEVType();
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| /// GroupByComplexity - Given a list of SCEV objects, order them by their
 | |
| /// complexity, and group objects of the same complexity together by value.
 | |
| /// When this routine is finished, we know that any duplicates in the vector are
 | |
| /// consecutive and that complexity is monotonically increasing.
 | |
| ///
 | |
| /// Note that we go take special precautions to ensure that we get determinstic
 | |
| /// results from this routine.  In other words, we don't want the results of
 | |
| /// this to depend on where the addresses of various SCEV objects happened to
 | |
| /// land in memory.
 | |
| ///
 | |
| static void GroupByComplexity(std::vector<SCEVHandle> &Ops) {
 | |
|   if (Ops.size() < 2) return;  // Noop
 | |
|   if (Ops.size() == 2) {
 | |
|     // This is the common case, which also happens to be trivially simple.
 | |
|     // Special case it.
 | |
|     if (SCEVComplexityCompare()(Ops[1], Ops[0]))
 | |
|       std::swap(Ops[0], Ops[1]);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Do the rough sort by complexity.
 | |
|   std::sort(Ops.begin(), Ops.end(), SCEVComplexityCompare());
 | |
| 
 | |
|   // Now that we are sorted by complexity, group elements of the same
 | |
|   // complexity.  Note that this is, at worst, N^2, but the vector is likely to
 | |
|   // be extremely short in practice.  Note that we take this approach because we
 | |
|   // do not want to depend on the addresses of the objects we are grouping.
 | |
|   for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
 | |
|     SCEV *S = Ops[i];
 | |
|     unsigned Complexity = S->getSCEVType();
 | |
| 
 | |
|     // If there are any objects of the same complexity and same value as this
 | |
|     // one, group them.
 | |
|     for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
 | |
|       if (Ops[j] == S) { // Found a duplicate.
 | |
|         // Move it to immediately after i'th element.
 | |
|         std::swap(Ops[i+1], Ops[j]);
 | |
|         ++i;   // no need to rescan it.
 | |
|         if (i == e-2) return;  // Done!
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                      Simple SCEV method implementations
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// getIntegerSCEV - Given an integer or FP type, create a constant for the
 | |
| /// specified signed integer value and return a SCEV for the constant.
 | |
| SCEVHandle ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) {
 | |
|   Constant *C;
 | |
|   if (Val == 0)
 | |
|     C = Constant::getNullValue(Ty);
 | |
|   else if (Ty->isFloatingPoint())
 | |
|     C = ConstantFP::get(APFloat(Ty==Type::FloatTy ? APFloat::IEEEsingle : 
 | |
|                                 APFloat::IEEEdouble, Val));
 | |
|   else 
 | |
|     C = ConstantInt::get(Ty, Val);
 | |
|   return getUnknown(C);
 | |
| }
 | |
| 
 | |
| /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
 | |
| ///
 | |
| SCEVHandle ScalarEvolution::getNegativeSCEV(const SCEVHandle &V) {
 | |
|   if (SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
 | |
|     return getUnknown(ConstantExpr::getNeg(VC->getValue()));
 | |
| 
 | |
|   return getMulExpr(V, getConstant(ConstantInt::getAllOnesValue(V->getType())));
 | |
| }
 | |
| 
 | |
| /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
 | |
| SCEVHandle ScalarEvolution::getNotSCEV(const SCEVHandle &V) {
 | |
|   if (SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
 | |
|     return getUnknown(ConstantExpr::getNot(VC->getValue()));
 | |
| 
 | |
|   SCEVHandle AllOnes = getConstant(ConstantInt::getAllOnesValue(V->getType()));
 | |
|   return getMinusSCEV(AllOnes, V);
 | |
| }
 | |
| 
 | |
| /// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
 | |
| ///
 | |
| SCEVHandle ScalarEvolution::getMinusSCEV(const SCEVHandle &LHS,
 | |
|                                          const SCEVHandle &RHS) {
 | |
|   // X - Y --> X + -Y
 | |
|   return getAddExpr(LHS, getNegativeSCEV(RHS));
 | |
| }
 | |
| 
 | |
| 
 | |
| /// BinomialCoefficient - Compute BC(It, K).  The result has width W.
 | |
| // Assume, K > 0.
 | |
| static SCEVHandle BinomialCoefficient(SCEVHandle It, unsigned K,
 | |
|                                       ScalarEvolution &SE,
 | |
|                                       const IntegerType* ResultTy) {
 | |
|   // Handle the simplest case efficiently.
 | |
|   if (K == 1)
 | |
|     return SE.getTruncateOrZeroExtend(It, ResultTy);
 | |
| 
 | |
|   // We are using the following formula for BC(It, K):
 | |
|   //
 | |
|   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
 | |
|   //
 | |
|   // Suppose, W is the bitwidth of the return value.  We must be prepared for
 | |
|   // overflow.  Hence, we must assure that the result of our computation is
 | |
|   // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
 | |
|   // safe in modular arithmetic.
 | |
|   //
 | |
|   // However, this code doesn't use exactly that formula; the formula it uses
 | |
|   // is something like the following, where T is the number of factors of 2 in 
 | |
|   // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
 | |
|   // exponentiation:
 | |
|   //
 | |
|   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
 | |
|   //
 | |
|   // This formula is trivially equivalent to the previous formula.  However,
 | |
|   // this formula can be implemented much more efficiently.  The trick is that
 | |
|   // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
 | |
|   // arithmetic.  To do exact division in modular arithmetic, all we have
 | |
|   // to do is multiply by the inverse.  Therefore, this step can be done at
 | |
|   // width W.
 | |
|   // 
 | |
|   // The next issue is how to safely do the division by 2^T.  The way this
 | |
|   // is done is by doing the multiplication step at a width of at least W + T
 | |
|   // bits.  This way, the bottom W+T bits of the product are accurate. Then,
 | |
|   // when we perform the division by 2^T (which is equivalent to a right shift
 | |
|   // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
 | |
|   // truncated out after the division by 2^T.
 | |
|   //
 | |
|   // In comparison to just directly using the first formula, this technique
 | |
|   // is much more efficient; using the first formula requires W * K bits,
 | |
|   // but this formula less than W + K bits. Also, the first formula requires
 | |
|   // a division step, whereas this formula only requires multiplies and shifts.
 | |
|   //
 | |
|   // It doesn't matter whether the subtraction step is done in the calculation
 | |
|   // width or the input iteration count's width; if the subtraction overflows,
 | |
|   // the result must be zero anyway.  We prefer here to do it in the width of
 | |
|   // the induction variable because it helps a lot for certain cases; CodeGen
 | |
|   // isn't smart enough to ignore the overflow, which leads to much less
 | |
|   // efficient code if the width of the subtraction is wider than the native
 | |
|   // register width.
 | |
|   //
 | |
|   // (It's possible to not widen at all by pulling out factors of 2 before
 | |
|   // the multiplication; for example, K=2 can be calculated as
 | |
|   // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
 | |
|   // extra arithmetic, so it's not an obvious win, and it gets
 | |
|   // much more complicated for K > 3.)
 | |
| 
 | |
|   // Protection from insane SCEVs; this bound is conservative,
 | |
|   // but it probably doesn't matter.
 | |
|   if (K > 1000)
 | |
|     return new SCEVCouldNotCompute();
 | |
| 
 | |
|   unsigned W = ResultTy->getBitWidth();
 | |
| 
 | |
|   // Calculate K! / 2^T and T; we divide out the factors of two before
 | |
|   // multiplying for calculating K! / 2^T to avoid overflow.
 | |
|   // Other overflow doesn't matter because we only care about the bottom
 | |
|   // W bits of the result.
 | |
|   APInt OddFactorial(W, 1);
 | |
|   unsigned T = 1;
 | |
|   for (unsigned i = 3; i <= K; ++i) {
 | |
|     APInt Mult(W, i);
 | |
|     unsigned TwoFactors = Mult.countTrailingZeros();
 | |
|     T += TwoFactors;
 | |
|     Mult = Mult.lshr(TwoFactors);
 | |
|     OddFactorial *= Mult;
 | |
|   }
 | |
| 
 | |
|   // We need at least W + T bits for the multiplication step
 | |
|   // FIXME: A temporary hack; we round up the bitwidths
 | |
|   // to the nearest power of 2 to be nice to the code generator.
 | |
|   unsigned CalculationBits = 1U << Log2_32_Ceil(W + T);
 | |
|   // FIXME: Temporary hack to avoid generating integers that are too wide.
 | |
|   // Although, it's not completely clear how to determine how much
 | |
|   // widening is safe; for example, on X86, we can't really widen
 | |
|   // beyond 64 because we need to be able to do multiplication
 | |
|   // that's CalculationBits wide, but on X86-64, we can safely widen up to
 | |
|   // 128 bits.
 | |
|   if (CalculationBits > 64)
 | |
|     return new SCEVCouldNotCompute();
 | |
| 
 | |
|   // Calcuate 2^T, at width T+W.
 | |
|   APInt DivFactor = APInt(CalculationBits, 1).shl(T);
 | |
| 
 | |
|   // Calculate the multiplicative inverse of K! / 2^T;
 | |
|   // this multiplication factor will perform the exact division by
 | |
|   // K! / 2^T.
 | |
|   APInt Mod = APInt::getSignedMinValue(W+1);
 | |
|   APInt MultiplyFactor = OddFactorial.zext(W+1);
 | |
|   MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
 | |
|   MultiplyFactor = MultiplyFactor.trunc(W);
 | |
| 
 | |
|   // Calculate the product, at width T+W
 | |
|   const IntegerType *CalculationTy = IntegerType::get(CalculationBits);
 | |
|   SCEVHandle Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
 | |
|   for (unsigned i = 1; i != K; ++i) {
 | |
|     SCEVHandle S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType()));
 | |
|     Dividend = SE.getMulExpr(Dividend,
 | |
|                              SE.getTruncateOrZeroExtend(S, CalculationTy));
 | |
|   }
 | |
| 
 | |
|   // Divide by 2^T
 | |
|   SCEVHandle DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
 | |
| 
 | |
|   // Truncate the result, and divide by K! / 2^T.
 | |
| 
 | |
|   return SE.getMulExpr(SE.getConstant(MultiplyFactor),
 | |
|                        SE.getTruncateOrZeroExtend(DivResult, ResultTy));
 | |
| }
 | |
| 
 | |
| /// evaluateAtIteration - Return the value of this chain of recurrences at
 | |
| /// the specified iteration number.  We can evaluate this recurrence by
 | |
| /// multiplying each element in the chain by the binomial coefficient
 | |
| /// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
 | |
| ///
 | |
| ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
 | |
| ///
 | |
| /// where BC(It, k) stands for binomial coefficient.
 | |
| ///
 | |
| SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It,
 | |
|                                                ScalarEvolution &SE) const {
 | |
|   SCEVHandle Result = getStart();
 | |
|   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
 | |
|     // The computation is correct in the face of overflow provided that the
 | |
|     // multiplication is performed _after_ the evaluation of the binomial
 | |
|     // coefficient.
 | |
|     SCEVHandle Val =
 | |
|       SE.getMulExpr(getOperand(i),
 | |
|                     BinomialCoefficient(It, i, SE,
 | |
|                                         cast<IntegerType>(getType())));
 | |
|     Result = SE.getAddExpr(Result, Val);
 | |
|   }
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                    SCEV Expression folder implementations
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| SCEVHandle ScalarEvolution::getTruncateExpr(const SCEVHandle &Op, const Type *Ty) {
 | |
|   if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
 | |
|     return getUnknown(
 | |
|         ConstantExpr::getTrunc(SC->getValue(), Ty));
 | |
| 
 | |
|   // If the input value is a chrec scev made out of constants, truncate
 | |
|   // all of the constants.
 | |
|   if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
 | |
|     std::vector<SCEVHandle> Operands;
 | |
|     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
 | |
|       // FIXME: This should allow truncation of other expression types!
 | |
|       if (isa<SCEVConstant>(AddRec->getOperand(i)))
 | |
|         Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
 | |
|       else
 | |
|         break;
 | |
|     if (Operands.size() == AddRec->getNumOperands())
 | |
|       return getAddRecExpr(Operands, AddRec->getLoop());
 | |
|   }
 | |
| 
 | |
|   SCEVTruncateExpr *&Result = (*SCEVTruncates)[std::make_pair(Op, Ty)];
 | |
|   if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty);
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| SCEVHandle ScalarEvolution::getZeroExtendExpr(const SCEVHandle &Op, const Type *Ty) {
 | |
|   if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
 | |
|     return getUnknown(
 | |
|         ConstantExpr::getZExt(SC->getValue(), Ty));
 | |
| 
 | |
|   // FIXME: If the input value is a chrec scev, and we can prove that the value
 | |
|   // did not overflow the old, smaller, value, we can zero extend all of the
 | |
|   // operands (often constants).  This would allow analysis of something like
 | |
|   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
 | |
| 
 | |
|   SCEVZeroExtendExpr *&Result = (*SCEVZeroExtends)[std::make_pair(Op, Ty)];
 | |
|   if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty);
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| SCEVHandle ScalarEvolution::getSignExtendExpr(const SCEVHandle &Op, const Type *Ty) {
 | |
|   if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
 | |
|     return getUnknown(
 | |
|         ConstantExpr::getSExt(SC->getValue(), Ty));
 | |
| 
 | |
|   // FIXME: If the input value is a chrec scev, and we can prove that the value
 | |
|   // did not overflow the old, smaller, value, we can sign extend all of the
 | |
|   // operands (often constants).  This would allow analysis of something like
 | |
|   // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
 | |
| 
 | |
|   SCEVSignExtendExpr *&Result = (*SCEVSignExtends)[std::make_pair(Op, Ty)];
 | |
|   if (Result == 0) Result = new SCEVSignExtendExpr(Op, Ty);
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion
 | |
| /// of the input value to the specified type.  If the type must be
 | |
| /// extended, it is zero extended.
 | |
| SCEVHandle ScalarEvolution::getTruncateOrZeroExtend(const SCEVHandle &V,
 | |
|                                                     const Type *Ty) {
 | |
|   const Type *SrcTy = V->getType();
 | |
|   assert(SrcTy->isInteger() && Ty->isInteger() &&
 | |
|          "Cannot truncate or zero extend with non-integer arguments!");
 | |
|   if (SrcTy->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits())
 | |
|     return V;  // No conversion
 | |
|   if (SrcTy->getPrimitiveSizeInBits() > Ty->getPrimitiveSizeInBits())
 | |
|     return getTruncateExpr(V, Ty);
 | |
|   return getZeroExtendExpr(V, Ty);
 | |
| }
 | |
| 
 | |
| // get - Get a canonical add expression, or something simpler if possible.
 | |
| SCEVHandle ScalarEvolution::getAddExpr(std::vector<SCEVHandle> &Ops) {
 | |
|   assert(!Ops.empty() && "Cannot get empty add!");
 | |
|   if (Ops.size() == 1) return Ops[0];
 | |
| 
 | |
|   // Sort by complexity, this groups all similar expression types together.
 | |
|   GroupByComplexity(Ops);
 | |
| 
 | |
|   // If there are any constants, fold them together.
 | |
|   unsigned Idx = 0;
 | |
|   if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
 | |
|     ++Idx;
 | |
|     assert(Idx < Ops.size());
 | |
|     while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
 | |
|       // We found two constants, fold them together!
 | |
|       ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() + 
 | |
|                                            RHSC->getValue()->getValue());
 | |
|       Ops[0] = getConstant(Fold);
 | |
|       Ops.erase(Ops.begin()+1);  // Erase the folded element
 | |
|       if (Ops.size() == 1) return Ops[0];
 | |
|       LHSC = cast<SCEVConstant>(Ops[0]);
 | |
|     }
 | |
| 
 | |
|     // If we are left with a constant zero being added, strip it off.
 | |
|     if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
 | |
|       Ops.erase(Ops.begin());
 | |
|       --Idx;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Ops.size() == 1) return Ops[0];
 | |
| 
 | |
|   // Okay, check to see if the same value occurs in the operand list twice.  If
 | |
|   // so, merge them together into an multiply expression.  Since we sorted the
 | |
|   // list, these values are required to be adjacent.
 | |
|   const Type *Ty = Ops[0]->getType();
 | |
|   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
 | |
|     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
 | |
|       // Found a match, merge the two values into a multiply, and add any
 | |
|       // remaining values to the result.
 | |
|       SCEVHandle Two = getIntegerSCEV(2, Ty);
 | |
|       SCEVHandle Mul = getMulExpr(Ops[i], Two);
 | |
|       if (Ops.size() == 2)
 | |
|         return Mul;
 | |
|       Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
 | |
|       Ops.push_back(Mul);
 | |
|       return getAddExpr(Ops);
 | |
|     }
 | |
| 
 | |
|   // Now we know the first non-constant operand.  Skip past any cast SCEVs.
 | |
|   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
 | |
|     ++Idx;
 | |
| 
 | |
|   // If there are add operands they would be next.
 | |
|   if (Idx < Ops.size()) {
 | |
|     bool DeletedAdd = false;
 | |
|     while (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
 | |
|       // If we have an add, expand the add operands onto the end of the operands
 | |
|       // list.
 | |
|       Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
 | |
|       Ops.erase(Ops.begin()+Idx);
 | |
|       DeletedAdd = true;
 | |
|     }
 | |
| 
 | |
|     // If we deleted at least one add, we added operands to the end of the list,
 | |
|     // and they are not necessarily sorted.  Recurse to resort and resimplify
 | |
|     // any operands we just aquired.
 | |
|     if (DeletedAdd)
 | |
|       return getAddExpr(Ops);
 | |
|   }
 | |
| 
 | |
|   // Skip over the add expression until we get to a multiply.
 | |
|   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
 | |
|     ++Idx;
 | |
| 
 | |
|   // If we are adding something to a multiply expression, make sure the
 | |
|   // something is not already an operand of the multiply.  If so, merge it into
 | |
|   // the multiply.
 | |
|   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
 | |
|     SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
 | |
|     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
 | |
|       SCEV *MulOpSCEV = Mul->getOperand(MulOp);
 | |
|       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
 | |
|         if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(MulOpSCEV)) {
 | |
|           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
 | |
|           SCEVHandle InnerMul = Mul->getOperand(MulOp == 0);
 | |
|           if (Mul->getNumOperands() != 2) {
 | |
|             // If the multiply has more than two operands, we must get the
 | |
|             // Y*Z term.
 | |
|             std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
 | |
|             MulOps.erase(MulOps.begin()+MulOp);
 | |
|             InnerMul = getMulExpr(MulOps);
 | |
|           }
 | |
|           SCEVHandle One = getIntegerSCEV(1, Ty);
 | |
|           SCEVHandle AddOne = getAddExpr(InnerMul, One);
 | |
|           SCEVHandle OuterMul = getMulExpr(AddOne, Ops[AddOp]);
 | |
|           if (Ops.size() == 2) return OuterMul;
 | |
|           if (AddOp < Idx) {
 | |
|             Ops.erase(Ops.begin()+AddOp);
 | |
|             Ops.erase(Ops.begin()+Idx-1);
 | |
|           } else {
 | |
|             Ops.erase(Ops.begin()+Idx);
 | |
|             Ops.erase(Ops.begin()+AddOp-1);
 | |
|           }
 | |
|           Ops.push_back(OuterMul);
 | |
|           return getAddExpr(Ops);
 | |
|         }
 | |
| 
 | |
|       // Check this multiply against other multiplies being added together.
 | |
|       for (unsigned OtherMulIdx = Idx+1;
 | |
|            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
 | |
|            ++OtherMulIdx) {
 | |
|         SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
 | |
|         // If MulOp occurs in OtherMul, we can fold the two multiplies
 | |
|         // together.
 | |
|         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
 | |
|              OMulOp != e; ++OMulOp)
 | |
|           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
 | |
|             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
 | |
|             SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0);
 | |
|             if (Mul->getNumOperands() != 2) {
 | |
|               std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
 | |
|               MulOps.erase(MulOps.begin()+MulOp);
 | |
|               InnerMul1 = getMulExpr(MulOps);
 | |
|             }
 | |
|             SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0);
 | |
|             if (OtherMul->getNumOperands() != 2) {
 | |
|               std::vector<SCEVHandle> MulOps(OtherMul->op_begin(),
 | |
|                                              OtherMul->op_end());
 | |
|               MulOps.erase(MulOps.begin()+OMulOp);
 | |
|               InnerMul2 = getMulExpr(MulOps);
 | |
|             }
 | |
|             SCEVHandle InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
 | |
|             SCEVHandle OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
 | |
|             if (Ops.size() == 2) return OuterMul;
 | |
|             Ops.erase(Ops.begin()+Idx);
 | |
|             Ops.erase(Ops.begin()+OtherMulIdx-1);
 | |
|             Ops.push_back(OuterMul);
 | |
|             return getAddExpr(Ops);
 | |
|           }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If there are any add recurrences in the operands list, see if any other
 | |
|   // added values are loop invariant.  If so, we can fold them into the
 | |
|   // recurrence.
 | |
|   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
 | |
|     ++Idx;
 | |
| 
 | |
|   // Scan over all recurrences, trying to fold loop invariants into them.
 | |
|   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
 | |
|     // Scan all of the other operands to this add and add them to the vector if
 | |
|     // they are loop invariant w.r.t. the recurrence.
 | |
|     std::vector<SCEVHandle> LIOps;
 | |
|     SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
 | |
|     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
 | |
|       if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
 | |
|         LIOps.push_back(Ops[i]);
 | |
|         Ops.erase(Ops.begin()+i);
 | |
|         --i; --e;
 | |
|       }
 | |
| 
 | |
|     // If we found some loop invariants, fold them into the recurrence.
 | |
|     if (!LIOps.empty()) {
 | |
|       //  NLI + LI + { Start,+,Step}  -->  NLI + { LI+Start,+,Step }
 | |
|       LIOps.push_back(AddRec->getStart());
 | |
| 
 | |
|       std::vector<SCEVHandle> AddRecOps(AddRec->op_begin(), AddRec->op_end());
 | |
|       AddRecOps[0] = getAddExpr(LIOps);
 | |
| 
 | |
|       SCEVHandle NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop());
 | |
|       // If all of the other operands were loop invariant, we are done.
 | |
|       if (Ops.size() == 1) return NewRec;
 | |
| 
 | |
|       // Otherwise, add the folded AddRec by the non-liv parts.
 | |
|       for (unsigned i = 0;; ++i)
 | |
|         if (Ops[i] == AddRec) {
 | |
|           Ops[i] = NewRec;
 | |
|           break;
 | |
|         }
 | |
|       return getAddExpr(Ops);
 | |
|     }
 | |
| 
 | |
|     // Okay, if there weren't any loop invariants to be folded, check to see if
 | |
|     // there are multiple AddRec's with the same loop induction variable being
 | |
|     // added together.  If so, we can fold them.
 | |
|     for (unsigned OtherIdx = Idx+1;
 | |
|          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
 | |
|       if (OtherIdx != Idx) {
 | |
|         SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
 | |
|         if (AddRec->getLoop() == OtherAddRec->getLoop()) {
 | |
|           // Other + {A,+,B} + {C,+,D}  -->  Other + {A+C,+,B+D}
 | |
|           std::vector<SCEVHandle> NewOps(AddRec->op_begin(), AddRec->op_end());
 | |
|           for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
 | |
|             if (i >= NewOps.size()) {
 | |
|               NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
 | |
|                             OtherAddRec->op_end());
 | |
|               break;
 | |
|             }
 | |
|             NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i));
 | |
|           }
 | |
|           SCEVHandle NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop());
 | |
| 
 | |
|           if (Ops.size() == 2) return NewAddRec;
 | |
| 
 | |
|           Ops.erase(Ops.begin()+Idx);
 | |
|           Ops.erase(Ops.begin()+OtherIdx-1);
 | |
|           Ops.push_back(NewAddRec);
 | |
|           return getAddExpr(Ops);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|     // Otherwise couldn't fold anything into this recurrence.  Move onto the
 | |
|     // next one.
 | |
|   }
 | |
| 
 | |
|   // Okay, it looks like we really DO need an add expr.  Check to see if we
 | |
|   // already have one, otherwise create a new one.
 | |
|   std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
 | |
|   SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scAddExpr,
 | |
|                                                                  SCEVOps)];
 | |
|   if (Result == 0) Result = new SCEVAddExpr(Ops);
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| 
 | |
| SCEVHandle ScalarEvolution::getMulExpr(std::vector<SCEVHandle> &Ops) {
 | |
|   assert(!Ops.empty() && "Cannot get empty mul!");
 | |
| 
 | |
|   // Sort by complexity, this groups all similar expression types together.
 | |
|   GroupByComplexity(Ops);
 | |
| 
 | |
|   // If there are any constants, fold them together.
 | |
|   unsigned Idx = 0;
 | |
|   if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
 | |
| 
 | |
|     // C1*(C2+V) -> C1*C2 + C1*V
 | |
|     if (Ops.size() == 2)
 | |
|       if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
 | |
|         if (Add->getNumOperands() == 2 &&
 | |
|             isa<SCEVConstant>(Add->getOperand(0)))
 | |
|           return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
 | |
|                             getMulExpr(LHSC, Add->getOperand(1)));
 | |
| 
 | |
| 
 | |
|     ++Idx;
 | |
|     while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
 | |
|       // We found two constants, fold them together!
 | |
|       ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() * 
 | |
|                                            RHSC->getValue()->getValue());
 | |
|       Ops[0] = getConstant(Fold);
 | |
|       Ops.erase(Ops.begin()+1);  // Erase the folded element
 | |
|       if (Ops.size() == 1) return Ops[0];
 | |
|       LHSC = cast<SCEVConstant>(Ops[0]);
 | |
|     }
 | |
| 
 | |
|     // If we are left with a constant one being multiplied, strip it off.
 | |
|     if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
 | |
|       Ops.erase(Ops.begin());
 | |
|       --Idx;
 | |
|     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
 | |
|       // If we have a multiply of zero, it will always be zero.
 | |
|       return Ops[0];
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Skip over the add expression until we get to a multiply.
 | |
|   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
 | |
|     ++Idx;
 | |
| 
 | |
|   if (Ops.size() == 1)
 | |
|     return Ops[0];
 | |
| 
 | |
|   // If there are mul operands inline them all into this expression.
 | |
|   if (Idx < Ops.size()) {
 | |
|     bool DeletedMul = false;
 | |
|     while (SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
 | |
|       // If we have an mul, expand the mul operands onto the end of the operands
 | |
|       // list.
 | |
|       Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
 | |
|       Ops.erase(Ops.begin()+Idx);
 | |
|       DeletedMul = true;
 | |
|     }
 | |
| 
 | |
|     // If we deleted at least one mul, we added operands to the end of the list,
 | |
|     // and they are not necessarily sorted.  Recurse to resort and resimplify
 | |
|     // any operands we just aquired.
 | |
|     if (DeletedMul)
 | |
|       return getMulExpr(Ops);
 | |
|   }
 | |
| 
 | |
|   // If there are any add recurrences in the operands list, see if any other
 | |
|   // added values are loop invariant.  If so, we can fold them into the
 | |
|   // recurrence.
 | |
|   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
 | |
|     ++Idx;
 | |
| 
 | |
|   // Scan over all recurrences, trying to fold loop invariants into them.
 | |
|   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
 | |
|     // Scan all of the other operands to this mul and add them to the vector if
 | |
|     // they are loop invariant w.r.t. the recurrence.
 | |
|     std::vector<SCEVHandle> LIOps;
 | |
|     SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
 | |
|     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
 | |
|       if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
 | |
|         LIOps.push_back(Ops[i]);
 | |
|         Ops.erase(Ops.begin()+i);
 | |
|         --i; --e;
 | |
|       }
 | |
| 
 | |
|     // If we found some loop invariants, fold them into the recurrence.
 | |
|     if (!LIOps.empty()) {
 | |
|       //  NLI * LI * { Start,+,Step}  -->  NLI * { LI*Start,+,LI*Step }
 | |
|       std::vector<SCEVHandle> NewOps;
 | |
|       NewOps.reserve(AddRec->getNumOperands());
 | |
|       if (LIOps.size() == 1) {
 | |
|         SCEV *Scale = LIOps[0];
 | |
|         for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
 | |
|           NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
 | |
|       } else {
 | |
|         for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
 | |
|           std::vector<SCEVHandle> MulOps(LIOps);
 | |
|           MulOps.push_back(AddRec->getOperand(i));
 | |
|           NewOps.push_back(getMulExpr(MulOps));
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       SCEVHandle NewRec = getAddRecExpr(NewOps, AddRec->getLoop());
 | |
| 
 | |
|       // If all of the other operands were loop invariant, we are done.
 | |
|       if (Ops.size() == 1) return NewRec;
 | |
| 
 | |
|       // Otherwise, multiply the folded AddRec by the non-liv parts.
 | |
|       for (unsigned i = 0;; ++i)
 | |
|         if (Ops[i] == AddRec) {
 | |
|           Ops[i] = NewRec;
 | |
|           break;
 | |
|         }
 | |
|       return getMulExpr(Ops);
 | |
|     }
 | |
| 
 | |
|     // Okay, if there weren't any loop invariants to be folded, check to see if
 | |
|     // there are multiple AddRec's with the same loop induction variable being
 | |
|     // multiplied together.  If so, we can fold them.
 | |
|     for (unsigned OtherIdx = Idx+1;
 | |
|          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
 | |
|       if (OtherIdx != Idx) {
 | |
|         SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
 | |
|         if (AddRec->getLoop() == OtherAddRec->getLoop()) {
 | |
|           // F * G  -->  {A,+,B} * {C,+,D}  -->  {A*C,+,F*D + G*B + B*D}
 | |
|           SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
 | |
|           SCEVHandle NewStart = getMulExpr(F->getStart(),
 | |
|                                                  G->getStart());
 | |
|           SCEVHandle B = F->getStepRecurrence(*this);
 | |
|           SCEVHandle D = G->getStepRecurrence(*this);
 | |
|           SCEVHandle NewStep = getAddExpr(getMulExpr(F, D),
 | |
|                                           getMulExpr(G, B),
 | |
|                                           getMulExpr(B, D));
 | |
|           SCEVHandle NewAddRec = getAddRecExpr(NewStart, NewStep,
 | |
|                                                F->getLoop());
 | |
|           if (Ops.size() == 2) return NewAddRec;
 | |
| 
 | |
|           Ops.erase(Ops.begin()+Idx);
 | |
|           Ops.erase(Ops.begin()+OtherIdx-1);
 | |
|           Ops.push_back(NewAddRec);
 | |
|           return getMulExpr(Ops);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|     // Otherwise couldn't fold anything into this recurrence.  Move onto the
 | |
|     // next one.
 | |
|   }
 | |
| 
 | |
|   // Okay, it looks like we really DO need an mul expr.  Check to see if we
 | |
|   // already have one, otherwise create a new one.
 | |
|   std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
 | |
|   SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scMulExpr,
 | |
|                                                                  SCEVOps)];
 | |
|   if (Result == 0)
 | |
|     Result = new SCEVMulExpr(Ops);
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| SCEVHandle ScalarEvolution::getUDivExpr(const SCEVHandle &LHS, const SCEVHandle &RHS) {
 | |
|   if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
 | |
|     if (RHSC->getValue()->equalsInt(1))
 | |
|       return LHS;                            // X udiv 1 --> x
 | |
| 
 | |
|     if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
 | |
|       Constant *LHSCV = LHSC->getValue();
 | |
|       Constant *RHSCV = RHSC->getValue();
 | |
|       return getUnknown(ConstantExpr::getUDiv(LHSCV, RHSCV));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // FIXME: implement folding of (X*4)/4 when we know X*4 doesn't overflow.
 | |
| 
 | |
|   SCEVUDivExpr *&Result = (*SCEVUDivs)[std::make_pair(LHS, RHS)];
 | |
|   if (Result == 0) Result = new SCEVUDivExpr(LHS, RHS);
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// SCEVAddRecExpr::get - Get a add recurrence expression for the
 | |
| /// specified loop.  Simplify the expression as much as possible.
 | |
| SCEVHandle ScalarEvolution::getAddRecExpr(const SCEVHandle &Start,
 | |
|                                const SCEVHandle &Step, const Loop *L) {
 | |
|   std::vector<SCEVHandle> Operands;
 | |
|   Operands.push_back(Start);
 | |
|   if (SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
 | |
|     if (StepChrec->getLoop() == L) {
 | |
|       Operands.insert(Operands.end(), StepChrec->op_begin(),
 | |
|                       StepChrec->op_end());
 | |
|       return getAddRecExpr(Operands, L);
 | |
|     }
 | |
| 
 | |
|   Operands.push_back(Step);
 | |
|   return getAddRecExpr(Operands, L);
 | |
| }
 | |
| 
 | |
| /// SCEVAddRecExpr::get - Get a add recurrence expression for the
 | |
| /// specified loop.  Simplify the expression as much as possible.
 | |
| SCEVHandle ScalarEvolution::getAddRecExpr(std::vector<SCEVHandle> &Operands,
 | |
|                                const Loop *L) {
 | |
|   if (Operands.size() == 1) return Operands[0];
 | |
| 
 | |
|   if (Operands.back()->isZero()) {
 | |
|     Operands.pop_back();
 | |
|     return getAddRecExpr(Operands, L);             // { X,+,0 }  -->  X
 | |
|   }
 | |
| 
 | |
|   // Canonicalize nested AddRecs in by nesting them in order of loop depth.
 | |
|   if (SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
 | |
|     const Loop* NestedLoop = NestedAR->getLoop();
 | |
|     if (L->getLoopDepth() < NestedLoop->getLoopDepth()) {
 | |
|       std::vector<SCEVHandle> NestedOperands(NestedAR->op_begin(),
 | |
|                                              NestedAR->op_end());
 | |
|       SCEVHandle NestedARHandle(NestedAR);
 | |
|       Operands[0] = NestedAR->getStart();
 | |
|       NestedOperands[0] = getAddRecExpr(Operands, L);
 | |
|       return getAddRecExpr(NestedOperands, NestedLoop);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   SCEVAddRecExpr *&Result =
 | |
|     (*SCEVAddRecExprs)[std::make_pair(L, std::vector<SCEV*>(Operands.begin(),
 | |
|                                                             Operands.end()))];
 | |
|   if (Result == 0) Result = new SCEVAddRecExpr(Operands, L);
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| SCEVHandle ScalarEvolution::getSMaxExpr(const SCEVHandle &LHS,
 | |
|                                         const SCEVHandle &RHS) {
 | |
|   std::vector<SCEVHandle> Ops;
 | |
|   Ops.push_back(LHS);
 | |
|   Ops.push_back(RHS);
 | |
|   return getSMaxExpr(Ops);
 | |
| }
 | |
| 
 | |
| SCEVHandle ScalarEvolution::getSMaxExpr(std::vector<SCEVHandle> Ops) {
 | |
|   assert(!Ops.empty() && "Cannot get empty smax!");
 | |
|   if (Ops.size() == 1) return Ops[0];
 | |
| 
 | |
|   // Sort by complexity, this groups all similar expression types together.
 | |
|   GroupByComplexity(Ops);
 | |
| 
 | |
|   // If there are any constants, fold them together.
 | |
|   unsigned Idx = 0;
 | |
|   if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
 | |
|     ++Idx;
 | |
|     assert(Idx < Ops.size());
 | |
|     while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
 | |
|       // We found two constants, fold them together!
 | |
|       ConstantInt *Fold = ConstantInt::get(
 | |
|                               APIntOps::smax(LHSC->getValue()->getValue(),
 | |
|                                              RHSC->getValue()->getValue()));
 | |
|       Ops[0] = getConstant(Fold);
 | |
|       Ops.erase(Ops.begin()+1);  // Erase the folded element
 | |
|       if (Ops.size() == 1) return Ops[0];
 | |
|       LHSC = cast<SCEVConstant>(Ops[0]);
 | |
|     }
 | |
| 
 | |
|     // If we are left with a constant -inf, strip it off.
 | |
|     if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
 | |
|       Ops.erase(Ops.begin());
 | |
|       --Idx;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Ops.size() == 1) return Ops[0];
 | |
| 
 | |
|   // Find the first SMax
 | |
|   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
 | |
|     ++Idx;
 | |
| 
 | |
|   // Check to see if one of the operands is an SMax. If so, expand its operands
 | |
|   // onto our operand list, and recurse to simplify.
 | |
|   if (Idx < Ops.size()) {
 | |
|     bool DeletedSMax = false;
 | |
|     while (SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
 | |
|       Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end());
 | |
|       Ops.erase(Ops.begin()+Idx);
 | |
|       DeletedSMax = true;
 | |
|     }
 | |
| 
 | |
|     if (DeletedSMax)
 | |
|       return getSMaxExpr(Ops);
 | |
|   }
 | |
| 
 | |
|   // Okay, check to see if the same value occurs in the operand list twice.  If
 | |
|   // so, delete one.  Since we sorted the list, these values are required to
 | |
|   // be adjacent.
 | |
|   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
 | |
|     if (Ops[i] == Ops[i+1]) {      //  X smax Y smax Y  -->  X smax Y
 | |
|       Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
 | |
|       --i; --e;
 | |
|     }
 | |
| 
 | |
|   if (Ops.size() == 1) return Ops[0];
 | |
| 
 | |
|   assert(!Ops.empty() && "Reduced smax down to nothing!");
 | |
| 
 | |
|   // Okay, it looks like we really DO need an smax expr.  Check to see if we
 | |
|   // already have one, otherwise create a new one.
 | |
|   std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
 | |
|   SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scSMaxExpr,
 | |
|                                                                  SCEVOps)];
 | |
|   if (Result == 0) Result = new SCEVSMaxExpr(Ops);
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| SCEVHandle ScalarEvolution::getUMaxExpr(const SCEVHandle &LHS,
 | |
|                                         const SCEVHandle &RHS) {
 | |
|   std::vector<SCEVHandle> Ops;
 | |
|   Ops.push_back(LHS);
 | |
|   Ops.push_back(RHS);
 | |
|   return getUMaxExpr(Ops);
 | |
| }
 | |
| 
 | |
| SCEVHandle ScalarEvolution::getUMaxExpr(std::vector<SCEVHandle> Ops) {
 | |
|   assert(!Ops.empty() && "Cannot get empty umax!");
 | |
|   if (Ops.size() == 1) return Ops[0];
 | |
| 
 | |
|   // Sort by complexity, this groups all similar expression types together.
 | |
|   GroupByComplexity(Ops);
 | |
| 
 | |
|   // If there are any constants, fold them together.
 | |
|   unsigned Idx = 0;
 | |
|   if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
 | |
|     ++Idx;
 | |
|     assert(Idx < Ops.size());
 | |
|     while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
 | |
|       // We found two constants, fold them together!
 | |
|       ConstantInt *Fold = ConstantInt::get(
 | |
|                               APIntOps::umax(LHSC->getValue()->getValue(),
 | |
|                                              RHSC->getValue()->getValue()));
 | |
|       Ops[0] = getConstant(Fold);
 | |
|       Ops.erase(Ops.begin()+1);  // Erase the folded element
 | |
|       if (Ops.size() == 1) return Ops[0];
 | |
|       LHSC = cast<SCEVConstant>(Ops[0]);
 | |
|     }
 | |
| 
 | |
|     // If we are left with a constant zero, strip it off.
 | |
|     if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
 | |
|       Ops.erase(Ops.begin());
 | |
|       --Idx;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Ops.size() == 1) return Ops[0];
 | |
| 
 | |
|   // Find the first UMax
 | |
|   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
 | |
|     ++Idx;
 | |
| 
 | |
|   // Check to see if one of the operands is a UMax. If so, expand its operands
 | |
|   // onto our operand list, and recurse to simplify.
 | |
|   if (Idx < Ops.size()) {
 | |
|     bool DeletedUMax = false;
 | |
|     while (SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
 | |
|       Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end());
 | |
|       Ops.erase(Ops.begin()+Idx);
 | |
|       DeletedUMax = true;
 | |
|     }
 | |
| 
 | |
|     if (DeletedUMax)
 | |
|       return getUMaxExpr(Ops);
 | |
|   }
 | |
| 
 | |
|   // Okay, check to see if the same value occurs in the operand list twice.  If
 | |
|   // so, delete one.  Since we sorted the list, these values are required to
 | |
|   // be adjacent.
 | |
|   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
 | |
|     if (Ops[i] == Ops[i+1]) {      //  X umax Y umax Y  -->  X umax Y
 | |
|       Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
 | |
|       --i; --e;
 | |
|     }
 | |
| 
 | |
|   if (Ops.size() == 1) return Ops[0];
 | |
| 
 | |
|   assert(!Ops.empty() && "Reduced umax down to nothing!");
 | |
| 
 | |
|   // Okay, it looks like we really DO need a umax expr.  Check to see if we
 | |
|   // already have one, otherwise create a new one.
 | |
|   std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
 | |
|   SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scUMaxExpr,
 | |
|                                                                  SCEVOps)];
 | |
|   if (Result == 0) Result = new SCEVUMaxExpr(Ops);
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| SCEVHandle ScalarEvolution::getUnknown(Value *V) {
 | |
|   if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
 | |
|     return getConstant(CI);
 | |
|   SCEVUnknown *&Result = (*SCEVUnknowns)[V];
 | |
|   if (Result == 0) Result = new SCEVUnknown(V);
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //             ScalarEvolutionsImpl Definition and Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| /// ScalarEvolutionsImpl - This class implements the main driver for the scalar
 | |
| /// evolution code.
 | |
| ///
 | |
| namespace {
 | |
|   struct VISIBILITY_HIDDEN ScalarEvolutionsImpl {
 | |
|     /// SE - A reference to the public ScalarEvolution object.
 | |
|     ScalarEvolution &SE;
 | |
| 
 | |
|     /// F - The function we are analyzing.
 | |
|     ///
 | |
|     Function &F;
 | |
| 
 | |
|     /// LI - The loop information for the function we are currently analyzing.
 | |
|     ///
 | |
|     LoopInfo &LI;
 | |
| 
 | |
|     /// UnknownValue - This SCEV is used to represent unknown trip counts and
 | |
|     /// things.
 | |
|     SCEVHandle UnknownValue;
 | |
| 
 | |
|     /// Scalars - This is a cache of the scalars we have analyzed so far.
 | |
|     ///
 | |
|     std::map<Value*, SCEVHandle> Scalars;
 | |
| 
 | |
|     /// IterationCounts - Cache the iteration count of the loops for this
 | |
|     /// function as they are computed.
 | |
|     std::map<const Loop*, SCEVHandle> IterationCounts;
 | |
| 
 | |
|     /// ConstantEvolutionLoopExitValue - This map contains entries for all of
 | |
|     /// the PHI instructions that we attempt to compute constant evolutions for.
 | |
|     /// This allows us to avoid potentially expensive recomputation of these
 | |
|     /// properties.  An instruction maps to null if we are unable to compute its
 | |
|     /// exit value.
 | |
|     std::map<PHINode*, Constant*> ConstantEvolutionLoopExitValue;
 | |
| 
 | |
|   public:
 | |
|     ScalarEvolutionsImpl(ScalarEvolution &se, Function &f, LoopInfo &li)
 | |
|       : SE(se), F(f), LI(li), UnknownValue(new SCEVCouldNotCompute()) {}
 | |
| 
 | |
|     /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
 | |
|     /// expression and create a new one.
 | |
|     SCEVHandle getSCEV(Value *V);
 | |
| 
 | |
|     /// hasSCEV - Return true if the SCEV for this value has already been
 | |
|     /// computed.
 | |
|     bool hasSCEV(Value *V) const {
 | |
|       return Scalars.count(V);
 | |
|     }
 | |
| 
 | |
|     /// setSCEV - Insert the specified SCEV into the map of current SCEVs for
 | |
|     /// the specified value.
 | |
|     void setSCEV(Value *V, const SCEVHandle &H) {
 | |
|       bool isNew = Scalars.insert(std::make_pair(V, H)).second;
 | |
|       assert(isNew && "This entry already existed!");
 | |
|     }
 | |
| 
 | |
| 
 | |
|     /// getSCEVAtScope - Compute the value of the specified expression within
 | |
|     /// the indicated loop (which may be null to indicate in no loop).  If the
 | |
|     /// expression cannot be evaluated, return UnknownValue itself.
 | |
|     SCEVHandle getSCEVAtScope(SCEV *V, const Loop *L);
 | |
| 
 | |
| 
 | |
|     /// hasLoopInvariantIterationCount - Return true if the specified loop has
 | |
|     /// an analyzable loop-invariant iteration count.
 | |
|     bool hasLoopInvariantIterationCount(const Loop *L);
 | |
| 
 | |
|     /// getIterationCount - If the specified loop has a predictable iteration
 | |
|     /// count, return it.  Note that it is not valid to call this method on a
 | |
|     /// loop without a loop-invariant iteration count.
 | |
|     SCEVHandle getIterationCount(const Loop *L);
 | |
| 
 | |
|     /// deleteValueFromRecords - This method should be called by the
 | |
|     /// client before it removes a value from the program, to make sure
 | |
|     /// that no dangling references are left around.
 | |
|     void deleteValueFromRecords(Value *V);
 | |
| 
 | |
|   private:
 | |
|     /// createSCEV - We know that there is no SCEV for the specified value.
 | |
|     /// Analyze the expression.
 | |
|     SCEVHandle createSCEV(Value *V);
 | |
| 
 | |
|     /// createNodeForPHI - Provide the special handling we need to analyze PHI
 | |
|     /// SCEVs.
 | |
|     SCEVHandle createNodeForPHI(PHINode *PN);
 | |
| 
 | |
|     /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value
 | |
|     /// for the specified instruction and replaces any references to the
 | |
|     /// symbolic value SymName with the specified value.  This is used during
 | |
|     /// PHI resolution.
 | |
|     void ReplaceSymbolicValueWithConcrete(Instruction *I,
 | |
|                                           const SCEVHandle &SymName,
 | |
|                                           const SCEVHandle &NewVal);
 | |
| 
 | |
|     /// ComputeIterationCount - Compute the number of times the specified loop
 | |
|     /// will iterate.
 | |
|     SCEVHandle ComputeIterationCount(const Loop *L);
 | |
| 
 | |
|     /// ComputeLoadConstantCompareIterationCount - Given an exit condition of
 | |
|     /// 'icmp op load X, cst', try to see if we can compute the trip count.
 | |
|     SCEVHandle ComputeLoadConstantCompareIterationCount(LoadInst *LI,
 | |
|                                                         Constant *RHS,
 | |
|                                                         const Loop *L,
 | |
|                                                         ICmpInst::Predicate p);
 | |
| 
 | |
|     /// ComputeIterationCountExhaustively - If the trip is known to execute a
 | |
|     /// constant number of times (the condition evolves only from constants),
 | |
|     /// try to evaluate a few iterations of the loop until we get the exit
 | |
|     /// condition gets a value of ExitWhen (true or false).  If we cannot
 | |
|     /// evaluate the trip count of the loop, return UnknownValue.
 | |
|     SCEVHandle ComputeIterationCountExhaustively(const Loop *L, Value *Cond,
 | |
|                                                  bool ExitWhen);
 | |
| 
 | |
|     /// HowFarToZero - Return the number of times a backedge comparing the
 | |
|     /// specified value to zero will execute.  If not computable, return
 | |
|     /// UnknownValue.
 | |
|     SCEVHandle HowFarToZero(SCEV *V, const Loop *L);
 | |
| 
 | |
|     /// HowFarToNonZero - Return the number of times a backedge checking the
 | |
|     /// specified value for nonzero will execute.  If not computable, return
 | |
|     /// UnknownValue.
 | |
|     SCEVHandle HowFarToNonZero(SCEV *V, const Loop *L);
 | |
| 
 | |
|     /// HowManyLessThans - Return the number of times a backedge containing the
 | |
|     /// specified less-than comparison will execute.  If not computable, return
 | |
|     /// UnknownValue. isSigned specifies whether the less-than is signed.
 | |
|     SCEVHandle HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L,
 | |
|                                 bool isSigned);
 | |
| 
 | |
|     /// executesAtLeastOnce - Test whether entry to the loop is protected by
 | |
|     /// a conditional between LHS and RHS.
 | |
|     bool executesAtLeastOnce(const Loop *L, bool isSigned, SCEV *LHS, SCEV *RHS);
 | |
| 
 | |
|     /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
 | |
|     /// in the header of its containing loop, we know the loop executes a
 | |
|     /// constant number of times, and the PHI node is just a recurrence
 | |
|     /// involving constants, fold it.
 | |
|     Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& Its,
 | |
|                                                 const Loop *L);
 | |
|   };
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //            Basic SCEV Analysis and PHI Idiom Recognition Code
 | |
| //
 | |
| 
 | |
| /// deleteValueFromRecords - This method should be called by the
 | |
| /// client before it removes an instruction from the program, to make sure
 | |
| /// that no dangling references are left around.
 | |
| void ScalarEvolutionsImpl::deleteValueFromRecords(Value *V) {
 | |
|   SmallVector<Value *, 16> Worklist;
 | |
| 
 | |
|   if (Scalars.erase(V)) {
 | |
|     if (PHINode *PN = dyn_cast<PHINode>(V))
 | |
|       ConstantEvolutionLoopExitValue.erase(PN);
 | |
|     Worklist.push_back(V);
 | |
|   }
 | |
| 
 | |
|   while (!Worklist.empty()) {
 | |
|     Value *VV = Worklist.back();
 | |
|     Worklist.pop_back();
 | |
| 
 | |
|     for (Instruction::use_iterator UI = VV->use_begin(), UE = VV->use_end();
 | |
|          UI != UE; ++UI) {
 | |
|       Instruction *Inst = cast<Instruction>(*UI);
 | |
|       if (Scalars.erase(Inst)) {
 | |
|         if (PHINode *PN = dyn_cast<PHINode>(VV))
 | |
|           ConstantEvolutionLoopExitValue.erase(PN);
 | |
|         Worklist.push_back(Inst);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
 | |
| /// expression and create a new one.
 | |
| SCEVHandle ScalarEvolutionsImpl::getSCEV(Value *V) {
 | |
|   assert(V->getType() != Type::VoidTy && "Can't analyze void expressions!");
 | |
| 
 | |
|   std::map<Value*, SCEVHandle>::iterator I = Scalars.find(V);
 | |
|   if (I != Scalars.end()) return I->second;
 | |
|   SCEVHandle S = createSCEV(V);
 | |
|   Scalars.insert(std::make_pair(V, S));
 | |
|   return S;
 | |
| }
 | |
| 
 | |
| /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for
 | |
| /// the specified instruction and replaces any references to the symbolic value
 | |
| /// SymName with the specified value.  This is used during PHI resolution.
 | |
| void ScalarEvolutionsImpl::
 | |
| ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName,
 | |
|                                  const SCEVHandle &NewVal) {
 | |
|   std::map<Value*, SCEVHandle>::iterator SI = Scalars.find(I);
 | |
|   if (SI == Scalars.end()) return;
 | |
| 
 | |
|   SCEVHandle NV =
 | |
|     SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal, SE);
 | |
|   if (NV == SI->second) return;  // No change.
 | |
| 
 | |
|   SI->second = NV;       // Update the scalars map!
 | |
| 
 | |
|   // Any instruction values that use this instruction might also need to be
 | |
|   // updated!
 | |
|   for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
 | |
|        UI != E; ++UI)
 | |
|     ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal);
 | |
| }
 | |
| 
 | |
| /// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
 | |
| /// a loop header, making it a potential recurrence, or it doesn't.
 | |
| ///
 | |
| SCEVHandle ScalarEvolutionsImpl::createNodeForPHI(PHINode *PN) {
 | |
|   if (PN->getNumIncomingValues() == 2)  // The loops have been canonicalized.
 | |
|     if (const Loop *L = LI.getLoopFor(PN->getParent()))
 | |
|       if (L->getHeader() == PN->getParent()) {
 | |
|         // If it lives in the loop header, it has two incoming values, one
 | |
|         // from outside the loop, and one from inside.
 | |
|         unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
 | |
|         unsigned BackEdge     = IncomingEdge^1;
 | |
| 
 | |
|         // While we are analyzing this PHI node, handle its value symbolically.
 | |
|         SCEVHandle SymbolicName = SE.getUnknown(PN);
 | |
|         assert(Scalars.find(PN) == Scalars.end() &&
 | |
|                "PHI node already processed?");
 | |
|         Scalars.insert(std::make_pair(PN, SymbolicName));
 | |
| 
 | |
|         // Using this symbolic name for the PHI, analyze the value coming around
 | |
|         // the back-edge.
 | |
|         SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge));
 | |
| 
 | |
|         // NOTE: If BEValue is loop invariant, we know that the PHI node just
 | |
|         // has a special value for the first iteration of the loop.
 | |
| 
 | |
|         // If the value coming around the backedge is an add with the symbolic
 | |
|         // value we just inserted, then we found a simple induction variable!
 | |
|         if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
 | |
|           // If there is a single occurrence of the symbolic value, replace it
 | |
|           // with a recurrence.
 | |
|           unsigned FoundIndex = Add->getNumOperands();
 | |
|           for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
 | |
|             if (Add->getOperand(i) == SymbolicName)
 | |
|               if (FoundIndex == e) {
 | |
|                 FoundIndex = i;
 | |
|                 break;
 | |
|               }
 | |
| 
 | |
|           if (FoundIndex != Add->getNumOperands()) {
 | |
|             // Create an add with everything but the specified operand.
 | |
|             std::vector<SCEVHandle> Ops;
 | |
|             for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
 | |
|               if (i != FoundIndex)
 | |
|                 Ops.push_back(Add->getOperand(i));
 | |
|             SCEVHandle Accum = SE.getAddExpr(Ops);
 | |
| 
 | |
|             // This is not a valid addrec if the step amount is varying each
 | |
|             // loop iteration, but is not itself an addrec in this loop.
 | |
|             if (Accum->isLoopInvariant(L) ||
 | |
|                 (isa<SCEVAddRecExpr>(Accum) &&
 | |
|                  cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
 | |
|               SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
 | |
|               SCEVHandle PHISCEV  = SE.getAddRecExpr(StartVal, Accum, L);
 | |
| 
 | |
|               // Okay, for the entire analysis of this edge we assumed the PHI
 | |
|               // to be symbolic.  We now need to go back and update all of the
 | |
|               // entries for the scalars that use the PHI (except for the PHI
 | |
|               // itself) to use the new analyzed value instead of the "symbolic"
 | |
|               // value.
 | |
|               ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
 | |
|               return PHISCEV;
 | |
|             }
 | |
|           }
 | |
|         } else if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(BEValue)) {
 | |
|           // Otherwise, this could be a loop like this:
 | |
|           //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
 | |
|           // In this case, j = {1,+,1}  and BEValue is j.
 | |
|           // Because the other in-value of i (0) fits the evolution of BEValue
 | |
|           // i really is an addrec evolution.
 | |
|           if (AddRec->getLoop() == L && AddRec->isAffine()) {
 | |
|             SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
 | |
| 
 | |
|             // If StartVal = j.start - j.stride, we can use StartVal as the
 | |
|             // initial step of the addrec evolution.
 | |
|             if (StartVal == SE.getMinusSCEV(AddRec->getOperand(0),
 | |
|                                             AddRec->getOperand(1))) {
 | |
|               SCEVHandle PHISCEV = 
 | |
|                  SE.getAddRecExpr(StartVal, AddRec->getOperand(1), L);
 | |
| 
 | |
|               // Okay, for the entire analysis of this edge we assumed the PHI
 | |
|               // to be symbolic.  We now need to go back and update all of the
 | |
|               // entries for the scalars that use the PHI (except for the PHI
 | |
|               // itself) to use the new analyzed value instead of the "symbolic"
 | |
|               // value.
 | |
|               ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
 | |
|               return PHISCEV;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         return SymbolicName;
 | |
|       }
 | |
| 
 | |
|   // If it's not a loop phi, we can't handle it yet.
 | |
|   return SE.getUnknown(PN);
 | |
| }
 | |
| 
 | |
| /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
 | |
| /// guaranteed to end in (at every loop iteration).  It is, at the same time,
 | |
| /// the minimum number of times S is divisible by 2.  For example, given {4,+,8}
 | |
| /// it returns 2.  If S is guaranteed to be 0, it returns the bitwidth of S.
 | |
| static uint32_t GetMinTrailingZeros(SCEVHandle S) {
 | |
|   if (SCEVConstant *C = dyn_cast<SCEVConstant>(S))
 | |
|     return C->getValue()->getValue().countTrailingZeros();
 | |
| 
 | |
|   if (SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
 | |
|     return std::min(GetMinTrailingZeros(T->getOperand()), T->getBitWidth());
 | |
| 
 | |
|   if (SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
 | |
|     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
 | |
|     return OpRes == E->getOperand()->getBitWidth() ? E->getBitWidth() : OpRes;
 | |
|   }
 | |
| 
 | |
|   if (SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
 | |
|     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
 | |
|     return OpRes == E->getOperand()->getBitWidth() ? E->getBitWidth() : OpRes;
 | |
|   }
 | |
| 
 | |
|   if (SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
 | |
|     // The result is the min of all operands results.
 | |
|     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
 | |
|     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
 | |
|       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
 | |
|     return MinOpRes;
 | |
|   }
 | |
| 
 | |
|   if (SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
 | |
|     // The result is the sum of all operands results.
 | |
|     uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
 | |
|     uint32_t BitWidth = M->getBitWidth();
 | |
|     for (unsigned i = 1, e = M->getNumOperands();
 | |
|          SumOpRes != BitWidth && i != e; ++i)
 | |
|       SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
 | |
|                           BitWidth);
 | |
|     return SumOpRes;
 | |
|   }
 | |
| 
 | |
|   if (SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
 | |
|     // The result is the min of all operands results.
 | |
|     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
 | |
|     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
 | |
|       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
 | |
|     return MinOpRes;
 | |
|   }
 | |
| 
 | |
|   if (SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
 | |
|     // The result is the min of all operands results.
 | |
|     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
 | |
|     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
 | |
|       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
 | |
|     return MinOpRes;
 | |
|   }
 | |
| 
 | |
|   if (SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
 | |
|     // The result is the min of all operands results.
 | |
|     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
 | |
|     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
 | |
|       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
 | |
|     return MinOpRes;
 | |
|   }
 | |
| 
 | |
|   // SCEVUDivExpr, SCEVUnknown
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// createSCEV - We know that there is no SCEV for the specified value.
 | |
| /// Analyze the expression.
 | |
| ///
 | |
| SCEVHandle ScalarEvolutionsImpl::createSCEV(Value *V) {
 | |
|   if (!isa<IntegerType>(V->getType()))
 | |
|     return SE.getUnknown(V);
 | |
|     
 | |
|   unsigned Opcode = Instruction::UserOp1;
 | |
|   if (Instruction *I = dyn_cast<Instruction>(V))
 | |
|     Opcode = I->getOpcode();
 | |
|   else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
 | |
|     Opcode = CE->getOpcode();
 | |
|   else
 | |
|     return SE.getUnknown(V);
 | |
| 
 | |
|   User *U = cast<User>(V);
 | |
|   switch (Opcode) {
 | |
|   case Instruction::Add:
 | |
|     return SE.getAddExpr(getSCEV(U->getOperand(0)),
 | |
|                          getSCEV(U->getOperand(1)));
 | |
|   case Instruction::Mul:
 | |
|     return SE.getMulExpr(getSCEV(U->getOperand(0)),
 | |
|                          getSCEV(U->getOperand(1)));
 | |
|   case Instruction::UDiv:
 | |
|     return SE.getUDivExpr(getSCEV(U->getOperand(0)),
 | |
|                           getSCEV(U->getOperand(1)));
 | |
|   case Instruction::Sub:
 | |
|     return SE.getMinusSCEV(getSCEV(U->getOperand(0)),
 | |
|                            getSCEV(U->getOperand(1)));
 | |
|   case Instruction::Or:
 | |
|     // If the RHS of the Or is a constant, we may have something like:
 | |
|     // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
 | |
|     // optimizations will transparently handle this case.
 | |
|     //
 | |
|     // In order for this transformation to be safe, the LHS must be of the
 | |
|     // form X*(2^n) and the Or constant must be less than 2^n.
 | |
|     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
 | |
|       SCEVHandle LHS = getSCEV(U->getOperand(0));
 | |
|       const APInt &CIVal = CI->getValue();
 | |
|       if (GetMinTrailingZeros(LHS) >=
 | |
|           (CIVal.getBitWidth() - CIVal.countLeadingZeros()))
 | |
|         return SE.getAddExpr(LHS, getSCEV(U->getOperand(1)));
 | |
|     }
 | |
|     break;
 | |
|   case Instruction::Xor:
 | |
|     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
 | |
|       // If the RHS of the xor is a signbit, then this is just an add.
 | |
|       // Instcombine turns add of signbit into xor as a strength reduction step.
 | |
|       if (CI->getValue().isSignBit())
 | |
|         return SE.getAddExpr(getSCEV(U->getOperand(0)),
 | |
|                              getSCEV(U->getOperand(1)));
 | |
| 
 | |
|       // If the RHS of xor is -1, then this is a not operation.
 | |
|       else if (CI->isAllOnesValue())
 | |
|         return SE.getNotSCEV(getSCEV(U->getOperand(0)));
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case Instruction::Shl:
 | |
|     // Turn shift left of a constant amount into a multiply.
 | |
|     if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
 | |
|       uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
 | |
|       Constant *X = ConstantInt::get(
 | |
|         APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
 | |
|       return SE.getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case Instruction::LShr:
 | |
|     // Turn logical shift right of a constant into a unsigned divide.
 | |
|     if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
 | |
|       uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
 | |
|       Constant *X = ConstantInt::get(
 | |
|         APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
 | |
|       return SE.getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case Instruction::Trunc:
 | |
|     return SE.getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
 | |
| 
 | |
|   case Instruction::ZExt:
 | |
|     return SE.getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
 | |
| 
 | |
|   case Instruction::SExt:
 | |
|     return SE.getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
 | |
| 
 | |
|   case Instruction::BitCast:
 | |
|     // BitCasts are no-op casts so we just eliminate the cast.
 | |
|     if (U->getType()->isInteger() &&
 | |
|         U->getOperand(0)->getType()->isInteger())
 | |
|       return getSCEV(U->getOperand(0));
 | |
|     break;
 | |
| 
 | |
|   case Instruction::PHI:
 | |
|     return createNodeForPHI(cast<PHINode>(U));
 | |
| 
 | |
|   case Instruction::Select:
 | |
|     // This could be a smax or umax that was lowered earlier.
 | |
|     // Try to recover it.
 | |
|     if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
 | |
|       Value *LHS = ICI->getOperand(0);
 | |
|       Value *RHS = ICI->getOperand(1);
 | |
|       switch (ICI->getPredicate()) {
 | |
|       case ICmpInst::ICMP_SLT:
 | |
|       case ICmpInst::ICMP_SLE:
 | |
|         std::swap(LHS, RHS);
 | |
|         // fall through
 | |
|       case ICmpInst::ICMP_SGT:
 | |
|       case ICmpInst::ICMP_SGE:
 | |
|         if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
 | |
|           return SE.getSMaxExpr(getSCEV(LHS), getSCEV(RHS));
 | |
|         else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
 | |
|           // ~smax(~x, ~y) == smin(x, y).
 | |
|           return SE.getNotSCEV(SE.getSMaxExpr(
 | |
|                                    SE.getNotSCEV(getSCEV(LHS)),
 | |
|                                    SE.getNotSCEV(getSCEV(RHS))));
 | |
|         break;
 | |
|       case ICmpInst::ICMP_ULT:
 | |
|       case ICmpInst::ICMP_ULE:
 | |
|         std::swap(LHS, RHS);
 | |
|         // fall through
 | |
|       case ICmpInst::ICMP_UGT:
 | |
|       case ICmpInst::ICMP_UGE:
 | |
|         if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
 | |
|           return SE.getUMaxExpr(getSCEV(LHS), getSCEV(RHS));
 | |
|         else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
 | |
|           // ~umax(~x, ~y) == umin(x, y)
 | |
|           return SE.getNotSCEV(SE.getUMaxExpr(SE.getNotSCEV(getSCEV(LHS)),
 | |
|                                               SE.getNotSCEV(getSCEV(RHS))));
 | |
|         break;
 | |
|       default:
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   default: // We cannot analyze this expression.
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return SE.getUnknown(V);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                   Iteration Count Computation Code
 | |
| //
 | |
| 
 | |
| /// getIterationCount - If the specified loop has a predictable iteration
 | |
| /// count, return it.  Note that it is not valid to call this method on a
 | |
| /// loop without a loop-invariant iteration count.
 | |
| SCEVHandle ScalarEvolutionsImpl::getIterationCount(const Loop *L) {
 | |
|   std::map<const Loop*, SCEVHandle>::iterator I = IterationCounts.find(L);
 | |
|   if (I == IterationCounts.end()) {
 | |
|     SCEVHandle ItCount = ComputeIterationCount(L);
 | |
|     I = IterationCounts.insert(std::make_pair(L, ItCount)).first;
 | |
|     if (ItCount != UnknownValue) {
 | |
|       assert(ItCount->isLoopInvariant(L) &&
 | |
|              "Computed trip count isn't loop invariant for loop!");
 | |
|       ++NumTripCountsComputed;
 | |
|     } else if (isa<PHINode>(L->getHeader()->begin())) {
 | |
|       // Only count loops that have phi nodes as not being computable.
 | |
|       ++NumTripCountsNotComputed;
 | |
|     }
 | |
|   }
 | |
|   return I->second;
 | |
| }
 | |
| 
 | |
| /// ComputeIterationCount - Compute the number of times the specified loop
 | |
| /// will iterate.
 | |
| SCEVHandle ScalarEvolutionsImpl::ComputeIterationCount(const Loop *L) {
 | |
|   // If the loop has a non-one exit block count, we can't analyze it.
 | |
|   SmallVector<BasicBlock*, 8> ExitBlocks;
 | |
|   L->getExitBlocks(ExitBlocks);
 | |
|   if (ExitBlocks.size() != 1) return UnknownValue;
 | |
| 
 | |
|   // Okay, there is one exit block.  Try to find the condition that causes the
 | |
|   // loop to be exited.
 | |
|   BasicBlock *ExitBlock = ExitBlocks[0];
 | |
| 
 | |
|   BasicBlock *ExitingBlock = 0;
 | |
|   for (pred_iterator PI = pred_begin(ExitBlock), E = pred_end(ExitBlock);
 | |
|        PI != E; ++PI)
 | |
|     if (L->contains(*PI)) {
 | |
|       if (ExitingBlock == 0)
 | |
|         ExitingBlock = *PI;
 | |
|       else
 | |
|         return UnknownValue;   // More than one block exiting!
 | |
|     }
 | |
|   assert(ExitingBlock && "No exits from loop, something is broken!");
 | |
| 
 | |
|   // Okay, we've computed the exiting block.  See what condition causes us to
 | |
|   // exit.
 | |
|   //
 | |
|   // FIXME: we should be able to handle switch instructions (with a single exit)
 | |
|   BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
 | |
|   if (ExitBr == 0) return UnknownValue;
 | |
|   assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
 | |
|   
 | |
|   // At this point, we know we have a conditional branch that determines whether
 | |
|   // the loop is exited.  However, we don't know if the branch is executed each
 | |
|   // time through the loop.  If not, then the execution count of the branch will
 | |
|   // not be equal to the trip count of the loop.
 | |
|   //
 | |
|   // Currently we check for this by checking to see if the Exit branch goes to
 | |
|   // the loop header.  If so, we know it will always execute the same number of
 | |
|   // times as the loop.  We also handle the case where the exit block *is* the
 | |
|   // loop header.  This is common for un-rotated loops.  More extensive analysis
 | |
|   // could be done to handle more cases here.
 | |
|   if (ExitBr->getSuccessor(0) != L->getHeader() &&
 | |
|       ExitBr->getSuccessor(1) != L->getHeader() &&
 | |
|       ExitBr->getParent() != L->getHeader())
 | |
|     return UnknownValue;
 | |
|   
 | |
|   ICmpInst *ExitCond = dyn_cast<ICmpInst>(ExitBr->getCondition());
 | |
| 
 | |
|   // If it's not an integer comparison then compute it the hard way. 
 | |
|   // Note that ICmpInst deals with pointer comparisons too so we must check
 | |
|   // the type of the operand.
 | |
|   if (ExitCond == 0 || isa<PointerType>(ExitCond->getOperand(0)->getType()))
 | |
|     return ComputeIterationCountExhaustively(L, ExitBr->getCondition(),
 | |
|                                           ExitBr->getSuccessor(0) == ExitBlock);
 | |
| 
 | |
|   // If the condition was exit on true, convert the condition to exit on false
 | |
|   ICmpInst::Predicate Cond;
 | |
|   if (ExitBr->getSuccessor(1) == ExitBlock)
 | |
|     Cond = ExitCond->getPredicate();
 | |
|   else
 | |
|     Cond = ExitCond->getInversePredicate();
 | |
| 
 | |
|   // Handle common loops like: for (X = "string"; *X; ++X)
 | |
|   if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
 | |
|     if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
 | |
|       SCEVHandle ItCnt =
 | |
|         ComputeLoadConstantCompareIterationCount(LI, RHS, L, Cond);
 | |
|       if (!isa<SCEVCouldNotCompute>(ItCnt)) return ItCnt;
 | |
|     }
 | |
| 
 | |
|   SCEVHandle LHS = getSCEV(ExitCond->getOperand(0));
 | |
|   SCEVHandle RHS = getSCEV(ExitCond->getOperand(1));
 | |
| 
 | |
|   // Try to evaluate any dependencies out of the loop.
 | |
|   SCEVHandle Tmp = getSCEVAtScope(LHS, L);
 | |
|   if (!isa<SCEVCouldNotCompute>(Tmp)) LHS = Tmp;
 | |
|   Tmp = getSCEVAtScope(RHS, L);
 | |
|   if (!isa<SCEVCouldNotCompute>(Tmp)) RHS = Tmp;
 | |
| 
 | |
|   // At this point, we would like to compute how many iterations of the 
 | |
|   // loop the predicate will return true for these inputs.
 | |
|   if (isa<SCEVConstant>(LHS) && !isa<SCEVConstant>(RHS)) {
 | |
|     // If there is a constant, force it into the RHS.
 | |
|     std::swap(LHS, RHS);
 | |
|     Cond = ICmpInst::getSwappedPredicate(Cond);
 | |
|   }
 | |
| 
 | |
|   // FIXME: think about handling pointer comparisons!  i.e.:
 | |
|   // while (P != P+100) ++P;
 | |
| 
 | |
|   // If we have a comparison of a chrec against a constant, try to use value
 | |
|   // ranges to answer this query.
 | |
|   if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
 | |
|     if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
 | |
|       if (AddRec->getLoop() == L) {
 | |
|         // Form the comparison range using the constant of the correct type so
 | |
|         // that the ConstantRange class knows to do a signed or unsigned
 | |
|         // comparison.
 | |
|         ConstantInt *CompVal = RHSC->getValue();
 | |
|         const Type *RealTy = ExitCond->getOperand(0)->getType();
 | |
|         CompVal = dyn_cast<ConstantInt>(
 | |
|           ConstantExpr::getBitCast(CompVal, RealTy));
 | |
|         if (CompVal) {
 | |
|           // Form the constant range.
 | |
|           ConstantRange CompRange(
 | |
|               ICmpInst::makeConstantRange(Cond, CompVal->getValue()));
 | |
| 
 | |
|           SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange, SE);
 | |
|           if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|   switch (Cond) {
 | |
|   case ICmpInst::ICMP_NE: {                     // while (X != Y)
 | |
|     // Convert to: while (X-Y != 0)
 | |
|     SCEVHandle TC = HowFarToZero(SE.getMinusSCEV(LHS, RHS), L);
 | |
|     if (!isa<SCEVCouldNotCompute>(TC)) return TC;
 | |
|     break;
 | |
|   }
 | |
|   case ICmpInst::ICMP_EQ: {
 | |
|     // Convert to: while (X-Y == 0)           // while (X == Y)
 | |
|     SCEVHandle TC = HowFarToNonZero(SE.getMinusSCEV(LHS, RHS), L);
 | |
|     if (!isa<SCEVCouldNotCompute>(TC)) return TC;
 | |
|     break;
 | |
|   }
 | |
|   case ICmpInst::ICMP_SLT: {
 | |
|     SCEVHandle TC = HowManyLessThans(LHS, RHS, L, true);
 | |
|     if (!isa<SCEVCouldNotCompute>(TC)) return TC;
 | |
|     break;
 | |
|   }
 | |
|   case ICmpInst::ICMP_SGT: {
 | |
|     SCEVHandle TC = HowManyLessThans(SE.getNotSCEV(LHS),
 | |
|                                      SE.getNotSCEV(RHS), L, true);
 | |
|     if (!isa<SCEVCouldNotCompute>(TC)) return TC;
 | |
|     break;
 | |
|   }
 | |
|   case ICmpInst::ICMP_ULT: {
 | |
|     SCEVHandle TC = HowManyLessThans(LHS, RHS, L, false);
 | |
|     if (!isa<SCEVCouldNotCompute>(TC)) return TC;
 | |
|     break;
 | |
|   }
 | |
|   case ICmpInst::ICMP_UGT: {
 | |
|     SCEVHandle TC = HowManyLessThans(SE.getNotSCEV(LHS),
 | |
|                                      SE.getNotSCEV(RHS), L, false);
 | |
|     if (!isa<SCEVCouldNotCompute>(TC)) return TC;
 | |
|     break;
 | |
|   }
 | |
|   default:
 | |
| #if 0
 | |
|     cerr << "ComputeIterationCount ";
 | |
|     if (ExitCond->getOperand(0)->getType()->isUnsigned())
 | |
|       cerr << "[unsigned] ";
 | |
|     cerr << *LHS << "   "
 | |
|          << Instruction::getOpcodeName(Instruction::ICmp) 
 | |
|          << "   " << *RHS << "\n";
 | |
| #endif
 | |
|     break;
 | |
|   }
 | |
|   return ComputeIterationCountExhaustively(L, ExitCond,
 | |
|                                        ExitBr->getSuccessor(0) == ExitBlock);
 | |
| }
 | |
| 
 | |
| static ConstantInt *
 | |
| EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
 | |
|                                 ScalarEvolution &SE) {
 | |
|   SCEVHandle InVal = SE.getConstant(C);
 | |
|   SCEVHandle Val = AddRec->evaluateAtIteration(InVal, SE);
 | |
|   assert(isa<SCEVConstant>(Val) &&
 | |
|          "Evaluation of SCEV at constant didn't fold correctly?");
 | |
|   return cast<SCEVConstant>(Val)->getValue();
 | |
| }
 | |
| 
 | |
| /// GetAddressedElementFromGlobal - Given a global variable with an initializer
 | |
| /// and a GEP expression (missing the pointer index) indexing into it, return
 | |
| /// the addressed element of the initializer or null if the index expression is
 | |
| /// invalid.
 | |
| static Constant *
 | |
| GetAddressedElementFromGlobal(GlobalVariable *GV,
 | |
|                               const std::vector<ConstantInt*> &Indices) {
 | |
|   Constant *Init = GV->getInitializer();
 | |
|   for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
 | |
|     uint64_t Idx = Indices[i]->getZExtValue();
 | |
|     if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
 | |
|       assert(Idx < CS->getNumOperands() && "Bad struct index!");
 | |
|       Init = cast<Constant>(CS->getOperand(Idx));
 | |
|     } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
 | |
|       if (Idx >= CA->getNumOperands()) return 0;  // Bogus program
 | |
|       Init = cast<Constant>(CA->getOperand(Idx));
 | |
|     } else if (isa<ConstantAggregateZero>(Init)) {
 | |
|       if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
 | |
|         assert(Idx < STy->getNumElements() && "Bad struct index!");
 | |
|         Init = Constant::getNullValue(STy->getElementType(Idx));
 | |
|       } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
 | |
|         if (Idx >= ATy->getNumElements()) return 0;  // Bogus program
 | |
|         Init = Constant::getNullValue(ATy->getElementType());
 | |
|       } else {
 | |
|         assert(0 && "Unknown constant aggregate type!");
 | |
|       }
 | |
|       return 0;
 | |
|     } else {
 | |
|       return 0; // Unknown initializer type
 | |
|     }
 | |
|   }
 | |
|   return Init;
 | |
| }
 | |
| 
 | |
| /// ComputeLoadConstantCompareIterationCount - Given an exit condition of
 | |
| /// 'icmp op load X, cst', try to see if we can compute the trip count.
 | |
| SCEVHandle ScalarEvolutionsImpl::
 | |
| ComputeLoadConstantCompareIterationCount(LoadInst *LI, Constant *RHS,
 | |
|                                          const Loop *L, 
 | |
|                                          ICmpInst::Predicate predicate) {
 | |
|   if (LI->isVolatile()) return UnknownValue;
 | |
| 
 | |
|   // Check to see if the loaded pointer is a getelementptr of a global.
 | |
|   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
 | |
|   if (!GEP) return UnknownValue;
 | |
| 
 | |
|   // Make sure that it is really a constant global we are gepping, with an
 | |
|   // initializer, and make sure the first IDX is really 0.
 | |
|   GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
 | |
|   if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
 | |
|       GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
 | |
|       !cast<Constant>(GEP->getOperand(1))->isNullValue())
 | |
|     return UnknownValue;
 | |
| 
 | |
|   // Okay, we allow one non-constant index into the GEP instruction.
 | |
|   Value *VarIdx = 0;
 | |
|   std::vector<ConstantInt*> Indexes;
 | |
|   unsigned VarIdxNum = 0;
 | |
|   for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
 | |
|     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
 | |
|       Indexes.push_back(CI);
 | |
|     } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
 | |
|       if (VarIdx) return UnknownValue;  // Multiple non-constant idx's.
 | |
|       VarIdx = GEP->getOperand(i);
 | |
|       VarIdxNum = i-2;
 | |
|       Indexes.push_back(0);
 | |
|     }
 | |
| 
 | |
|   // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
 | |
|   // Check to see if X is a loop variant variable value now.
 | |
|   SCEVHandle Idx = getSCEV(VarIdx);
 | |
|   SCEVHandle Tmp = getSCEVAtScope(Idx, L);
 | |
|   if (!isa<SCEVCouldNotCompute>(Tmp)) Idx = Tmp;
 | |
| 
 | |
|   // We can only recognize very limited forms of loop index expressions, in
 | |
|   // particular, only affine AddRec's like {C1,+,C2}.
 | |
|   SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
 | |
|   if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
 | |
|       !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
 | |
|       !isa<SCEVConstant>(IdxExpr->getOperand(1)))
 | |
|     return UnknownValue;
 | |
| 
 | |
|   unsigned MaxSteps = MaxBruteForceIterations;
 | |
|   for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
 | |
|     ConstantInt *ItCst =
 | |
|       ConstantInt::get(IdxExpr->getType(), IterationNum);
 | |
|     ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, SE);
 | |
| 
 | |
|     // Form the GEP offset.
 | |
|     Indexes[VarIdxNum] = Val;
 | |
| 
 | |
|     Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
 | |
|     if (Result == 0) break;  // Cannot compute!
 | |
| 
 | |
|     // Evaluate the condition for this iteration.
 | |
|     Result = ConstantExpr::getICmp(predicate, Result, RHS);
 | |
|     if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
 | |
|     if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
 | |
| #if 0
 | |
|       cerr << "\n***\n*** Computed loop count " << *ItCst
 | |
|            << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
 | |
|            << "***\n";
 | |
| #endif
 | |
|       ++NumArrayLenItCounts;
 | |
|       return SE.getConstant(ItCst);   // Found terminating iteration!
 | |
|     }
 | |
|   }
 | |
|   return UnknownValue;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// CanConstantFold - Return true if we can constant fold an instruction of the
 | |
| /// specified type, assuming that all operands were constants.
 | |
| static bool CanConstantFold(const Instruction *I) {
 | |
|   if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
 | |
|       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
 | |
|     return true;
 | |
| 
 | |
|   if (const CallInst *CI = dyn_cast<CallInst>(I))
 | |
|     if (const Function *F = CI->getCalledFunction())
 | |
|       return canConstantFoldCallTo(F);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
 | |
| /// in the loop that V is derived from.  We allow arbitrary operations along the
 | |
| /// way, but the operands of an operation must either be constants or a value
 | |
| /// derived from a constant PHI.  If this expression does not fit with these
 | |
| /// constraints, return null.
 | |
| static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
 | |
|   // If this is not an instruction, or if this is an instruction outside of the
 | |
|   // loop, it can't be derived from a loop PHI.
 | |
|   Instruction *I = dyn_cast<Instruction>(V);
 | |
|   if (I == 0 || !L->contains(I->getParent())) return 0;
 | |
| 
 | |
|   if (PHINode *PN = dyn_cast<PHINode>(I)) {
 | |
|     if (L->getHeader() == I->getParent())
 | |
|       return PN;
 | |
|     else
 | |
|       // We don't currently keep track of the control flow needed to evaluate
 | |
|       // PHIs, so we cannot handle PHIs inside of loops.
 | |
|       return 0;
 | |
|   }
 | |
| 
 | |
|   // If we won't be able to constant fold this expression even if the operands
 | |
|   // are constants, return early.
 | |
|   if (!CanConstantFold(I)) return 0;
 | |
| 
 | |
|   // Otherwise, we can evaluate this instruction if all of its operands are
 | |
|   // constant or derived from a PHI node themselves.
 | |
|   PHINode *PHI = 0;
 | |
|   for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
 | |
|     if (!(isa<Constant>(I->getOperand(Op)) ||
 | |
|           isa<GlobalValue>(I->getOperand(Op)))) {
 | |
|       PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
 | |
|       if (P == 0) return 0;  // Not evolving from PHI
 | |
|       if (PHI == 0)
 | |
|         PHI = P;
 | |
|       else if (PHI != P)
 | |
|         return 0;  // Evolving from multiple different PHIs.
 | |
|     }
 | |
| 
 | |
|   // This is a expression evolving from a constant PHI!
 | |
|   return PHI;
 | |
| }
 | |
| 
 | |
| /// EvaluateExpression - Given an expression that passes the
 | |
| /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
 | |
| /// in the loop has the value PHIVal.  If we can't fold this expression for some
 | |
| /// reason, return null.
 | |
| static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
 | |
|   if (isa<PHINode>(V)) return PHIVal;
 | |
|   if (Constant *C = dyn_cast<Constant>(V)) return C;
 | |
|   Instruction *I = cast<Instruction>(V);
 | |
| 
 | |
|   std::vector<Constant*> Operands;
 | |
|   Operands.resize(I->getNumOperands());
 | |
| 
 | |
|   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
 | |
|     Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal);
 | |
|     if (Operands[i] == 0) return 0;
 | |
|   }
 | |
| 
 | |
|   if (const CmpInst *CI = dyn_cast<CmpInst>(I))
 | |
|     return ConstantFoldCompareInstOperands(CI->getPredicate(),
 | |
|                                            &Operands[0], Operands.size());
 | |
|   else
 | |
|     return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
 | |
|                                     &Operands[0], Operands.size());
 | |
| }
 | |
| 
 | |
| /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
 | |
| /// in the header of its containing loop, we know the loop executes a
 | |
| /// constant number of times, and the PHI node is just a recurrence
 | |
| /// involving constants, fold it.
 | |
| Constant *ScalarEvolutionsImpl::
 | |
| getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& Its, const Loop *L){
 | |
|   std::map<PHINode*, Constant*>::iterator I =
 | |
|     ConstantEvolutionLoopExitValue.find(PN);
 | |
|   if (I != ConstantEvolutionLoopExitValue.end())
 | |
|     return I->second;
 | |
| 
 | |
|   if (Its.ugt(APInt(Its.getBitWidth(),MaxBruteForceIterations)))
 | |
|     return ConstantEvolutionLoopExitValue[PN] = 0;  // Not going to evaluate it.
 | |
| 
 | |
|   Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
 | |
| 
 | |
|   // Since the loop is canonicalized, the PHI node must have two entries.  One
 | |
|   // entry must be a constant (coming in from outside of the loop), and the
 | |
|   // second must be derived from the same PHI.
 | |
|   bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
 | |
|   Constant *StartCST =
 | |
|     dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
 | |
|   if (StartCST == 0)
 | |
|     return RetVal = 0;  // Must be a constant.
 | |
| 
 | |
|   Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
 | |
|   PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
 | |
|   if (PN2 != PN)
 | |
|     return RetVal = 0;  // Not derived from same PHI.
 | |
| 
 | |
|   // Execute the loop symbolically to determine the exit value.
 | |
|   if (Its.getActiveBits() >= 32)
 | |
|     return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
 | |
| 
 | |
|   unsigned NumIterations = Its.getZExtValue(); // must be in range
 | |
|   unsigned IterationNum = 0;
 | |
|   for (Constant *PHIVal = StartCST; ; ++IterationNum) {
 | |
|     if (IterationNum == NumIterations)
 | |
|       return RetVal = PHIVal;  // Got exit value!
 | |
| 
 | |
|     // Compute the value of the PHI node for the next iteration.
 | |
|     Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
 | |
|     if (NextPHI == PHIVal)
 | |
|       return RetVal = NextPHI;  // Stopped evolving!
 | |
|     if (NextPHI == 0)
 | |
|       return 0;        // Couldn't evaluate!
 | |
|     PHIVal = NextPHI;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// ComputeIterationCountExhaustively - If the trip is known to execute a
 | |
| /// constant number of times (the condition evolves only from constants),
 | |
| /// try to evaluate a few iterations of the loop until we get the exit
 | |
| /// condition gets a value of ExitWhen (true or false).  If we cannot
 | |
| /// evaluate the trip count of the loop, return UnknownValue.
 | |
| SCEVHandle ScalarEvolutionsImpl::
 | |
| ComputeIterationCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) {
 | |
|   PHINode *PN = getConstantEvolvingPHI(Cond, L);
 | |
|   if (PN == 0) return UnknownValue;
 | |
| 
 | |
|   // Since the loop is canonicalized, the PHI node must have two entries.  One
 | |
|   // entry must be a constant (coming in from outside of the loop), and the
 | |
|   // second must be derived from the same PHI.
 | |
|   bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
 | |
|   Constant *StartCST =
 | |
|     dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
 | |
|   if (StartCST == 0) return UnknownValue;  // Must be a constant.
 | |
| 
 | |
|   Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
 | |
|   PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
 | |
|   if (PN2 != PN) return UnknownValue;  // Not derived from same PHI.
 | |
| 
 | |
|   // Okay, we find a PHI node that defines the trip count of this loop.  Execute
 | |
|   // the loop symbolically to determine when the condition gets a value of
 | |
|   // "ExitWhen".
 | |
|   unsigned IterationNum = 0;
 | |
|   unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
 | |
|   for (Constant *PHIVal = StartCST;
 | |
|        IterationNum != MaxIterations; ++IterationNum) {
 | |
|     ConstantInt *CondVal =
 | |
|       dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal));
 | |
| 
 | |
|     // Couldn't symbolically evaluate.
 | |
|     if (!CondVal) return UnknownValue;
 | |
| 
 | |
|     if (CondVal->getValue() == uint64_t(ExitWhen)) {
 | |
|       ConstantEvolutionLoopExitValue[PN] = PHIVal;
 | |
|       ++NumBruteForceTripCountsComputed;
 | |
|       return SE.getConstant(ConstantInt::get(Type::Int32Ty, IterationNum));
 | |
|     }
 | |
| 
 | |
|     // Compute the value of the PHI node for the next iteration.
 | |
|     Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
 | |
|     if (NextPHI == 0 || NextPHI == PHIVal)
 | |
|       return UnknownValue;  // Couldn't evaluate or not making progress...
 | |
|     PHIVal = NextPHI;
 | |
|   }
 | |
| 
 | |
|   // Too many iterations were needed to evaluate.
 | |
|   return UnknownValue;
 | |
| }
 | |
| 
 | |
| /// getSCEVAtScope - Compute the value of the specified expression within the
 | |
| /// indicated loop (which may be null to indicate in no loop).  If the
 | |
| /// expression cannot be evaluated, return UnknownValue.
 | |
| SCEVHandle ScalarEvolutionsImpl::getSCEVAtScope(SCEV *V, const Loop *L) {
 | |
|   // FIXME: this should be turned into a virtual method on SCEV!
 | |
| 
 | |
|   if (isa<SCEVConstant>(V)) return V;
 | |
| 
 | |
|   // If this instruction is evolved from a constant-evolving PHI, compute the
 | |
|   // exit value from the loop without using SCEVs.
 | |
|   if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
 | |
|     if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
 | |
|       const Loop *LI = this->LI[I->getParent()];
 | |
|       if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
 | |
|         if (PHINode *PN = dyn_cast<PHINode>(I))
 | |
|           if (PN->getParent() == LI->getHeader()) {
 | |
|             // Okay, there is no closed form solution for the PHI node.  Check
 | |
|             // to see if the loop that contains it has a known iteration count.
 | |
|             // If so, we may be able to force computation of the exit value.
 | |
|             SCEVHandle IterationCount = getIterationCount(LI);
 | |
|             if (SCEVConstant *ICC = dyn_cast<SCEVConstant>(IterationCount)) {
 | |
|               // Okay, we know how many times the containing loop executes.  If
 | |
|               // this is a constant evolving PHI node, get the final value at
 | |
|               // the specified iteration number.
 | |
|               Constant *RV = getConstantEvolutionLoopExitValue(PN,
 | |
|                                                     ICC->getValue()->getValue(),
 | |
|                                                                LI);
 | |
|               if (RV) return SE.getUnknown(RV);
 | |
|             }
 | |
|           }
 | |
| 
 | |
|       // Okay, this is an expression that we cannot symbolically evaluate
 | |
|       // into a SCEV.  Check to see if it's possible to symbolically evaluate
 | |
|       // the arguments into constants, and if so, try to constant propagate the
 | |
|       // result.  This is particularly useful for computing loop exit values.
 | |
|       if (CanConstantFold(I)) {
 | |
|         std::vector<Constant*> Operands;
 | |
|         Operands.reserve(I->getNumOperands());
 | |
|         for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
 | |
|           Value *Op = I->getOperand(i);
 | |
|           if (Constant *C = dyn_cast<Constant>(Op)) {
 | |
|             Operands.push_back(C);
 | |
|           } else {
 | |
|             // If any of the operands is non-constant and if they are
 | |
|             // non-integer, don't even try to analyze them with scev techniques.
 | |
|             if (!isa<IntegerType>(Op->getType()))
 | |
|               return V;
 | |
|               
 | |
|             SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L);
 | |
|             if (SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
 | |
|               Operands.push_back(ConstantExpr::getIntegerCast(SC->getValue(), 
 | |
|                                                               Op->getType(), 
 | |
|                                                               false));
 | |
|             else if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
 | |
|               if (Constant *C = dyn_cast<Constant>(SU->getValue()))
 | |
|                 Operands.push_back(ConstantExpr::getIntegerCast(C, 
 | |
|                                                                 Op->getType(), 
 | |
|                                                                 false));
 | |
|               else
 | |
|                 return V;
 | |
|             } else {
 | |
|               return V;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|         
 | |
|         Constant *C;
 | |
|         if (const CmpInst *CI = dyn_cast<CmpInst>(I))
 | |
|           C = ConstantFoldCompareInstOperands(CI->getPredicate(),
 | |
|                                               &Operands[0], Operands.size());
 | |
|         else
 | |
|           C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
 | |
|                                        &Operands[0], Operands.size());
 | |
|         return SE.getUnknown(C);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // This is some other type of SCEVUnknown, just return it.
 | |
|     return V;
 | |
|   }
 | |
| 
 | |
|   if (SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
 | |
|     // Avoid performing the look-up in the common case where the specified
 | |
|     // expression has no loop-variant portions.
 | |
|     for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
 | |
|       SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
 | |
|       if (OpAtScope != Comm->getOperand(i)) {
 | |
|         if (OpAtScope == UnknownValue) return UnknownValue;
 | |
|         // Okay, at least one of these operands is loop variant but might be
 | |
|         // foldable.  Build a new instance of the folded commutative expression.
 | |
|         std::vector<SCEVHandle> NewOps(Comm->op_begin(), Comm->op_begin()+i);
 | |
|         NewOps.push_back(OpAtScope);
 | |
| 
 | |
|         for (++i; i != e; ++i) {
 | |
|           OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
 | |
|           if (OpAtScope == UnknownValue) return UnknownValue;
 | |
|           NewOps.push_back(OpAtScope);
 | |
|         }
 | |
|         if (isa<SCEVAddExpr>(Comm))
 | |
|           return SE.getAddExpr(NewOps);
 | |
|         if (isa<SCEVMulExpr>(Comm))
 | |
|           return SE.getMulExpr(NewOps);
 | |
|         if (isa<SCEVSMaxExpr>(Comm))
 | |
|           return SE.getSMaxExpr(NewOps);
 | |
|         if (isa<SCEVUMaxExpr>(Comm))
 | |
|           return SE.getUMaxExpr(NewOps);
 | |
|         assert(0 && "Unknown commutative SCEV type!");
 | |
|       }
 | |
|     }
 | |
|     // If we got here, all operands are loop invariant.
 | |
|     return Comm;
 | |
|   }
 | |
| 
 | |
|   if (SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
 | |
|     SCEVHandle LHS = getSCEVAtScope(Div->getLHS(), L);
 | |
|     if (LHS == UnknownValue) return LHS;
 | |
|     SCEVHandle RHS = getSCEVAtScope(Div->getRHS(), L);
 | |
|     if (RHS == UnknownValue) return RHS;
 | |
|     if (LHS == Div->getLHS() && RHS == Div->getRHS())
 | |
|       return Div;   // must be loop invariant
 | |
|     return SE.getUDivExpr(LHS, RHS);
 | |
|   }
 | |
| 
 | |
|   // If this is a loop recurrence for a loop that does not contain L, then we
 | |
|   // are dealing with the final value computed by the loop.
 | |
|   if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
 | |
|     if (!L || !AddRec->getLoop()->contains(L->getHeader())) {
 | |
|       // To evaluate this recurrence, we need to know how many times the AddRec
 | |
|       // loop iterates.  Compute this now.
 | |
|       SCEVHandle IterationCount = getIterationCount(AddRec->getLoop());
 | |
|       if (IterationCount == UnknownValue) return UnknownValue;
 | |
| 
 | |
|       // Then, evaluate the AddRec.
 | |
|       return AddRec->evaluateAtIteration(IterationCount, SE);
 | |
|     }
 | |
|     return UnknownValue;
 | |
|   }
 | |
| 
 | |
|   //assert(0 && "Unknown SCEV type!");
 | |
|   return UnknownValue;
 | |
| }
 | |
| 
 | |
| /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
 | |
| /// following equation:
 | |
| ///
 | |
| ///     A * X = B (mod N)
 | |
| ///
 | |
| /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
 | |
| /// A and B isn't important.
 | |
| ///
 | |
| /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
 | |
| static SCEVHandle SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
 | |
|                                                ScalarEvolution &SE) {
 | |
|   uint32_t BW = A.getBitWidth();
 | |
|   assert(BW == B.getBitWidth() && "Bit widths must be the same.");
 | |
|   assert(A != 0 && "A must be non-zero.");
 | |
| 
 | |
|   // 1. D = gcd(A, N)
 | |
|   //
 | |
|   // The gcd of A and N may have only one prime factor: 2. The number of
 | |
|   // trailing zeros in A is its multiplicity
 | |
|   uint32_t Mult2 = A.countTrailingZeros();
 | |
|   // D = 2^Mult2
 | |
| 
 | |
|   // 2. Check if B is divisible by D.
 | |
|   //
 | |
|   // B is divisible by D if and only if the multiplicity of prime factor 2 for B
 | |
|   // is not less than multiplicity of this prime factor for D.
 | |
|   if (B.countTrailingZeros() < Mult2)
 | |
|     return new SCEVCouldNotCompute();
 | |
| 
 | |
|   // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
 | |
|   // modulo (N / D).
 | |
|   //
 | |
|   // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
 | |
|   // bit width during computations.
 | |
|   APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
 | |
|   APInt Mod(BW + 1, 0);
 | |
|   Mod.set(BW - Mult2);  // Mod = N / D
 | |
|   APInt I = AD.multiplicativeInverse(Mod);
 | |
| 
 | |
|   // 4. Compute the minimum unsigned root of the equation:
 | |
|   // I * (B / D) mod (N / D)
 | |
|   APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
 | |
| 
 | |
|   // The result is guaranteed to be less than 2^BW so we may truncate it to BW
 | |
|   // bits.
 | |
|   return SE.getConstant(Result.trunc(BW));
 | |
| }
 | |
| 
 | |
| /// SolveQuadraticEquation - Find the roots of the quadratic equation for the
 | |
| /// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
 | |
| /// might be the same) or two SCEVCouldNotCompute objects.
 | |
| ///
 | |
| static std::pair<SCEVHandle,SCEVHandle>
 | |
| SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
 | |
|   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
 | |
|   SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
 | |
|   SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
 | |
|   SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
 | |
| 
 | |
|   // We currently can only solve this if the coefficients are constants.
 | |
|   if (!LC || !MC || !NC) {
 | |
|     SCEV *CNC = new SCEVCouldNotCompute();
 | |
|     return std::make_pair(CNC, CNC);
 | |
|   }
 | |
| 
 | |
|   uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
 | |
|   const APInt &L = LC->getValue()->getValue();
 | |
|   const APInt &M = MC->getValue()->getValue();
 | |
|   const APInt &N = NC->getValue()->getValue();
 | |
|   APInt Two(BitWidth, 2);
 | |
|   APInt Four(BitWidth, 4);
 | |
| 
 | |
|   { 
 | |
|     using namespace APIntOps;
 | |
|     const APInt& C = L;
 | |
|     // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
 | |
|     // The B coefficient is M-N/2
 | |
|     APInt B(M);
 | |
|     B -= sdiv(N,Two);
 | |
| 
 | |
|     // The A coefficient is N/2
 | |
|     APInt A(N.sdiv(Two));
 | |
| 
 | |
|     // Compute the B^2-4ac term.
 | |
|     APInt SqrtTerm(B);
 | |
|     SqrtTerm *= B;
 | |
|     SqrtTerm -= Four * (A * C);
 | |
| 
 | |
|     // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
 | |
|     // integer value or else APInt::sqrt() will assert.
 | |
|     APInt SqrtVal(SqrtTerm.sqrt());
 | |
| 
 | |
|     // Compute the two solutions for the quadratic formula. 
 | |
|     // The divisions must be performed as signed divisions.
 | |
|     APInt NegB(-B);
 | |
|     APInt TwoA( A << 1 );
 | |
|     ConstantInt *Solution1 = ConstantInt::get((NegB + SqrtVal).sdiv(TwoA));
 | |
|     ConstantInt *Solution2 = ConstantInt::get((NegB - SqrtVal).sdiv(TwoA));
 | |
| 
 | |
|     return std::make_pair(SE.getConstant(Solution1), 
 | |
|                           SE.getConstant(Solution2));
 | |
|     } // end APIntOps namespace
 | |
| }
 | |
| 
 | |
| /// HowFarToZero - Return the number of times a backedge comparing the specified
 | |
| /// value to zero will execute.  If not computable, return UnknownValue
 | |
| SCEVHandle ScalarEvolutionsImpl::HowFarToZero(SCEV *V, const Loop *L) {
 | |
|   // If the value is a constant
 | |
|   if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
 | |
|     // If the value is already zero, the branch will execute zero times.
 | |
|     if (C->getValue()->isZero()) return C;
 | |
|     return UnknownValue;  // Otherwise it will loop infinitely.
 | |
|   }
 | |
| 
 | |
|   SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
 | |
|   if (!AddRec || AddRec->getLoop() != L)
 | |
|     return UnknownValue;
 | |
| 
 | |
|   if (AddRec->isAffine()) {
 | |
|     // If this is an affine expression, the execution count of this branch is
 | |
|     // the minimum unsigned root of the following equation:
 | |
|     //
 | |
|     //     Start + Step*N = 0 (mod 2^BW)
 | |
|     //
 | |
|     // equivalent to:
 | |
|     //
 | |
|     //             Step*N = -Start (mod 2^BW)
 | |
|     //
 | |
|     // where BW is the common bit width of Start and Step.
 | |
| 
 | |
|     // Get the initial value for the loop.
 | |
|     SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
 | |
|     if (isa<SCEVCouldNotCompute>(Start)) return UnknownValue;
 | |
| 
 | |
|     SCEVHandle Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
 | |
| 
 | |
|     if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
 | |
|       // For now we handle only constant steps.
 | |
| 
 | |
|       // First, handle unitary steps.
 | |
|       if (StepC->getValue()->equalsInt(1))      // 1*N = -Start (mod 2^BW), so:
 | |
|         return SE.getNegativeSCEV(Start);       //   N = -Start (as unsigned)
 | |
|       if (StepC->getValue()->isAllOnesValue())  // -1*N = -Start (mod 2^BW), so:
 | |
|         return Start;                           //    N = Start (as unsigned)
 | |
| 
 | |
|       // Then, try to solve the above equation provided that Start is constant.
 | |
|       if (SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
 | |
|         return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
 | |
|                                             -StartC->getValue()->getValue(),SE);
 | |
|     }
 | |
|   } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
 | |
|     // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
 | |
|     // the quadratic equation to solve it.
 | |
|     std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec, SE);
 | |
|     SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
 | |
|     SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
 | |
|     if (R1) {
 | |
| #if 0
 | |
|       cerr << "HFTZ: " << *V << " - sol#1: " << *R1
 | |
|            << "  sol#2: " << *R2 << "\n";
 | |
| #endif
 | |
|       // Pick the smallest positive root value.
 | |
|       if (ConstantInt *CB =
 | |
|           dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 
 | |
|                                    R1->getValue(), R2->getValue()))) {
 | |
|         if (CB->getZExtValue() == false)
 | |
|           std::swap(R1, R2);   // R1 is the minimum root now.
 | |
| 
 | |
|         // We can only use this value if the chrec ends up with an exact zero
 | |
|         // value at this index.  When solving for "X*X != 5", for example, we
 | |
|         // should not accept a root of 2.
 | |
|         SCEVHandle Val = AddRec->evaluateAtIteration(R1, SE);
 | |
|         if (Val->isZero())
 | |
|           return R1;  // We found a quadratic root!
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return UnknownValue;
 | |
| }
 | |
| 
 | |
| /// HowFarToNonZero - Return the number of times a backedge checking the
 | |
| /// specified value for nonzero will execute.  If not computable, return
 | |
| /// UnknownValue
 | |
| SCEVHandle ScalarEvolutionsImpl::HowFarToNonZero(SCEV *V, const Loop *L) {
 | |
|   // Loops that look like: while (X == 0) are very strange indeed.  We don't
 | |
|   // handle them yet except for the trivial case.  This could be expanded in the
 | |
|   // future as needed.
 | |
| 
 | |
|   // If the value is a constant, check to see if it is known to be non-zero
 | |
|   // already.  If so, the backedge will execute zero times.
 | |
|   if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
 | |
|     if (!C->getValue()->isNullValue())
 | |
|       return SE.getIntegerSCEV(0, C->getType());
 | |
|     return UnknownValue;  // Otherwise it will loop infinitely.
 | |
|   }
 | |
| 
 | |
|   // We could implement others, but I really doubt anyone writes loops like
 | |
|   // this, and if they did, they would already be constant folded.
 | |
|   return UnknownValue;
 | |
| }
 | |
| 
 | |
| /// executesAtLeastOnce - Test whether entry to the loop is protected by
 | |
| /// a conditional between LHS and RHS.
 | |
| bool ScalarEvolutionsImpl::executesAtLeastOnce(const Loop *L, bool isSigned,
 | |
|                                                SCEV *LHS, SCEV *RHS) {
 | |
|   BasicBlock *Preheader = L->getLoopPreheader();
 | |
|   BasicBlock *PreheaderDest = L->getHeader();
 | |
| 
 | |
|   // Starting at the preheader, climb up the predecessor chain, as long as
 | |
|   // there are unique predecessors, looking for a conditional branch that
 | |
|   // protects the loop.
 | |
|   // 
 | |
|   // This is a conservative apporoximation of a climb of the
 | |
|   // control-dependence predecessors.
 | |
| 
 | |
|   for (; Preheader; PreheaderDest = Preheader,
 | |
|                     Preheader = Preheader->getSinglePredecessor()) {
 | |
| 
 | |
|     BranchInst *LoopEntryPredicate =
 | |
|       dyn_cast<BranchInst>(Preheader->getTerminator());
 | |
|     if (!LoopEntryPredicate ||
 | |
|         LoopEntryPredicate->isUnconditional())
 | |
|       continue;
 | |
| 
 | |
|     ICmpInst *ICI = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition());
 | |
|     if (!ICI) continue;
 | |
| 
 | |
|     // Now that we found a conditional branch that dominates the loop, check to
 | |
|     // see if it is the comparison we are looking for.
 | |
|     Value *PreCondLHS = ICI->getOperand(0);
 | |
|     Value *PreCondRHS = ICI->getOperand(1);
 | |
|     ICmpInst::Predicate Cond;
 | |
|     if (LoopEntryPredicate->getSuccessor(0) == PreheaderDest)
 | |
|       Cond = ICI->getPredicate();
 | |
|     else
 | |
|       Cond = ICI->getInversePredicate();
 | |
| 
 | |
|     switch (Cond) {
 | |
|     case ICmpInst::ICMP_UGT:
 | |
|       if (isSigned) continue;
 | |
|       std::swap(PreCondLHS, PreCondRHS);
 | |
|       Cond = ICmpInst::ICMP_ULT;
 | |
|       break;
 | |
|     case ICmpInst::ICMP_SGT:
 | |
|       if (!isSigned) continue;
 | |
|       std::swap(PreCondLHS, PreCondRHS);
 | |
|       Cond = ICmpInst::ICMP_SLT;
 | |
|       break;
 | |
|     case ICmpInst::ICMP_ULT:
 | |
|       if (isSigned) continue;
 | |
|       break;
 | |
|     case ICmpInst::ICMP_SLT:
 | |
|       if (!isSigned) continue;
 | |
|       break;
 | |
|     default:
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (!PreCondLHS->getType()->isInteger()) continue;
 | |
| 
 | |
|     SCEVHandle PreCondLHSSCEV = getSCEV(PreCondLHS);
 | |
|     SCEVHandle PreCondRHSSCEV = getSCEV(PreCondRHS);
 | |
|     if ((LHS == PreCondLHSSCEV && RHS == PreCondRHSSCEV) ||
 | |
|         (LHS == SE.getNotSCEV(PreCondRHSSCEV) &&
 | |
|          RHS == SE.getNotSCEV(PreCondLHSSCEV)))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// HowManyLessThans - Return the number of times a backedge containing the
 | |
| /// specified less-than comparison will execute.  If not computable, return
 | |
| /// UnknownValue.
 | |
| SCEVHandle ScalarEvolutionsImpl::
 | |
| HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L, bool isSigned) {
 | |
|   // Only handle:  "ADDREC < LoopInvariant".
 | |
|   if (!RHS->isLoopInvariant(L)) return UnknownValue;
 | |
| 
 | |
|   SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
 | |
|   if (!AddRec || AddRec->getLoop() != L)
 | |
|     return UnknownValue;
 | |
| 
 | |
|   if (AddRec->isAffine()) {
 | |
|     // FORNOW: We only support unit strides.
 | |
|     SCEVHandle One = SE.getIntegerSCEV(1, RHS->getType());
 | |
|     if (AddRec->getOperand(1) != One)
 | |
|       return UnknownValue;
 | |
| 
 | |
|     // We know the LHS is of the form {n,+,1} and the RHS is some loop-invariant
 | |
|     // m.  So, we count the number of iterations in which {n,+,1} < m is true.
 | |
|     // Note that we cannot simply return max(m-n,0) because it's not safe to
 | |
|     // treat m-n as signed nor unsigned due to overflow possibility.
 | |
| 
 | |
|     // First, we get the value of the LHS in the first iteration: n
 | |
|     SCEVHandle Start = AddRec->getOperand(0);
 | |
| 
 | |
|     if (executesAtLeastOnce(L, isSigned,
 | |
|                             SE.getMinusSCEV(AddRec->getOperand(0), One), RHS)) {
 | |
|       // Since we know that the condition is true in order to enter the loop,
 | |
|       // we know that it will run exactly m-n times.
 | |
|       return SE.getMinusSCEV(RHS, Start);
 | |
|     } else {
 | |
|       // Then, we get the value of the LHS in the first iteration in which the
 | |
|       // above condition doesn't hold.  This equals to max(m,n).
 | |
|       SCEVHandle End = isSigned ? SE.getSMaxExpr(RHS, Start)
 | |
|                                 : SE.getUMaxExpr(RHS, Start);
 | |
| 
 | |
|       // Finally, we subtract these two values to get the number of times the
 | |
|       // backedge is executed: max(m,n)-n.
 | |
|       return SE.getMinusSCEV(End, Start);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return UnknownValue;
 | |
| }
 | |
| 
 | |
| /// getNumIterationsInRange - Return the number of iterations of this loop that
 | |
| /// produce values in the specified constant range.  Another way of looking at
 | |
| /// this is that it returns the first iteration number where the value is not in
 | |
| /// the condition, thus computing the exit count. If the iteration count can't
 | |
| /// be computed, an instance of SCEVCouldNotCompute is returned.
 | |
| SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
 | |
|                                                    ScalarEvolution &SE) const {
 | |
|   if (Range.isFullSet())  // Infinite loop.
 | |
|     return new SCEVCouldNotCompute();
 | |
| 
 | |
|   // If the start is a non-zero constant, shift the range to simplify things.
 | |
|   if (SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
 | |
|     if (!SC->getValue()->isZero()) {
 | |
|       std::vector<SCEVHandle> Operands(op_begin(), op_end());
 | |
|       Operands[0] = SE.getIntegerSCEV(0, SC->getType());
 | |
|       SCEVHandle Shifted = SE.getAddRecExpr(Operands, getLoop());
 | |
|       if (SCEVAddRecExpr *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
 | |
|         return ShiftedAddRec->getNumIterationsInRange(
 | |
|                            Range.subtract(SC->getValue()->getValue()), SE);
 | |
|       // This is strange and shouldn't happen.
 | |
|       return new SCEVCouldNotCompute();
 | |
|     }
 | |
| 
 | |
|   // The only time we can solve this is when we have all constant indices.
 | |
|   // Otherwise, we cannot determine the overflow conditions.
 | |
|   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
 | |
|     if (!isa<SCEVConstant>(getOperand(i)))
 | |
|       return new SCEVCouldNotCompute();
 | |
| 
 | |
| 
 | |
|   // Okay at this point we know that all elements of the chrec are constants and
 | |
|   // that the start element is zero.
 | |
| 
 | |
|   // First check to see if the range contains zero.  If not, the first
 | |
|   // iteration exits.
 | |
|   if (!Range.contains(APInt(getBitWidth(),0))) 
 | |
|     return SE.getConstant(ConstantInt::get(getType(),0));
 | |
| 
 | |
|   if (isAffine()) {
 | |
|     // If this is an affine expression then we have this situation:
 | |
|     //   Solve {0,+,A} in Range  ===  Ax in Range
 | |
| 
 | |
|     // We know that zero is in the range.  If A is positive then we know that
 | |
|     // the upper value of the range must be the first possible exit value.
 | |
|     // If A is negative then the lower of the range is the last possible loop
 | |
|     // value.  Also note that we already checked for a full range.
 | |
|     APInt One(getBitWidth(),1);
 | |
|     APInt A     = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
 | |
|     APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
 | |
| 
 | |
|     // The exit value should be (End+A)/A.
 | |
|     APInt ExitVal = (End + A).udiv(A);
 | |
|     ConstantInt *ExitValue = ConstantInt::get(ExitVal);
 | |
| 
 | |
|     // Evaluate at the exit value.  If we really did fall out of the valid
 | |
|     // range, then we computed our trip count, otherwise wrap around or other
 | |
|     // things must have happened.
 | |
|     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
 | |
|     if (Range.contains(Val->getValue()))
 | |
|       return new SCEVCouldNotCompute();  // Something strange happened
 | |
| 
 | |
|     // Ensure that the previous value is in the range.  This is a sanity check.
 | |
|     assert(Range.contains(
 | |
|            EvaluateConstantChrecAtConstant(this, 
 | |
|            ConstantInt::get(ExitVal - One), SE)->getValue()) &&
 | |
|            "Linear scev computation is off in a bad way!");
 | |
|     return SE.getConstant(ExitValue);
 | |
|   } else if (isQuadratic()) {
 | |
|     // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
 | |
|     // quadratic equation to solve it.  To do this, we must frame our problem in
 | |
|     // terms of figuring out when zero is crossed, instead of when
 | |
|     // Range.getUpper() is crossed.
 | |
|     std::vector<SCEVHandle> NewOps(op_begin(), op_end());
 | |
|     NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
 | |
|     SCEVHandle NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
 | |
| 
 | |
|     // Next, solve the constructed addrec
 | |
|     std::pair<SCEVHandle,SCEVHandle> Roots =
 | |
|       SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
 | |
|     SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
 | |
|     SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
 | |
|     if (R1) {
 | |
|       // Pick the smallest positive root value.
 | |
|       if (ConstantInt *CB =
 | |
|           dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 
 | |
|                                    R1->getValue(), R2->getValue()))) {
 | |
|         if (CB->getZExtValue() == false)
 | |
|           std::swap(R1, R2);   // R1 is the minimum root now.
 | |
| 
 | |
|         // Make sure the root is not off by one.  The returned iteration should
 | |
|         // not be in the range, but the previous one should be.  When solving
 | |
|         // for "X*X < 5", for example, we should not return a root of 2.
 | |
|         ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
 | |
|                                                              R1->getValue(),
 | |
|                                                              SE);
 | |
|         if (Range.contains(R1Val->getValue())) {
 | |
|           // The next iteration must be out of the range...
 | |
|           ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()+1);
 | |
| 
 | |
|           R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
 | |
|           if (!Range.contains(R1Val->getValue()))
 | |
|             return SE.getConstant(NextVal);
 | |
|           return new SCEVCouldNotCompute();  // Something strange happened
 | |
|         }
 | |
| 
 | |
|         // If R1 was not in the range, then it is a good return value.  Make
 | |
|         // sure that R1-1 WAS in the range though, just in case.
 | |
|         ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()-1);
 | |
|         R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
 | |
|         if (Range.contains(R1Val->getValue()))
 | |
|           return R1;
 | |
|         return new SCEVCouldNotCompute();  // Something strange happened
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Fallback, if this is a general polynomial, figure out the progression
 | |
|   // through brute force: evaluate until we find an iteration that fails the
 | |
|   // test.  This is likely to be slow, but getting an accurate trip count is
 | |
|   // incredibly important, we will be able to simplify the exit test a lot, and
 | |
|   // we are almost guaranteed to get a trip count in this case.
 | |
|   ConstantInt *TestVal = ConstantInt::get(getType(), 0);
 | |
|   ConstantInt *EndVal  = TestVal;  // Stop when we wrap around.
 | |
|   do {
 | |
|     ++NumBruteForceEvaluations;
 | |
|     SCEVHandle Val = evaluateAtIteration(SE.getConstant(TestVal), SE);
 | |
|     if (!isa<SCEVConstant>(Val))  // This shouldn't happen.
 | |
|       return new SCEVCouldNotCompute();
 | |
| 
 | |
|     // Check to see if we found the value!
 | |
|     if (!Range.contains(cast<SCEVConstant>(Val)->getValue()->getValue()))
 | |
|       return SE.getConstant(TestVal);
 | |
| 
 | |
|     // Increment to test the next index.
 | |
|     TestVal = ConstantInt::get(TestVal->getValue()+1);
 | |
|   } while (TestVal != EndVal);
 | |
| 
 | |
|   return new SCEVCouldNotCompute();
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                   ScalarEvolution Class Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| bool ScalarEvolution::runOnFunction(Function &F) {
 | |
|   Impl = new ScalarEvolutionsImpl(*this, F, getAnalysis<LoopInfo>());
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void ScalarEvolution::releaseMemory() {
 | |
|   delete (ScalarEvolutionsImpl*)Impl;
 | |
|   Impl = 0;
 | |
| }
 | |
| 
 | |
| void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   AU.setPreservesAll();
 | |
|   AU.addRequiredTransitive<LoopInfo>();
 | |
| }
 | |
| 
 | |
| SCEVHandle ScalarEvolution::getSCEV(Value *V) const {
 | |
|   return ((ScalarEvolutionsImpl*)Impl)->getSCEV(V);
 | |
| }
 | |
| 
 | |
| /// hasSCEV - Return true if the SCEV for this value has already been
 | |
| /// computed.
 | |
| bool ScalarEvolution::hasSCEV(Value *V) const {
 | |
|   return ((ScalarEvolutionsImpl*)Impl)->hasSCEV(V);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// setSCEV - Insert the specified SCEV into the map of current SCEVs for
 | |
| /// the specified value.
 | |
| void ScalarEvolution::setSCEV(Value *V, const SCEVHandle &H) {
 | |
|   ((ScalarEvolutionsImpl*)Impl)->setSCEV(V, H);
 | |
| }
 | |
| 
 | |
| 
 | |
| SCEVHandle ScalarEvolution::getIterationCount(const Loop *L) const {
 | |
|   return ((ScalarEvolutionsImpl*)Impl)->getIterationCount(L);
 | |
| }
 | |
| 
 | |
| bool ScalarEvolution::hasLoopInvariantIterationCount(const Loop *L) const {
 | |
|   return !isa<SCEVCouldNotCompute>(getIterationCount(L));
 | |
| }
 | |
| 
 | |
| SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) const {
 | |
|   return ((ScalarEvolutionsImpl*)Impl)->getSCEVAtScope(getSCEV(V), L);
 | |
| }
 | |
| 
 | |
| void ScalarEvolution::deleteValueFromRecords(Value *V) const {
 | |
|   return ((ScalarEvolutionsImpl*)Impl)->deleteValueFromRecords(V);
 | |
| }
 | |
| 
 | |
| static void PrintLoopInfo(std::ostream &OS, const ScalarEvolution *SE,
 | |
|                           const Loop *L) {
 | |
|   // Print all inner loops first
 | |
|   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
 | |
|     PrintLoopInfo(OS, SE, *I);
 | |
| 
 | |
|   OS << "Loop " << L->getHeader()->getName() << ": ";
 | |
| 
 | |
|   SmallVector<BasicBlock*, 8> ExitBlocks;
 | |
|   L->getExitBlocks(ExitBlocks);
 | |
|   if (ExitBlocks.size() != 1)
 | |
|     OS << "<multiple exits> ";
 | |
| 
 | |
|   if (SE->hasLoopInvariantIterationCount(L)) {
 | |
|     OS << *SE->getIterationCount(L) << " iterations! ";
 | |
|   } else {
 | |
|     OS << "Unpredictable iteration count. ";
 | |
|   }
 | |
| 
 | |
|   OS << "\n";
 | |
| }
 | |
| 
 | |
| void ScalarEvolution::print(std::ostream &OS, const Module* ) const {
 | |
|   Function &F = ((ScalarEvolutionsImpl*)Impl)->F;
 | |
|   LoopInfo &LI = ((ScalarEvolutionsImpl*)Impl)->LI;
 | |
| 
 | |
|   OS << "Classifying expressions for: " << F.getName() << "\n";
 | |
|   for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
 | |
|     if (I->getType()->isInteger()) {
 | |
|       OS << *I;
 | |
|       OS << "  --> ";
 | |
|       SCEVHandle SV = getSCEV(&*I);
 | |
|       SV->print(OS);
 | |
|       OS << "\t\t";
 | |
| 
 | |
|       if (const Loop *L = LI.getLoopFor((*I).getParent())) {
 | |
|         OS << "Exits: ";
 | |
|         SCEVHandle ExitValue = getSCEVAtScope(&*I, L->getParentLoop());
 | |
|         if (isa<SCEVCouldNotCompute>(ExitValue)) {
 | |
|           OS << "<<Unknown>>";
 | |
|         } else {
 | |
|           OS << *ExitValue;
 | |
|         }
 | |
|       }
 | |
| 
 | |
| 
 | |
|       OS << "\n";
 | |
|     }
 | |
| 
 | |
|   OS << "Determining loop execution counts for: " << F.getName() << "\n";
 | |
|   for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I)
 | |
|     PrintLoopInfo(OS, this, *I);
 | |
| }
 |