mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@9001 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1920 lines
		
	
	
		
			74 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
			
		
		
	
	
			1920 lines
		
	
	
		
			74 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
| <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
 | |
| <html><head><title>LLVM Assembly Language Reference Manual</title></head>
 | |
| <body bgcolor=white>
 | |
| 
 | |
| <table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
 | |
| <tr><td>  <font size=+5 color="#EEEEFF" face="Georgia,Palatino,Times,Roman"><b>LLVM Language Reference Manual</b></font></td>
 | |
| </tr></table>
 | |
| 
 | |
| <ol>
 | |
|   <li><a href="#abstract">Abstract</a>
 | |
|   <li><a href="#introduction">Introduction</a>
 | |
|   <li><a href="#identifiers">Identifiers</a>
 | |
|   <li><a href="#typesystem">Type System</a>
 | |
|     <ol>
 | |
|       <li><a href="#t_primitive">Primitive Types</a>
 | |
| 	<ol>
 | |
|           <li><a href="#t_classifications">Type Classifications</a>
 | |
|         </ol>
 | |
|       <li><a href="#t_derived">Derived Types</a>
 | |
|         <ol>
 | |
|           <li><a href="#t_array"  >Array Type</a>
 | |
|           <li><a href="#t_function">Function Type</a>
 | |
|           <li><a href="#t_pointer">Pointer Type</a>
 | |
|           <li><a href="#t_struct" >Structure Type</a>
 | |
|           <!-- <li><a href="#t_packed" >Packed Type</a> -->
 | |
|         </ol>
 | |
|     </ol>
 | |
|   <li><a href="#highlevel">High Level Structure</a>
 | |
|     <ol>
 | |
|       <li><a href="#modulestructure">Module Structure</a>
 | |
|       <li><a href="#globalvars">Global Variables</a>
 | |
|       <li><a href="#functionstructure">Function Structure</a>
 | |
|     </ol>
 | |
|   <li><a href="#instref">Instruction Reference</a>
 | |
|     <ol>
 | |
|       <li><a href="#terminators">Terminator Instructions</a>
 | |
|         <ol>
 | |
|           <li><a href="#i_ret"   >'<tt>ret</tt>' Instruction</a>
 | |
|           <li><a href="#i_br"    >'<tt>br</tt>' Instruction</a>
 | |
|           <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a>
 | |
|           <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a>
 | |
|           <li><a href="#i_unwind"  >'<tt>unwind</tt>'  Instruction</a>
 | |
|         </ol>
 | |
|       <li><a href="#binaryops">Binary Operations</a>
 | |
|         <ol>
 | |
|           <li><a href="#i_add"  >'<tt>add</tt>' Instruction</a>
 | |
|           <li><a href="#i_sub"  >'<tt>sub</tt>' Instruction</a>
 | |
|           <li><a href="#i_mul"  >'<tt>mul</tt>' Instruction</a>
 | |
|           <li><a href="#i_div"  >'<tt>div</tt>' Instruction</a>
 | |
|           <li><a href="#i_rem"  >'<tt>rem</tt>' Instruction</a>
 | |
|           <li><a href="#i_setcc">'<tt>set<i>cc</i></tt>' Instructions</a>
 | |
|         </ol>
 | |
|       <li><a href="#bitwiseops">Bitwise Binary Operations</a>
 | |
|         <ol>
 | |
|           <li><a href="#i_and">'<tt>and</tt>' Instruction</a>
 | |
|           <li><a href="#i_or" >'<tt>or</tt>'  Instruction</a>
 | |
|           <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a>
 | |
|           <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a>
 | |
|           <li><a href="#i_shr">'<tt>shr</tt>' Instruction</a>
 | |
|         </ol>
 | |
|       <li><a href="#memoryops">Memory Access Operations</a>
 | |
|         <ol>
 | |
|           <li><a href="#i_malloc"  >'<tt>malloc</tt>'   Instruction</a>
 | |
|           <li><a href="#i_free"    >'<tt>free</tt>'     Instruction</a>
 | |
|           <li><a href="#i_alloca"  >'<tt>alloca</tt>'   Instruction</a>
 | |
| 	  <li><a href="#i_load"    >'<tt>load</tt>'     Instruction</a>
 | |
| 	  <li><a href="#i_store"   >'<tt>store</tt>'    Instruction</a>
 | |
| 	  <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
 | |
|         </ol>
 | |
|       <li><a href="#otherops">Other Operations</a>
 | |
|         <ol>
 | |
|           <li><a href="#i_phi"  >'<tt>phi</tt>'   Instruction</a>
 | |
|           <li><a href="#i_cast">'<tt>cast .. to</tt>' Instruction</a>
 | |
|           <li><a href="#i_call" >'<tt>call</tt>'  Instruction</a>
 | |
|           <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a>
 | |
|         </ol>
 | |
|     </ol>
 | |
|   <li><a href="#intrinsics">Intrinsic Functions</a>
 | |
|   <ol>
 | |
|     <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
 | |
|     <ol>
 | |
|       <li><a href="#i_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
 | |
|       <li><a href="#i_va_end"  >'<tt>llvm.va_end</tt>'   Intrinsic</a>
 | |
|       <li><a href="#i_va_copy" >'<tt>llvm.va_copy</tt>'  Intrinsic</a>
 | |
|     </ol>
 | |
|   </ol>
 | |
| 
 | |
|   <p><b>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a> and <A href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></b><p>
 | |
| 
 | |
| 
 | |
| </ol>
 | |
| 
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <p><table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
 | |
| <tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
 | |
| <a name="abstract">Abstract
 | |
| </b></font></td></tr></table><ul>
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| <blockquote>
 | |
|   This document is a reference manual for the LLVM assembly language.  LLVM is
 | |
|   an SSA based representation that provides type safety, low-level operations,
 | |
|   flexibility, and the capability of representing 'all' high-level languages
 | |
|   cleanly.  It is the common code representation used throughout all phases of
 | |
|   the LLVM compilation strategy.
 | |
| </blockquote>
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| </ul><table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
 | |
| <tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
 | |
| <a name="introduction">Introduction
 | |
| </b></font></td></tr></table><ul>
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| The LLVM code representation is designed to be used in three different forms: as
 | |
| an in-memory compiler IR, as an on-disk bytecode representation (suitable for
 | |
| fast loading by a Just-In-Time compiler), and as a human readable assembly
 | |
| language representation.  This allows LLVM to provide a powerful intermediate
 | |
| representation for efficient compiler transformations and analysis, while
 | |
| providing a natural means to debug and visualize the transformations.  The three
 | |
| different forms of LLVM are all equivalent.  This document describes the human
 | |
| readable representation and notation.<p>
 | |
| 
 | |
| The LLVM representation aims to be a light-weight and low-level while being
 | |
| expressive, typed, and extensible at the same time.  It aims to be a "universal
 | |
| IR" of sorts, by being at a low enough level that high-level ideas may be
 | |
| cleanly mapped to it (similar to how microprocessors are "universal IR's",
 | |
| allowing many source languages to be mapped to them).  By providing type
 | |
| information, LLVM can be used as the target of optimizations: for example,
 | |
| through pointer analysis, it can be proven that a C automatic variable is never
 | |
| accessed outside of the current function... allowing it to be promoted to a
 | |
| simple SSA value instead of a memory location.<p>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| </ul><a name="wellformed"><h4><hr size=0>Well Formedness</h4><ul>
 | |
| 
 | |
| It is important to note that this document describes 'well formed' LLVM assembly
 | |
| language.  There is a difference between what the parser accepts and what is
 | |
| considered 'well formed'.  For example, the following instruction is
 | |
| syntactically okay, but not well formed:<p>
 | |
| 
 | |
| <pre>
 | |
|   %x = <a href="#i_add">add</a> int 1, %x
 | |
| </pre>
 | |
| 
 | |
| ...because the definition of <tt>%x</tt> does not dominate all of its uses.  The
 | |
| LLVM infrastructure provides a verification pass that may be used to verify that
 | |
| an LLVM module is well formed.  This pass is automatically run by the parser
 | |
| after parsing input assembly, and by the optimizer before it outputs bytecode.
 | |
| The violations pointed out by the verifier pass indicate bugs in transformation
 | |
| passes or input to the parser.<p>
 | |
| 
 | |
| <!-- Describe the typesetting conventions here. -->
 | |
| 
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| </ul><table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
 | |
| <tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
 | |
| <a name="identifiers">Identifiers
 | |
| </b></font></td></tr></table><ul>
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| LLVM uses three different forms of identifiers, for different purposes:<p>
 | |
| 
 | |
| <ol>
 | |
| <li>Numeric constants are represented as you would expect: 12, -3 123.421, etc.
 | |
| Floating point constants have an optional hexidecimal notation.
 | |
| 
 | |
| <li>Named values are represented as a string of characters with a '%' prefix.
 | |
| For example, %foo, %DivisionByZero, %a.really.long.identifier.  The actual
 | |
| regular expression used is '<tt>%[a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.  Identifiers
 | |
| which require other characters in their names can be surrounded with quotes.  In
 | |
| this way, anything except a <tt>"</tt> character can be used in a name.
 | |
| 
 | |
| <li>Unnamed values are represented as an unsigned numeric value with a '%'
 | |
| prefix.  For example, %12, %2, %44.
 | |
| </ol><p>
 | |
| 
 | |
| LLVM requires the values start with a '%' sign for two reasons: Compilers don't
 | |
| need to worry about name clashes with reserved words, and the set of reserved
 | |
| words may be expanded in the future without penalty.  Additionally, unnamed
 | |
| identifiers allow a compiler to quickly come up with a temporary variable
 | |
| without having to avoid symbol table conflicts.<p>
 | |
| 
 | |
| Reserved words in LLVM are very similar to reserved words in other languages.
 | |
| There are keywords for different opcodes ('<tt><a href="#i_add">add</a></tt>',
 | |
| '<tt><a href="#i_cast">cast</a></tt>', '<tt><a href="#i_ret">ret</a></tt>',
 | |
| etc...), for primitive type names ('<tt><a href="#t_void">void</a></tt>',
 | |
| '<tt><a href="#t_uint">uint</a></tt>', etc...), and others.  These reserved
 | |
| words cannot conflict with variable names, because none of them start with a '%'
 | |
| character.<p>
 | |
| 
 | |
| Here is an example of LLVM code to multiply the integer variable '<tt>%X</tt>'
 | |
| by 8:<p>
 | |
| 
 | |
| The easy way:
 | |
| <pre>
 | |
|   %result = <a href="#i_mul">mul</a> uint %X, 8
 | |
| </pre>
 | |
| 
 | |
| After strength reduction:
 | |
| <pre>
 | |
|   %result = <a href="#i_shl">shl</a> uint %X, ubyte 3
 | |
| </pre>
 | |
| 
 | |
| And the hard way:
 | |
| <pre>
 | |
|   <a href="#i_add">add</a> uint %X, %X           <i>; yields {uint}:%0</i>
 | |
|   <a href="#i_add">add</a> uint %0, %0           <i>; yields {uint}:%1</i>
 | |
|   %result = <a href="#i_add">add</a> uint %1, %1
 | |
| </pre>
 | |
| 
 | |
| This last way of multiplying <tt>%X</tt> by 8 illustrates several important lexical features of LLVM:<p>
 | |
| 
 | |
| <ol>
 | |
| <li>Comments are delimited with a '<tt>;</tt>' and go until the end of line.
 | |
| <li>Unnamed temporaries are created when the result of a computation is not
 | |
|     assigned to a named value.
 | |
| <li>Unnamed temporaries are numbered sequentially
 | |
| </ol><p>
 | |
| 
 | |
| ...and it also show a convention that we follow in this document.  When
 | |
| demonstrating instructions, we will follow an instruction with a comment that
 | |
| defines the type and name of value produced.  Comments are shown in italic
 | |
| text.<p>
 | |
| 
 | |
| The one non-intuitive notation for constants is the optional hexidecimal form of
 | |
| floating point constants.  For example, the form '<tt>double
 | |
| 0x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double
 | |
| 4.5e+15</tt>' which is also supported by the parser.  The only time hexadecimal
 | |
| floating point constants are useful (and the only time that they are generated
 | |
| by the disassembler) is when an FP constant has to be emitted that is not
 | |
| representable as a decimal floating point number exactly.  For example, NaN's,
 | |
| infinities, and other special cases are represented in their IEEE hexadecimal
 | |
| format so that assembly and disassembly do not cause any bits to change in the
 | |
| constants.<p>
 | |
| 
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| </ul><table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
 | |
| <tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
 | |
| <a name="typesystem">Type System
 | |
| </b></font></td></tr></table><ul>
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| The LLVM type system is one of the most important features of the intermediate
 | |
| representation.  Being typed enables a number of optimizations to be performed
 | |
| on the IR directly, without having to do extra analyses on the side before the
 | |
| transformation.  A strong type system makes it easier to read the generated code
 | |
| and enables novel analyses and transformations that are not feasible to perform
 | |
| on normal three address code representations.<p>
 | |
| 
 | |
| <!-- The written form for the type system was heavily influenced by the
 | |
| syntactic problems with types in the C language<sup><a
 | |
| href="#rw_stroustrup">1</a></sup>.<p> -->
 | |
| 
 | |
| 
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| </ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
 | |
| <tr><td> </td><td width="100%">  <font color="#EEEEFF" face="Georgia,Palatino"><b>
 | |
| <a name="t_primitive">Primitive Types
 | |
| </b></font></td></tr></table><ul>
 | |
| 
 | |
| The primitive types are the fundemental building blocks of the LLVM system.  The
 | |
| current set of primitive types are as follows:<p>
 | |
| 
 | |
| <table border=0 align=center><tr><td>
 | |
| 
 | |
| <table border=1 cellspacing=0 cellpadding=4 align=center>
 | |
| <tr><td><tt>void</tt></td>  <td>No value</td></tr>
 | |
| <tr><td><tt>ubyte</tt></td> <td>Unsigned 8 bit value</td></tr>
 | |
| <tr><td><tt>ushort</tt></td><td>Unsigned 16 bit value</td></tr>
 | |
| <tr><td><tt>uint</tt></td>  <td>Unsigned 32 bit value</td></tr>
 | |
| <tr><td><tt>ulong</tt></td> <td>Unsigned 64 bit value</td></tr>
 | |
| <tr><td><tt>float</tt></td> <td>32 bit floating point value</td></tr>
 | |
| <tr><td><tt>label</tt></td> <td>Branch destination</td></tr>
 | |
| </table>
 | |
| 
 | |
| </td><td valign=top>
 | |
| 
 | |
| <table border=1 cellspacing=0 cellpadding=4 align=center>
 | |
| <tr><td><tt>bool</tt></td>  <td>True or False value</td></tr>
 | |
| <tr><td><tt>sbyte</tt></td> <td>Signed 8 bit value</td></tr>
 | |
| <tr><td><tt>short</tt></td> <td>Signed 16 bit value</td></tr>
 | |
| <tr><td><tt>int</tt></td>   <td>Signed 32 bit value</td></tr>
 | |
| <tr><td><tt>long</tt></td>  <td>Signed 64 bit value</td></tr>
 | |
| <tr><td><tt>double</tt></td><td>64 bit floating point value</td></tr>
 | |
| </table>
 | |
| 
 | |
| </td></tr></table><p>
 | |
| 
 | |
| 
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| </ul><a name="t_classifications"><h4><hr size=0>Type Classifications</h4><ul>
 | |
| 
 | |
| These different primitive types fall into a few useful classifications:<p>
 | |
| 
 | |
| <table border=1 cellspacing=0 cellpadding=4 align=center>
 | |
| <tr><td><a name="t_signed">signed</td>    <td><tt>sbyte, short, int, long, float, double</tt></td></tr>
 | |
| <tr><td><a name="t_unsigned">unsigned</td><td><tt>ubyte, ushort, uint, ulong</tt></td></tr>
 | |
| <tr><td><a name="t_integer">integer</td><td><tt>ubyte, sbyte, ushort, short, uint, int, ulong, long</tt></td></tr>
 | |
| <tr><td><a name="t_integral">integral</td><td><tt>bool, ubyte, sbyte, ushort, short, uint, int, ulong, long</tt></td></tr>
 | |
| <tr><td><a name="t_floating">floating point</td><td><tt>float, double</tt></td></tr>
 | |
| <tr><td><a name="t_firstclass">first class</td><td><tt>bool, ubyte, sbyte, ushort, short,<br> uint, int, ulong, long, float, double, <a href="#t_pointer">pointer</a></tt></td></tr>
 | |
| </table><p>
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| </ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0><tr><td> </td><td width="100%">  <font color="#EEEEFF" face="Georgia,Palatino"><b>
 | |
| <a name="t_derived">Derived Types
 | |
| </b></font></td></tr></table><ul>
 | |
| 
 | |
| The real power in LLVM comes from the derived types in the system.  This is what
 | |
| allows a programmer to represent arrays, functions, pointers, and other useful
 | |
| types.  Note that these derived types may be recursive: For example, it is
 | |
| possible to have a two dimensional array.<p>
 | |
| 
 | |
| 
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| </ul><a name="t_array"><h4><hr size=0>Array Type</h4><ul>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| 
 | |
| The array type is a very simple derived type that arranges elements sequentially
 | |
| in memory.  The array type requires a size (number of elements) and an
 | |
| underlying data type.<p>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   [<# elements> x <elementtype>]
 | |
| </pre>
 | |
| 
 | |
| The number of elements is a constant integer value, elementtype may be any type
 | |
| with a size.<p>
 | |
| 
 | |
| <h5>Examples:</h5>
 | |
| <ul>
 | |
|    <tt>[40 x int ]</tt>: Array of 40 integer values.<br>
 | |
|    <tt>[41 x int ]</tt>: Array of 41 integer values.<br>
 | |
|    <tt>[40 x uint]</tt>: Array of 40 unsigned integer values.<p>
 | |
| </ul>
 | |
| 
 | |
| Here are some examples of multidimensional arrays:<p>
 | |
| <ul>
 | |
| <table border=0 cellpadding=0 cellspacing=0>
 | |
| <tr><td><tt>[3 x [4 x int]]</tt></td><td>: 3x4 array integer values.</td></tr>
 | |
| <tr><td><tt>[12 x [10 x float]]</tt></td><td>: 12x10 array of single precision floating point values.</td></tr>
 | |
| <tr><td><tt>[2 x [3 x [4 x uint]]]</tt></td><td>: 2x3x4 array of unsigned integer values.</td></tr>
 | |
| </table>
 | |
| </ul>
 | |
| 
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| </ul><a name="t_function"><h4><hr size=0>Function Type</h4><ul>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| 
 | |
| The function type can be thought of as a function signature.  It consists of a
 | |
| return type and a list of formal parameter types.  Function types are usually
 | |
| used when to build virtual function tables (which are structures of pointers to
 | |
| functions), for indirect function calls, and when defining a function.<p>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   <returntype> (<parameter list>)
 | |
| </pre>
 | |
| 
 | |
| Where '<tt><parameter list></tt>' is a comma-separated list of type
 | |
| specifiers.  Optionally, the parameter list may include a type <tt>...</tt>,
 | |
| which indicates that the function takes a variable number of arguments.
 | |
| Variable argument functions can access their arguments with the <a
 | |
| href="#int_varargs">variable argument handling intrinsic</a> functions.
 | |
| <p>
 | |
| 
 | |
| <h5>Examples:</h5>
 | |
| <ul>
 | |
| <table border=0 cellpadding=0 cellspacing=0>
 | |
| 
 | |
| <tr><td><tt>int (int)</tt></td><td>: function taking an <tt>int</tt>, returning
 | |
| an <tt>int</tt></td></tr>
 | |
| 
 | |
| <tr><td><tt>float (int, int *) *</tt></td><td>: <a href="#t_pointer">Pointer</a>
 | |
| to a function that takes an <tt>int</tt> and a <a href="#t_pointer">pointer</a>
 | |
| to <tt>int</tt>, returning <tt>float</tt>.</td></tr>
 | |
| 
 | |
| <tr><td><tt>int (sbyte *, ...)</tt></td><td>: A vararg function that takes at
 | |
| least one <a href="#t_pointer">pointer</a> to <tt>sbyte</tt> (signed char in C),
 | |
| which returns an integer.  This is the signature for <tt>printf</tt> in
 | |
| LLVM.</td></tr>
 | |
| 
 | |
| </table>
 | |
| </ul>
 | |
| 
 | |
| 
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| </ul><a name="t_struct"><h4><hr size=0>Structure Type</h4><ul>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| 
 | |
| The structure type is used to represent a collection of data members together in
 | |
| memory.  The packing of the field types is defined to match the ABI of the
 | |
| underlying processor.  The elements of a structure may be any type that has a
 | |
| size.<p>
 | |
| 
 | |
| Structures are accessed using '<tt><a href="#i_load">load</a></tt> and '<tt><a
 | |
| href="#i_store">store</a></tt>' by getting a pointer to a field with the '<tt><a
 | |
| href="#i_getelementptr">getelementptr</a></tt>' instruction.<p>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   { <type list> }
 | |
| </pre>
 | |
| 
 | |
| 
 | |
| <h5>Examples:</h5>
 | |
| <table border=0 cellpadding=0 cellspacing=0>
 | |
| 
 | |
| <tr><td><tt>{ int, int, int }</tt></td><td>: a triple of three <tt>int</tt>
 | |
| values</td></tr>
 | |
| 
 | |
| <tr><td><tt>{ float, int (int) * }</tt></td><td>: A pair, where the first
 | |
| element is a <tt>float</tt> and the second element is a <a
 | |
| href="#t_pointer">pointer</a> to a <a href="t_function">function</a> that takes
 | |
| an <tt>int</tt>, returning an <tt>int</tt>.</td></tr>
 | |
| 
 | |
| </table>
 | |
| 
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| </ul><a name="t_pointer"><h4><hr size=0>Pointer Type</h4><ul>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| 
 | |
| As in many languages, the pointer type represents a pointer or reference to
 | |
| another object, which must live in memory.<p>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   <type> *
 | |
| </pre>
 | |
| 
 | |
| <h5>Examples:</h5>
 | |
| 
 | |
| <table border=0 cellpadding=0 cellspacing=0>
 | |
| 
 | |
| <tr><td><tt>[4x int]*</tt></td><td>: <a href="#t_pointer">pointer</a> to <a
 | |
| href="#t_array">array</a> of four <tt>int</tt> values</td></tr>
 | |
| 
 | |
| <tr><td><tt>int (int *) *</tt></td><td>: A <a href="#t_pointer">pointer</a> to a
 | |
| <a href="t_function">function</a> that takes an <tt>int</tt>, returning an
 | |
| <tt>int</tt>.</td></tr>
 | |
| 
 | |
| </table>
 | |
| <p>
 | |
| 
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| <!--
 | |
| </ul><a name="t_packed"><h4><hr size=0>Packed Type</h4><ul>
 | |
| 
 | |
| Mention/decide that packed types work with saturation or not. Maybe have a packed+saturated type in addition to just a packed type.<p>
 | |
| 
 | |
| Packed types should be 'nonsaturated' because standard data types are not saturated.  Maybe have a saturated packed type?<p>
 | |
| 
 | |
| -->
 | |
| 
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| </ul><table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
 | |
| <tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
 | |
| <a name="highlevel">High Level Structure
 | |
| </b></font></td></tr></table><ul>
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| </ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
 | |
| <tr><td> </td><td width="100%">  <font color="#EEEEFF" face="Georgia,Palatino"><b>
 | |
| <a name="modulestructure">Module Structure
 | |
| </b></font></td></tr></table><ul>
 | |
| 
 | |
| LLVM programs are composed of "Module"s, each of which is a translation unit of
 | |
| the input programs.  Each module consists of functions, global variables, and
 | |
| symbol table entries.  Modules may be combined together with the LLVM linker,
 | |
| which merges function (and global variable) definitions, resolves forward
 | |
| declarations, and merges symbol table entries. Here is an example of the "hello world" module:<p>
 | |
| 
 | |
| <pre>
 | |
| <i>; Declare the string constant as a global constant...</i>
 | |
| <a href="#identifiers">%.LC0</a> = <a href="#linkage_internal">internal</a> <a href="#globalvars">constant</a> <a href="#t_array">[13 x sbyte]</a> c"hello world\0A\00"          <i>; [13 x sbyte]*</i>
 | |
| 
 | |
| <i>; External declaration of the puts function</i>
 | |
| <a href="#functionstructure">declare</a> int %puts(sbyte*)                                            <i>; int(sbyte*)* </i>
 | |
| 
 | |
| <i>; Definition of main function</i>
 | |
| int %main() {                                                        <i>; int()* </i>
 | |
|         <i>; Convert [13x sbyte]* to sbyte *...</i>
 | |
|         %cast210 = <a href="#i_getelementptr">getelementptr</a> [13 x sbyte]* %.LC0, long 0, long 0 <i>; sbyte*</i>
 | |
| 
 | |
|         <i>; Call puts function to write out the string to stdout...</i>
 | |
|         <a href="#i_call">call</a> int %puts(sbyte* %cast210)                              <i>; int</i>
 | |
|         <a href="#i_ret">ret</a> int 0
 | |
| }
 | |
| </pre>
 | |
| 
 | |
| This example is made up of a <a href="#globalvars">global variable</a> named
 | |
| "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>" function, and a
 | |
| <a href="#functionstructure">function definition</a> for "<tt>main</tt>".<p>
 | |
| 
 | |
| <a name="linkage">
 | |
| In general, a module is made up of a list of global values, where both functions
 | |
| and global variables are global values.  Global values are represented by a
 | |
| pointer to a memory location (in this case, a pointer to an array of char, and a
 | |
| pointer to a function), and have one of the following linkage types:<p>
 | |
| 
 | |
| <dl>
 | |
| <a name="linkage_internal">
 | |
| <dt><tt><b>internal</b></tt>
 | |
| 
 | |
| <dd>Global values with internal linkage are only directly accessible by objects
 | |
| in the current module.  In particular, linking code into a module with an
 | |
| internal global value may cause the internal to be renamed as necessary to avoid
 | |
| collisions.  Because the symbol is internal to the module, all references can be
 | |
| updated.  This corresponds to the notion of the '<tt>static</tt>' keyword in C,
 | |
| or the idea of "anonymous namespaces" in C++.<p>
 | |
| 
 | |
| <a name="linkage_linkonce">
 | |
| <dt><tt><b>linkonce</b></tt>:
 | |
| 
 | |
| <dd>"<tt>linkonce</tt>" linkage is similar to <tt>internal</tt> linkage, with
 | |
| the twist that linking together two modules defining the same <tt>linkonce</tt>
 | |
| globals will cause one of the globals to be discarded.  This is typically used
 | |
| to implement inline functions.  Unreferenced <tt>linkonce</tt> globals are
 | |
| allowed to be discarded.<p>
 | |
| 
 | |
| <a name="linkage_weak">
 | |
| <dt><tt><b>weak</b></tt>:
 | |
| 
 | |
| <dd>"<tt>weak</tt>" linkage is exactly the same as <tt>linkonce</tt> linkage,
 | |
| except that unreferenced <tt>weak</tt> globals may not be discarded.  This is
 | |
| used to implement constructs in C such as "<tt>int X;</tt>" at global scope.<p>
 | |
| 
 | |
| <a name="linkage_appending">
 | |
| <dt><tt><b>appending</b></tt>:
 | |
| 
 | |
| <dd>"<tt>appending</tt>" linkage may only applied to global variables of pointer
 | |
| to array type.  When two global variables with appending linkage are linked
 | |
| together, the two global arrays are appended together.  This is the LLVM,
 | |
| typesafe, equivalent of having the system linker append together "sections" with
 | |
| identical names when .o files are linked.<p>
 | |
| 
 | |
| <a name="linkage_external">
 | |
| <dt><tt><b>externally visible</b></tt>:
 | |
| 
 | |
| <dd>If none of the above identifiers are used, the global is externally visible,
 | |
| meaning that it participates in linkage and can be used to resolve external
 | |
| symbol references.<p>
 | |
| 
 | |
| </dl><p>
 | |
| 
 | |
| 
 | |
| For example, since the "<tt>.LC0</tt>" variable is defined to be internal, if
 | |
| another module defined a "<tt>.LC0</tt>" variable and was linked with this one,
 | |
| one of the two would be renamed, preventing a collision.  Since "<tt>main</tt>"
 | |
| and "<tt>puts</tt>" are external (i.e., lacking any linkage declarations), they
 | |
| are accessible outside of the current module.  It is illegal for a function
 | |
| <i>declaration</i> to have any linkage type other than "externally visible".<p>
 | |
| 
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| </ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
 | |
| <tr><td> </td><td width="100%">  <font color="#EEEEFF" face="Georgia,Palatino"><b>
 | |
| <a name="globalvars">Global Variables
 | |
| </b></font></td></tr></table><ul>
 | |
| 
 | |
| Global variables define regions of memory allocated at compilation time instead
 | |
| of run-time.  Global variables may optionally be initialized.  A variable may
 | |
| be defined as a global "constant", which indicates that the contents of the
 | |
| variable will never be modified (opening options for optimization).  Constants
 | |
| must always have an initial value.<p>
 | |
| 
 | |
| As SSA values, global variables define pointer values that are in scope
 | |
| (i.e. they dominate) for all basic blocks in the program.  Global variables
 | |
| always define a pointer to their "content" type because they describe a region
 | |
| of memory, and all memory objects in LLVM are accessed through pointers.<p>
 | |
| 
 | |
| 
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| </ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
 | |
| <tr><td> </td><td width="100%">  <font color="#EEEEFF" face="Georgia,Palatino"><b>
 | |
| <a name="functionstructure">Functions
 | |
| </b></font></td></tr></table><ul>
 | |
| 
 | |
| LLVM functions definitions are composed of a (possibly empty) argument list, an
 | |
| opening curly brace, a list of basic blocks, and a closing curly brace.  LLVM
 | |
| function declarations are defined with the "<tt>declare</tt>" keyword, a
 | |
| function name and a function signature.<p>
 | |
| 
 | |
| A function definition contains a list of basic blocks, forming the CFG for the
 | |
| function.  Each basic block may optionally start with a label (giving the basic
 | |
| block a symbol table entry), contains a list of instructions, and ends with a <a
 | |
| href="#terminators">terminator</a> instruction (such as a branch or function
 | |
| return).<p>
 | |
| 
 | |
| The first basic block in program is special in two ways: it is immediately
 | |
| executed on entrance to the function, and it is not allowed to have predecessor
 | |
| basic blocks (i.e. there can not be any branches to the entry block of a
 | |
| function).  Because the block can have no predecessors, it also cannot have any
 | |
| <a href="#i_phi">PHI nodes</a>.<p>
 | |
| 
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| </ul><table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
 | |
| <tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
 | |
| <a name="instref">Instruction Reference
 | |
| </b></font></td></tr></table><ul>
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| The LLVM instruction set consists of several different classifications of
 | |
| instructions: <a href="#terminators">terminator instructions</a>, <a
 | |
| href="#binaryops">binary instructions</a>, <a href="#memoryops">memory
 | |
| instructions</a>, and <a href="#otherops">other instructions</a>.<p>
 | |
| 
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| </ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
 | |
| <tr><td> </td><td width="100%">  <font color="#EEEEFF" face="Georgia,Palatino"><b>
 | |
| <a name="terminators">Terminator Instructions
 | |
| </b></font></td></tr></table><ul>
 | |
| 
 | |
| As mentioned <a href="#functionstructure">previously</a>, every basic block in a
 | |
| program ends with a "Terminator" instruction, which indicates which block should
 | |
| be executed after the current block is finished. These terminator instructions
 | |
| typically yield a '<tt>void</tt>' value: they produce control flow, not values
 | |
| (the one exception being the '<a href="#i_invoke"><tt>invoke</tt></a>'
 | |
| instruction).<p>
 | |
| 
 | |
| There are five different terminator instructions: the '<a
 | |
| href="#i_ret"><tt>ret</tt></a>' instruction, the '<a
 | |
| href="#i_br"><tt>br</tt></a>' instruction, the '<a
 | |
| href="#i_switch"><tt>switch</tt></a>' instruction, the '<a
 | |
| href="#i_invoke"><tt>invoke</tt></a>' instruction, and the '<a
 | |
| href="#i_unwind"><tt>unwind</tt></a>' instruction.<p>
 | |
| 
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| </ul><a name="i_ret"><h4><hr size=0>'<tt>ret</tt>' Instruction</h4><ul>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   ret <type> <value>       <i>; Return a value from a non-void function</i>
 | |
|   ret void                 <i>; Return from void function</i>
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| 
 | |
| The '<tt>ret</tt>' instruction is used to return control flow (and a value) from
 | |
| a function, back to the caller.<p>
 | |
| 
 | |
| There are two forms of the '<tt>ret</tt>' instructruction: one that returns a
 | |
| value and then causes control flow, and one that just causes control flow to
 | |
| occur.<p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| 
 | |
| The '<tt>ret</tt>' instruction may return any '<a href="#t_firstclass">first
 | |
| class</a>' type.  Notice that a function is not <a href="#wellformed">well
 | |
| formed</a> if there exists a '<tt>ret</tt>' instruction inside of the function
 | |
| that returns a value that does not match the return type of the function.<p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| 
 | |
| When the '<tt>ret</tt>' instruction is executed, control flow returns back to
 | |
| the calling function's context.  If the caller is a "<a
 | |
| href="#i_call"><tt>call</tt></a> instruction, execution continues at the
 | |
| instruction after the call.  If the caller was an "<a
 | |
| href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues at the
 | |
| beginning "normal" of the destination block.  If the instruction returns a
 | |
| value, that value shall set the call or invoke instruction's return value.<p>
 | |
| 
 | |
| 
 | |
| <h5>Example:</h5>
 | |
| <pre>
 | |
|   ret int 5                       <i>; Return an integer value of 5</i>
 | |
|   ret void                        <i>; Return from a void function</i>
 | |
| </pre>
 | |
| 
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| </ul><a name="i_br"><h4><hr size=0>'<tt>br</tt>' Instruction</h4><ul>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   br bool <cond>, label <iftrue>, label <iffalse>
 | |
|   br label <dest>          <i>; Unconditional branch</i>
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| 
 | |
| The '<tt>br</tt>' instruction is used to cause control flow to transfer to a
 | |
| different basic block in the current function.  There are two forms of this
 | |
| instruction, corresponding to a conditional branch and an unconditional
 | |
| branch.<p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| 
 | |
| The conditional branch form of the '<tt>br</tt>' instruction takes a single
 | |
| '<tt>bool</tt>' value and two '<tt>label</tt>' values.  The unconditional form
 | |
| of the '<tt>br</tt>' instruction takes a single '<tt>label</tt>' value as a
 | |
| target.<p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| 
 | |
| Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>bool</tt>'
 | |
| argument is evaluated.  If the value is <tt>true</tt>, control flows to the
 | |
| '<tt>iftrue</tt>' <tt>label</tt> argument.  If "cond" is <tt>false</tt>,
 | |
| control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.<p>
 | |
| 
 | |
| <h5>Example:</h5>
 | |
| <pre>
 | |
| Test:
 | |
|   %cond = <a href="#i_setcc">seteq</a> int %a, %b
 | |
|   br bool %cond, label %IfEqual, label %IfUnequal
 | |
| IfEqual:
 | |
|   <a href="#i_ret">ret</a> int 1
 | |
| IfUnequal:
 | |
|   <a href="#i_ret">ret</a> int 0
 | |
| </pre>
 | |
| 
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| </ul><a name="i_switch"><h4><hr size=0>'<tt>switch</tt>' Instruction</h4><ul>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   switch uint <value>, label <defaultdest> [ int <val>, label &dest>, ... ]
 | |
| 
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| 
 | |
| The '<tt>switch</tt>' instruction is used to transfer control flow to one of
 | |
| several different places.  It is a generalization of the '<tt>br</tt>'
 | |
| instruction, allowing a branch to occur to one of many possible destinations.<p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| 
 | |
| The '<tt>switch</tt>' instruction uses three parameters: a '<tt>uint</tt>'
 | |
| comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination, and
 | |
| an array of pairs of comparison value constants and '<tt>label</tt>'s.<p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| 
 | |
| The <tt>switch</tt> instruction specifies a table of values and destinations.
 | |
| When the '<tt>switch</tt>' instruction is executed, this table is searched for
 | |
| the given value.  If the value is found, the corresponding destination is
 | |
| branched to, otherwise the default value it transfered to.<p>
 | |
| 
 | |
| <h5>Implementation:</h5>
 | |
| 
 | |
| Depending on properties of the target machine and the particular <tt>switch</tt>
 | |
| instruction, this instruction may be code generated as a series of chained
 | |
| conditional branches, or with a lookup table.<p>
 | |
| 
 | |
| <h5>Example:</h5>
 | |
| <pre>
 | |
|   <i>; Emulate a conditional br instruction</i>
 | |
|   %Val = <a href="#i_cast">cast</a> bool %value to uint
 | |
|   switch uint %Val, label %truedest [int 0, label %falsedest ]
 | |
| 
 | |
|   <i>; Emulate an unconditional br instruction</i>
 | |
|   switch uint 0, label %dest [ ]
 | |
| 
 | |
|   <i>; Implement a jump table:</i>
 | |
|   switch uint %val, label %otherwise [ int 0, label %onzero, 
 | |
|                                        int 1, label %onone, 
 | |
|                                        int 2, label %ontwo ]
 | |
| </pre>
 | |
| 
 | |
| 
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| </ul><a name="i_invoke"><h4><hr size=0>'<tt>invoke</tt>' Instruction</h4><ul>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   <result> = invoke <ptr to function ty> %<function ptr val>(<function args>)
 | |
|                  to label <normal label> except label <exception label>
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| 
 | |
| The '<tt>invoke</tt>' instruction causes control to transfer to a specified
 | |
| function, with the possibility of control flow transfer to either the
 | |
| '<tt>normal</tt>' <tt>label</tt> label or the '<tt>exception</tt>'
 | |
| <tt>label</tt>.  If the callee function returns with the "<tt><a
 | |
| href="#i_ret">ret</a></tt>" instruction, control flow will return to the
 | |
| "normal" label.  If the callee (or any indirect callees) returns with the "<a
 | |
| href="#i_unwind"><tt>unwind</tt></a>" instruction, control is interrupted, and
 | |
| continued at the dynamically nearest "except" label.<p>
 | |
| 
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| 
 | |
| This instruction requires several arguments:<p>
 | |
| <ol>
 | |
| 
 | |
| <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
 | |
| function value being invoked.  In most cases, this is a direct function
 | |
| invocation, but indirect <tt>invoke</tt>s are just as possible, branching off
 | |
| an arbitrary pointer to function value.
 | |
| 
 | |
| <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
 | |
| function to be invoked.
 | |
| 
 | |
| <li>'<tt>function args</tt>': argument list whose types match the function
 | |
| signature argument types.  If the function signature indicates the function
 | |
| accepts a variable number of arguments, the extra arguments can be specified. 
 | |
| 
 | |
| <li>'<tt>normal label</tt>': the label reached when the called function executes
 | |
| a '<tt><a href="#i_ret">ret</a></tt>' instruction.
 | |
| 
 | |
| <li>'<tt>exception label</tt>': the label reached when a callee returns with the
 | |
| <a href="#i_unwind"><tt>unwind</tt></a> instruction.
 | |
| </ol>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| 
 | |
| This instruction is designed to operate as a standard '<tt><a
 | |
| href="#i_call">call</a></tt>' instruction in most regards.  The primary
 | |
| difference is that it establishes an association with a label, which is used by the runtime library to unwind the stack.<p>
 | |
| 
 | |
| This instruction is used in languages with destructors to ensure that proper
 | |
| cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
 | |
| exception.  Additionally, this is important for implementation of
 | |
| '<tt>catch</tt>' clauses in high-level languages that support them.<p>
 | |
| 
 | |
| <h5>Example:</h5>
 | |
| <pre>
 | |
|   %retval = invoke int %Test(int 15)
 | |
|               to label %Continue
 | |
|               except label %TestCleanup     <i>; {int}:retval set</i>
 | |
| </pre>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| </ul><a name="i_unwind"><h4><hr size=0>'<tt>unwind</tt>' Instruction</h4><ul>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   unwind
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| 
 | |
| The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow at
 | |
| the first callee in the dynamic call stack which used an <a
 | |
| href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call.  This is
 | |
| primarily used to implement exception handling.
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| 
 | |
| The '<tt>unwind</tt>' intrinsic causes execution of the current function to
 | |
| immediately halt.  The dynamic call stack is then searched for the first <a
 | |
| href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack.  Once found,
 | |
| execution continues at the "exceptional" destination block specified by the
 | |
| <tt>invoke</tt> instruction.  If there is no <tt>invoke</tt> instruction in the
 | |
| dynamic call chain, undefined behavior results.
 | |
| 
 | |
| 
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| </ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0><tr><td> </td><td width="100%">  <font color="#EEEEFF" face="Georgia,Palatino"><b>
 | |
| <a name="binaryops">Binary Operations
 | |
| </b></font></td></tr></table><ul>
 | |
| 
 | |
| Binary operators are used to do most of the computation in a program.  They
 | |
| require two operands, execute an operation on them, and produce a single value.
 | |
| The result value of a binary operator is not necessarily the same type as its
 | |
| operands.<p>
 | |
| 
 | |
| There are several different binary operators:<p>
 | |
| 
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| </ul><a name="i_add"><h4><hr size=0>'<tt>add</tt>' Instruction</h4><ul>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   <result> = add <ty> <var1>, <var2>   <i>; yields {ty}:result</i>
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| The '<tt>add</tt>' instruction returns the sum of its two operands.<p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| The two arguments to the '<tt>add</tt>' instruction must be either <a href="#t_integer">integer</a> or <a href="#t_floating">floating point</a> values.  Both arguments must have identical types.<p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| 
 | |
| The value produced is the integer or floating point sum of the two operands.<p>
 | |
| 
 | |
| <h5>Example:</h5>
 | |
| <pre>
 | |
|   <result> = add int 4, %var          <i>; yields {int}:result = 4 + %var</i>
 | |
| </pre>
 | |
| 
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| </ul><a name="i_sub"><h4><hr size=0>'<tt>sub</tt>' Instruction</h4><ul>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   <result> = sub <ty> <var1>, <var2>   <i>; yields {ty}:result</i>
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| 
 | |
| The '<tt>sub</tt>' instruction returns the difference of its two operands.<p>
 | |
| 
 | |
| Note that the '<tt>sub</tt>' instruction is used to represent the '<tt>neg</tt>'
 | |
| instruction present in most other intermediate representations.<p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| 
 | |
| The two arguments to the '<tt>sub</tt>' instruction must be either <a
 | |
| href="#t_integer">integer</a> or <a href="#t_floating">floating point</a>
 | |
| values.  Both arguments must have identical types.<p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| 
 | |
| The value produced is the integer or floating point difference of the two
 | |
| operands.<p>
 | |
| 
 | |
| <h5>Example:</h5>
 | |
| <pre>
 | |
|   <result> = sub int 4, %var          <i>; yields {int}:result = 4 - %var</i>
 | |
|   <result> = sub int 0, %val          <i>; yields {int}:result = -%var</i>
 | |
| </pre>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| </ul><a name="i_mul"><h4><hr size=0>'<tt>mul</tt>' Instruction</h4><ul>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   <result> = mul <ty> <var1>, <var2>   <i>; yields {ty}:result</i>
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| The  '<tt>mul</tt>' instruction returns the product of its two operands.<p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| The two arguments to the '<tt>mul</tt>' instruction must be either <a href="#t_integer">integer</a> or <a href="#t_floating">floating point</a> values.  Both arguments must have identical types.<p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| 
 | |
| The value produced is the integer or floating point product of the two
 | |
| operands.<p>
 | |
| 
 | |
| There is no signed vs unsigned multiplication.  The appropriate action is taken
 | |
| based on the type of the operand. <p>
 | |
| 
 | |
| 
 | |
| <h5>Example:</h5>
 | |
| <pre>
 | |
|   <result> = mul int 4, %var          <i>; yields {int}:result = 4 * %var</i>
 | |
| </pre>
 | |
| 
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| </ul><a name="i_div"><h4><hr size=0>'<tt>div</tt>' Instruction</h4><ul>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   <result> = div <ty> <var1>, <var2>   <i>; yields {ty}:result</i>
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| 
 | |
| The  '<tt>div</tt>' instruction returns the quotient of its two operands.<p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| 
 | |
| The two arguments to the '<tt>div</tt>' instruction must be either <a
 | |
| href="#t_integer">integer</a> or <a href="#t_floating">floating point</a>
 | |
| values.  Both arguments must have identical types.<p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| 
 | |
| The value produced is the integer or floating point quotient of the two
 | |
| operands.<p>
 | |
| 
 | |
| <h5>Example:</h5>
 | |
| <pre>
 | |
|   <result> = div int 4, %var          <i>; yields {int}:result = 4 / %var</i>
 | |
| </pre>
 | |
| 
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| </ul><a name="i_rem"><h4><hr size=0>'<tt>rem</tt>' Instruction</h4><ul>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   <result> = rem <ty> <var1>, <var2>   <i>; yields {ty}:result</i>
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| The  '<tt>rem</tt>' instruction returns the remainder from the division of its two operands.<p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| The two arguments to the '<tt>rem</tt>' instruction must be either <a href="#t_integer">integer</a> or <a href="#t_floating">floating point</a> values.  Both arguments must have identical types.<p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| 
 | |
| This returns the <i>remainder</i> of a division (where the result has the same
 | |
| sign as the divisor), not the <i>modulus</i> (where the result has the same sign
 | |
| as the dividend) of a value.  For more information about the difference, see: <a
 | |
| href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The Math
 | |
| Forum</a>.<p>
 | |
| 
 | |
| <h5>Example:</h5>
 | |
| <pre>
 | |
|   <result> = rem int 4, %var          <i>; yields {int}:result = 4 % %var</i>
 | |
| </pre>
 | |
| 
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| </ul><a name="i_setcc"><h4><hr size=0>'<tt>set<i>cc</i></tt>' Instructions</h4><ul>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   <result> = seteq <ty> <var1>, <var2>   <i>; yields {bool}:result</i>
 | |
|   <result> = setne <ty> <var1>, <var2>   <i>; yields {bool}:result</i>
 | |
|   <result> = setlt <ty> <var1>, <var2>   <i>; yields {bool}:result</i>
 | |
|   <result> = setgt <ty> <var1>, <var2>   <i>; yields {bool}:result</i>
 | |
|   <result> = setle <ty> <var1>, <var2>   <i>; yields {bool}:result</i>
 | |
|   <result> = setge <ty> <var1>, <var2>   <i>; yields {bool}:result</i>
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5> The '<tt>set<i>cc</i></tt>' family of instructions returns a
 | |
| boolean value based on a comparison of their two operands.<p>
 | |
| 
 | |
| <h5>Arguments:</h5> The two arguments to the '<tt>set<i>cc</i></tt>'
 | |
| instructions must be of <a href="#t_firstclass">first class</a> or <a
 | |
| href="#t_pointer">pointer</a> type (it is not possible to compare
 | |
| '<tt>label</tt>'s, '<tt>array</tt>'s, '<tt>structure</tt>' or '<tt>void</tt>'
 | |
| values, etc...).  Both arguments must have identical types.<p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| 
 | |
| The '<tt>seteq</tt>' instruction yields a <tt>true</tt> '<tt>bool</tt>' value if
 | |
| both operands are equal.<br>
 | |
| 
 | |
| The '<tt>setne</tt>' instruction yields a <tt>true</tt> '<tt>bool</tt>' value if
 | |
| both operands are unequal.<br>
 | |
| 
 | |
| The '<tt>setlt</tt>' instruction yields a <tt>true</tt> '<tt>bool</tt>' value if
 | |
| the first operand is less than the second operand.<br>
 | |
| 
 | |
| The '<tt>setgt</tt>' instruction yields a <tt>true</tt> '<tt>bool</tt>' value if
 | |
| the first operand is greater than the second operand.<br>
 | |
| 
 | |
| The '<tt>setle</tt>' instruction yields a <tt>true</tt> '<tt>bool</tt>' value if
 | |
| the first operand is less than or equal to the second operand.<br>
 | |
| 
 | |
| The '<tt>setge</tt>' instruction yields a <tt>true</tt> '<tt>bool</tt>' value if
 | |
| the first operand is greater than or equal to the second operand.<p>
 | |
| 
 | |
| <h5>Example:</h5>
 | |
| <pre>
 | |
|   <result> = seteq int   4, 5        <i>; yields {bool}:result = false</i>
 | |
|   <result> = setne float 4, 5        <i>; yields {bool}:result = true</i>
 | |
|   <result> = setlt uint  4, 5        <i>; yields {bool}:result = true</i>
 | |
|   <result> = setgt sbyte 4, 5        <i>; yields {bool}:result = false</i>
 | |
|   <result> = setle sbyte 4, 5        <i>; yields {bool}:result = true</i>
 | |
|   <result> = setge sbyte 4, 5        <i>; yields {bool}:result = false</i>
 | |
| </pre>
 | |
| 
 | |
| 
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| </ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
 | |
| <tr><td> </td><td width="100%">  <font color="#EEEEFF" face="Georgia,Palatino"><b>
 | |
| <a name="bitwiseops">Bitwise Binary Operations
 | |
| </b></font></td></tr></table><ul>
 | |
| 
 | |
| Bitwise binary operators are used to do various forms of bit-twiddling in a
 | |
| program.  They are generally very efficient instructions, and can commonly be
 | |
| strength reduced from other instructions.  They require two operands, execute an
 | |
| operation on them, and produce a single value.  The resulting value of the
 | |
| bitwise binary operators is always the same type as its first operand.<p>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| </ul><a name="i_and"><h4><hr size=0>'<tt>and</tt>' Instruction</h4><ul>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   <result> = and <ty> <var1>, <var2>   <i>; yields {ty}:result</i>
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| The '<tt>and</tt>' instruction returns the bitwise logical and of its two operands.<p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| 
 | |
| The two arguments to the '<tt>and</tt>' instruction must be <a
 | |
| href="#t_integral">integral</a> values.  Both arguments must have identical
 | |
| types.<p>
 | |
| 
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| 
 | |
| The truth table used for the '<tt>and</tt>' instruction is:<p>
 | |
| 
 | |
| <center><table border=1 cellspacing=0 cellpadding=4>
 | |
| <tr><td>In0</td>  <td>In1</td>  <td>Out</td></tr>
 | |
| <tr><td>0</td>  <td>0</td>  <td>0</td></tr>
 | |
| <tr><td>0</td>  <td>1</td>  <td>0</td></tr>
 | |
| <tr><td>1</td>  <td>0</td>  <td>0</td></tr>
 | |
| <tr><td>1</td>  <td>1</td>  <td>1</td></tr>
 | |
| </table></center><p>
 | |
| 
 | |
| 
 | |
| <h5>Example:</h5>
 | |
| <pre>
 | |
|   <result> = and int 4, %var         <i>; yields {int}:result = 4 & %var</i>
 | |
|   <result> = and int 15, 40          <i>; yields {int}:result = 8</i>
 | |
|   <result> = and int 4, 8            <i>; yields {int}:result = 0</i>
 | |
| </pre>
 | |
| 
 | |
| 
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| </ul><a name="i_or"><h4><hr size=0>'<tt>or</tt>' Instruction</h4><ul>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   <result> = or <ty> <var1>, <var2>   <i>; yields {ty}:result</i>
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5> The '<tt>or</tt>' instruction returns the bitwise logical
 | |
| inclusive or of its two operands.<p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| 
 | |
| The two arguments to the '<tt>or</tt>' instruction must be <a
 | |
| href="#t_integral">integral</a> values.  Both arguments must have identical
 | |
| types.<p>
 | |
| 
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| 
 | |
| The truth table used for the '<tt>or</tt>' instruction is:<p>
 | |
| 
 | |
| <center><table border=1 cellspacing=0 cellpadding=4>
 | |
| <tr><td>In0</td>  <td>In1</td>  <td>Out</td></tr>
 | |
| <tr><td>0</td>  <td>0</td>  <td>0</td></tr>
 | |
| <tr><td>0</td>  <td>1</td>  <td>1</td></tr>
 | |
| <tr><td>1</td>  <td>0</td>  <td>1</td></tr>
 | |
| <tr><td>1</td>  <td>1</td>  <td>1</td></tr>
 | |
| </table></center><p>
 | |
| 
 | |
| 
 | |
| <h5>Example:</h5>
 | |
| <pre>
 | |
|   <result> = or int 4, %var         <i>; yields {int}:result = 4 | %var</i>
 | |
|   <result> = or int 15, 40          <i>; yields {int}:result = 47</i>
 | |
|   <result> = or int 4, 8            <i>; yields {int}:result = 12</i>
 | |
| </pre>
 | |
| 
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| </ul><a name="i_xor"><h4><hr size=0>'<tt>xor</tt>' Instruction</h4><ul>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   <result> = xor <ty> <var1>, <var2>   <i>; yields {ty}:result</i>
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| 
 | |
| The '<tt>xor</tt>' instruction returns the bitwise logical exclusive or of its
 | |
| two operands.  The <tt>xor</tt> is used to implement the "one's complement"
 | |
| operation, which is the "~" operator in C.<p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| 
 | |
| The two arguments to the '<tt>xor</tt>' instruction must be <a
 | |
| href="#t_integral">integral</a> values.  Both arguments must have identical
 | |
| types.<p>
 | |
| 
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| 
 | |
| The truth table used for the '<tt>xor</tt>' instruction is:<p>
 | |
| 
 | |
| <center><table border=1 cellspacing=0 cellpadding=4>
 | |
| <tr><td>In0</td>  <td>In1</td>  <td>Out</td></tr>
 | |
| <tr><td>0</td>  <td>0</td>  <td>0</td></tr>
 | |
| <tr><td>0</td>  <td>1</td>  <td>1</td></tr>
 | |
| <tr><td>1</td>  <td>0</td>  <td>1</td></tr>
 | |
| <tr><td>1</td>  <td>1</td>  <td>0</td></tr>
 | |
| </table></center><p>
 | |
| 
 | |
| 
 | |
| <h5>Example:</h5>
 | |
| <pre>
 | |
|   <result> = xor int 4, %var         <i>; yields {int}:result = 4 ^ %var</i>
 | |
|   <result> = xor int 15, 40          <i>; yields {int}:result = 39</i>
 | |
|   <result> = xor int 4, 8            <i>; yields {int}:result = 12</i>
 | |
|   <result> = xor int %V, -1          <i>; yields {int}:result = ~%V</i>
 | |
| </pre>
 | |
| 
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| </ul><a name="i_shl"><h4><hr size=0>'<tt>shl</tt>' Instruction</h4><ul>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   <result> = shl <ty> <var1>, ubyte <var2>   <i>; yields {ty}:result</i>
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| 
 | |
| The '<tt>shl</tt>' instruction returns the first operand shifted to the left a
 | |
| specified number of bits.
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| 
 | |
| The first argument to the '<tt>shl</tt>' instruction must be an <a
 | |
| href="#t_integer">integer</a> type.  The second argument must be an
 | |
| '<tt>ubyte</tt>' type.<p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| 
 | |
| The value produced is <tt>var1</tt> * 2<sup><tt>var2</tt></sup>.<p>
 | |
| 
 | |
| 
 | |
| <h5>Example:</h5>
 | |
| <pre>
 | |
|   <result> = shl int 4, ubyte %var   <i>; yields {int}:result = 4 << %var</i>
 | |
|   <result> = shl int 4, ubyte 2      <i>; yields {int}:result = 16</i>
 | |
|   <result> = shl int 1, ubyte 10     <i>; yields {int}:result = 1024</i>
 | |
| </pre>
 | |
| 
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| </ul><a name="i_shr"><h4><hr size=0>'<tt>shr</tt>' Instruction</h4><ul>
 | |
| 
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   <result> = shr <ty> <var1>, ubyte <var2>   <i>; yields {ty}:result</i>
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| The '<tt>shr</tt>' instruction returns the first operand shifted to the right a specified number of bits.
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| The first argument to the '<tt>shr</tt>' instruction must be an  <a href="#t_integer">integer</a> type.  The second argument must be an '<tt>ubyte</tt>' type.<p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| 
 | |
| If the first argument is a <a href="#t_signed">signed</a> type, the most
 | |
| significant bit is duplicated in the newly free'd bit positions.  If the first
 | |
| argument is unsigned, zero bits shall fill the empty positions.<p>
 | |
| 
 | |
| <h5>Example:</h5>
 | |
| <pre>
 | |
|   <result> = shr int 4, ubyte %var   <i>; yields {int}:result = 4 >> %var</i>
 | |
|   <result> = shr uint 4, ubyte 1     <i>; yields {uint}:result = 2</i>
 | |
|   <result> = shr int 4, ubyte 2      <i>; yields {int}:result = 1</i>
 | |
|   <result> = shr sbyte 4, ubyte 3    <i>; yields {sbyte}:result = 0</i>
 | |
|   <result> = shr sbyte -2, ubyte 1   <i>; yields {sbyte}:result = -1</i>
 | |
| </pre>
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| </ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
 | |
| <tr><td> </td><td width="100%">  <font color="#EEEEFF" face="Georgia,Palatino"><b>
 | |
| <a name="memoryops">Memory Access Operations
 | |
| </b></font></td></tr></table><ul>
 | |
| 
 | |
| A key design point of an SSA-based representation is how it represents memory.
 | |
| In LLVM, no memory locations are in SSA form, which makes things very simple.
 | |
| This section describes how to read, write, allocate and free memory in LLVM.<p>
 | |
| 
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| </ul><a name="i_malloc"><h4><hr size=0>'<tt>malloc</tt>' Instruction</h4><ul>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   <result> = malloc <type>, uint <NumElements>     <i>; yields {type*}:result</i>
 | |
|   <result> = malloc <type>                         <i>; yields {type*}:result</i>
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| The '<tt>malloc</tt>' instruction allocates memory from the system heap and returns a pointer to it.<p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| 
 | |
| The the '<tt>malloc</tt>' instruction allocates
 | |
| <tt>sizeof(<type>)*NumElements</tt> bytes of memory from the operating
 | |
| system, and returns a pointer of the appropriate type to the program.  The
 | |
| second form of the instruction is a shorter version of the first instruction
 | |
| that defaults to allocating one element.<p>
 | |
| 
 | |
| '<tt>type</tt>' must be a sized type.<p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| 
 | |
| Memory is allocated using the system "<tt>malloc</tt>" function, and a pointer
 | |
| is returned.<p>
 | |
| 
 | |
| <h5>Example:</h5>
 | |
| <pre>
 | |
|   %array  = malloc [4 x ubyte ]                    <i>; yields {[%4 x ubyte]*}:array</i>
 | |
| 
 | |
|   %size   = <a href="#i_add">add</a> uint 2, 2                          <i>; yields {uint}:size = uint 4</i>
 | |
|   %array1 = malloc ubyte, uint 4                   <i>; yields {ubyte*}:array1</i>
 | |
|   %array2 = malloc [12 x ubyte], uint %size        <i>; yields {[12 x ubyte]*}:array2</i>
 | |
| </pre>
 | |
| 
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| </ul><a name="i_free"><h4><hr size=0>'<tt>free</tt>' Instruction</h4><ul>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   free <type> <value>                              <i>; yields {void}</i>
 | |
| </pre>
 | |
| 
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| The '<tt>free</tt>' instruction returns memory back to the unused memory heap, to be reallocated in the future.<p>
 | |
| 
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| 
 | |
| '<tt>value</tt>' shall be a pointer value that points to a value that was
 | |
| allocated with the '<tt><a href="#i_malloc">malloc</a></tt>' instruction.<p>
 | |
| 
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| 
 | |
| Access to the memory pointed to by the pointer is not longer defined after this instruction executes.<p>
 | |
| 
 | |
| <h5>Example:</h5>
 | |
| <pre>
 | |
|   %array  = <a href="#i_malloc">malloc</a> [4 x ubyte]                    <i>; yields {[4 x ubyte]*}:array</i>
 | |
|             free   [4 x ubyte]* %array
 | |
| </pre>
 | |
| 
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| </ul><a name="i_alloca"><h4><hr size=0>'<tt>alloca</tt>' Instruction</h4><ul>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   <result> = alloca <type>, uint <NumElements>  <i>; yields {type*}:result</i>
 | |
|   <result> = alloca <type>                      <i>; yields {type*}:result</i>
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| 
 | |
| The '<tt>alloca</tt>' instruction allocates memory on the current stack frame of
 | |
| the procedure that is live until the current function returns to its caller.<p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| 
 | |
| The the '<tt>alloca</tt>' instruction allocates
 | |
| <tt>sizeof(<type>)*NumElements</tt> bytes of memory on the runtime stack,
 | |
| returning a pointer of the appropriate type to the program.  The second form of
 | |
| the instruction is a shorter version of the first that defaults to allocating
 | |
| one element.<p>
 | |
| 
 | |
| '<tt>type</tt>' may be any sized type.<p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| 
 | |
| Memory is allocated, a pointer is returned.  '<tt>alloca</tt>'d memory is
 | |
| automatically released when the function returns.  The '<tt>alloca</tt>'
 | |
| instruction is commonly used to represent automatic variables that must have an
 | |
| address available.  When the function returns (either with the <tt><a
 | |
| href="#i_ret">ret</a></tt> or <tt><a href="#i_invoke">invoke</a></tt>
 | |
| instructions), the memory is reclaimed.<p>
 | |
| 
 | |
| <h5>Example:</h5>
 | |
| <pre>
 | |
|   %ptr = alloca int                              <i>; yields {int*}:ptr</i>
 | |
|   %ptr = alloca int, uint 4                      <i>; yields {int*}:ptr</i>
 | |
| </pre>
 | |
| 
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| </ul><a name="i_load"><h4><hr size=0>'<tt>load</tt>' Instruction</h4><ul>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   <result> = load <ty>* <pointer>
 | |
|   <result> = volatile load <ty>* <pointer>
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| The '<tt>load</tt>' instruction is used to read from memory.<p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| 
 | |
| The argument to the '<tt>load</tt>' instruction specifies the memory address to
 | |
| load from.  The pointer must point to a <a href="t_firstclass">first class</a>
 | |
| type.  If the <tt>load</tt> is marked as <tt>volatile</tt> then the optimizer is
 | |
| not allowed to modify the number or order of execution of this <tt>load</tt>
 | |
| with other volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
 | |
| instructions. <p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| 
 | |
| The location of memory pointed to is loaded.
 | |
| 
 | |
| <h5>Examples:</h5>
 | |
| <pre>
 | |
|   %ptr = <a href="#i_alloca">alloca</a> int                               <i>; yields {int*}:ptr</i>
 | |
|   <a href="#i_store">store</a> int 3, int* %ptr                          <i>; yields {void}</i>
 | |
|   %val = load int* %ptr                           <i>; yields {int}:val = int 3</i>
 | |
| </pre>
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| </ul><a name="i_store"><h4><hr size=0>'<tt>store</tt>' Instruction</h4><ul>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   store <ty> <value>, <ty>* <pointer>                   <i>; yields {void}</i>
 | |
|   volatile store <ty> <value>, <ty>* <pointer>                   <i>; yields {void}</i>
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| The '<tt>store</tt>' instruction is used to write to memory.<p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| 
 | |
| There are two arguments to the '<tt>store</tt>' instruction: a value to store
 | |
| and an address to store it into.  The type of the '<tt><pointer></tt>'
 | |
| operand must be a pointer to the type of the '<tt><value></tt>' operand.
 | |
| If the <tt>store</tt> is marked as <tt>volatile</tt> then the optimizer is not
 | |
| allowed to modify the number or order of execution of this <tt>store</tt> with
 | |
| other volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
 | |
| instructions.<p>
 | |
| 
 | |
| <h5>Semantics:</h5> The contents of memory are updated to contain
 | |
| '<tt><value></tt>' at the location specified by the
 | |
| '<tt><pointer></tt>' operand.<p>
 | |
| 
 | |
| <h5>Example:</h5>
 | |
| <pre>
 | |
|   %ptr = <a href="#i_alloca">alloca</a> int                               <i>; yields {int*}:ptr</i>
 | |
|   <a href="#i_store">store</a> int 3, int* %ptr                          <i>; yields {void}</i>
 | |
|   %val = load int* %ptr                           <i>; yields {int}:val = int 3</i>
 | |
| </pre>
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| </ul><a name="i_getelementptr"><h4><hr size=0>'<tt>getelementptr</tt>' Instruction</h4><ul>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   <result> = getelementptr <ty>* <ptrval>{, long <aidx>|, ubyte <sidx>}*
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| 
 | |
| The '<tt>getelementptr</tt>' instruction is used to get the address of a
 | |
| subelement of an aggregate data structure.<p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| 
 | |
| This instruction takes a list of <tt>long</tt> values and <tt>ubyte</tt>
 | |
| constants that indicate what form of addressing to perform.  The actual types of
 | |
| the arguments provided depend on the type of the first pointer argument.  The
 | |
| '<tt>getelementptr</tt>' instruction is used to index down through the type
 | |
| levels of a structure.<p>
 | |
| 
 | |
| For example, lets consider a C code fragment and how it gets compiled to
 | |
| LLVM:<p>
 | |
| 
 | |
| <pre>
 | |
| struct RT {
 | |
|   char A;
 | |
|   int B[10][20];
 | |
|   char C;
 | |
| };
 | |
| struct ST {
 | |
|   int X;
 | |
|   double Y;
 | |
|   struct RT Z;
 | |
| };
 | |
| 
 | |
| int *foo(struct ST *s) {
 | |
|   return &s[1].Z.B[5][13];
 | |
| }
 | |
| </pre>
 | |
| 
 | |
| The LLVM code generated by the GCC frontend is:
 | |
| 
 | |
| <pre>
 | |
| %RT = type { sbyte, [10 x [20 x int]], sbyte }
 | |
| %ST = type { int, double, %RT }
 | |
| 
 | |
| int* "foo"(%ST* %s) {
 | |
|   %reg = getelementptr %ST* %s, long 1, ubyte 2, ubyte 1, long 5, long 13
 | |
|   ret int* %reg
 | |
| }
 | |
| </pre>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| 
 | |
| The index types specified for the '<tt>getelementptr</tt>' instruction depend on
 | |
| the pointer type that is being index into.  <a href="t_pointer">Pointer</a> and
 | |
| <a href="t_array">array</a> types require '<tt>long</tt>' values, and <a
 | |
| href="t_struct">structure</a> types require '<tt>ubyte</tt>'
 | |
| <b>constants</b>.<p>
 | |
| 
 | |
| In the example above, the first index is indexing into the '<tt>%ST*</tt>' type,
 | |
| which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ int, double, %RT }</tt>'
 | |
| type, a structure.  The second index indexes into the third element of the
 | |
| structure, yielding a '<tt>%RT</tt>' = '<tt>{ sbyte, [10 x [20 x int]], sbyte
 | |
| }</tt>' type, another structure.  The third index indexes into the second
 | |
| element of the structure, yielding a '<tt>[10 x [20 x int]]</tt>' type, an
 | |
| array.  The two dimensions of the array are subscripted into, yielding an
 | |
| '<tt>int</tt>' type.  The '<tt>getelementptr</tt>' instruction return a pointer
 | |
| to this element, thus yielding a '<tt>int*</tt>' type.<p>
 | |
| 
 | |
| Note that it is perfectly legal to index partially through a structure,
 | |
| returning a pointer to an inner element.  Because of this, the LLVM code for the
 | |
| given testcase is equivalent to:<p>
 | |
| 
 | |
| <pre>
 | |
| int* "foo"(%ST* %s) {
 | |
|   %t1 = getelementptr %ST* %s , long 1                        <i>; yields %ST*:%t1</i>
 | |
|   %t2 = getelementptr %ST* %t1, long 0, ubyte 2               <i>; yields %RT*:%t2</i>
 | |
|   %t3 = getelementptr %RT* %t2, long 0, ubyte 1               <i>; yields [10 x [20 x int]]*:%t3</i>
 | |
|   %t4 = getelementptr [10 x [20 x int]]* %t3, long 0, long 5  <i>; yields [20 x int]*:%t4</i>
 | |
|   %t5 = getelementptr [20 x int]* %t4, long 0, long 13        <i>; yields int*:%t5</i>
 | |
|   ret int* %t5
 | |
| }
 | |
| </pre>
 | |
| 
 | |
| 
 | |
| 
 | |
| <h5>Example:</h5>
 | |
| <pre>
 | |
|   <i>; yields [12 x ubyte]*:aptr</i>
 | |
|   %aptr = getelementptr {int, [12 x ubyte]}* %sptr, long 0, ubyte 1
 | |
| </pre>
 | |
| 
 | |
| 
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| </ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
 | |
| <tr><td> </td><td width="100%">  <font color="#EEEEFF" face="Georgia,Palatino"><b>
 | |
| <a name="otherops">Other Operations
 | |
| </b></font></td></tr></table><ul>
 | |
| 
 | |
| The instructions in this catagory are the "miscellaneous" instructions, which defy better classification.<p>
 | |
| 
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| </ul><a name="i_phi"><h4><hr size=0>'<tt>phi</tt>' Instruction</h4><ul>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   <result> = phi <ty> [ <val0>, <label0>], ...
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| 
 | |
| The '<tt>phi</tt>' instruction is used to implement the φ node in the SSA
 | |
| graph representing the function.<p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| 
 | |
| The type of the incoming values are specified with the first type field.  After
 | |
| this, the '<tt>phi</tt>' instruction takes a list of pairs as arguments, with
 | |
| one pair for each predecessor basic block of the current block.<p>
 | |
| 
 | |
| There must be no non-phi instructions between the start of a basic block and the
 | |
| PHI instructions: i.e. PHI instructions must be first in a basic block.<p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| 
 | |
| At runtime, the '<tt>phi</tt>' instruction logically takes on the value
 | |
| specified by the parameter, depending on which basic block we came from in the
 | |
| last <a href="#terminators">terminator</a> instruction.<p>
 | |
| 
 | |
| <h5>Example:</h5>
 | |
| 
 | |
| <pre>
 | |
| Loop:       ; Infinite loop that counts from 0 on up...
 | |
|   %indvar = phi uint [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
 | |
|   %nextindvar = add uint %indvar, 1
 | |
|   br label %Loop
 | |
| </pre>
 | |
| 
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| </ul><a name="i_cast"><h4><hr size=0>'<tt>cast .. to</tt>' Instruction</h4><ul>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   <result> = cast <ty> <value> to <ty2>             <i>; yields ty2</i>
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| 
 | |
| The '<tt>cast</tt>' instruction is used as the primitive means to convert
 | |
| integers to floating point, change data type sizes, and break type safety (by
 | |
| casting pointers).<p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| 
 | |
| The '<tt>cast</tt>' instruction takes a value to cast, which must be a first
 | |
| class value, and a type to cast it to, which must also be a first class type.<p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| 
 | |
| This instruction follows the C rules for explicit casts when determining how the
 | |
| data being cast must change to fit in its new container.<p>
 | |
| 
 | |
| When casting to bool, any value that would be considered true in the context of
 | |
| a C '<tt>if</tt>' condition is converted to the boolean '<tt>true</tt>' values,
 | |
| all else are '<tt>false</tt>'.<p>
 | |
| 
 | |
| When extending an integral value from a type of one signness to another (for
 | |
| example '<tt>sbyte</tt>' to '<tt>ulong</tt>'), the value is sign-extended if the
 | |
| <b>source</b> value is signed, and zero-extended if the source value is
 | |
| unsigned.  <tt>bool</tt> values are always zero extended into either zero or
 | |
| one.<p>
 | |
| 
 | |
| <h5>Example:</h5>
 | |
| <pre>
 | |
|   %X = cast int 257 to ubyte              <i>; yields ubyte:1</i>
 | |
|   %Y = cast int 123 to bool               <i>; yields bool:true</i>
 | |
| </pre>
 | |
| 
 | |
| 
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| </ul><a name="i_call"><h4><hr size=0>'<tt>call</tt>' Instruction</h4><ul>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   <result> = call <ty>* <fnptrval>(<param list>)
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| 
 | |
| The '<tt>call</tt>' instruction represents a simple function call.<p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| 
 | |
| This instruction requires several arguments:<p>
 | |
| <ol>
 | |
| 
 | |
| <li>'<tt>ty</tt>': shall be the signature of the pointer to function value being
 | |
| invoked.  The argument types must match the types implied by this signature.<p>
 | |
| 
 | |
| <li>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to be
 | |
| invoked. In most cases, this is a direct function invocation, but indirect
 | |
| <tt>call</tt>s are just as possible, calling an arbitrary pointer to function
 | |
| values.<p>
 | |
| 
 | |
| <li>'<tt>function args</tt>': argument list whose types match the function
 | |
| signature argument types.  If the function signature indicates the function
 | |
| accepts a variable number of arguments, the extra arguments can be specified. 
 | |
| </ol>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| 
 | |
| The '<tt>call</tt>' instruction is used to cause control flow to transfer to a
 | |
| specified function, with its incoming arguments bound to the specified values.
 | |
| Upon a '<tt><a href="#i_ret">ret</a></tt>' instruction in the called function,
 | |
| control flow continues with the instruction after the function call, and the
 | |
| return value of the function is bound to the result argument.  This is a simpler
 | |
| case of the <a href="#i_invoke">invoke</a> instruction.<p>
 | |
| 
 | |
| <h5>Example:</h5>
 | |
| <pre>
 | |
|   %retval = call int %test(int %argc)
 | |
|   call int(sbyte*, ...) *%printf(sbyte* %msg, int 12, sbyte 42);
 | |
| 
 | |
| </pre>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| </ul><a name="i_va_arg"><h4><hr size=0>'<tt>va_arg</tt>' Instruction</h4><ul>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   <result> = va_arg <va_list>* <arglist>, <retty>
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| 
 | |
| The '<tt>va_arg</tt>' instruction is used to access arguments passed through the
 | |
| "variable argument" area of a function call.  It corresponds directly to the
 | |
| <tt>va_arg</tt> macro in C.<p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| 
 | |
| This instruction takes a pointer to a <tt>valist</tt> value to read a new
 | |
| argument from.  The return type of the instruction is defined by the second
 | |
| argument, a type.<p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| 
 | |
| The '<tt>va_arg</tt>' instruction works just like the <tt>va_arg</tt> macro
 | |
| available in C.  In a target-dependent way, it reads the argument indicated by
 | |
| the value the arglist points to, updates the arglist, then returns a value of
 | |
| the specified type.  This instruction should be used in conjunction with the
 | |
| variable argument handling <a href="#int_varargs">Intrinsic Functions</a>.<p>
 | |
| 
 | |
| It is legal for this instruction to be called in a function which does not take
 | |
| a variable number of arguments, for example, the <tt>vfprintf</tt> function.<p>
 | |
| 
 | |
| <tt>va_arg</tt> is an LLVM instruction instead of an <a
 | |
| href="#intrinsics">intrinsic function</a> because the return type depends on an
 | |
| argument.<p>
 | |
| 
 | |
| <h5>Example:</h5>
 | |
| 
 | |
| See the <a href="#int_varargs">variable argument processing</a> section.<p>
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| </ul><table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
 | |
| <tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
 | |
| <a name="intrinsics">Intrinsic Functions
 | |
| </b></font></td></tr></table><ul>
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| LLVM supports the notion of an "intrinsic function".  These functions have well
 | |
| known names and semantics, and are required to follow certain restrictions.
 | |
| Overall, these instructions represent an extension mechanism for the LLVM
 | |
| language that does not require changing all of the transformations in LLVM to
 | |
| add to the language (or the bytecode reader/writer, the parser, etc...).<p>
 | |
| 
 | |
| Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix, this
 | |
| prefix is reserved in LLVM for intrinsic names, thus functions may not be named
 | |
| this.  Intrinsic functions must always be external functions: you cannot define
 | |
| the body of intrinsic functions.  Intrinsic functions may only be used in call
 | |
| or invoke instructions: it is illegal to take the address of an intrinsic
 | |
| function.  Additionally, because intrinsic functions are part of the LLVM
 | |
| language, it is required that they all be documented here if any are added.<p>
 | |
| 
 | |
| Unless an intrinsic function is target-specific, there must be a lowering pass
 | |
| to eliminate the intrinsic or all backends must support the intrinsic
 | |
| function.<p>
 | |
| 
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| </ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
 | |
| <tr><td> </td><td width="100%">  <font color="#EEEEFF" face="Georgia,Palatino"><b>
 | |
| <a name="int_varargs">Variable Argument Handling Intrinsics
 | |
| </b></font></td></tr></table><ul>
 | |
| 
 | |
| Variable argument support is defined in LLVM with the <a
 | |
| href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three intrinsic
 | |
| functions.  These function correspond almost directly to the similarly named
 | |
| macros defined in the <tt><stdarg.h></tt> header file.<p>
 | |
| 
 | |
| All of these functions operate on arguments that use a target-specific type
 | |
| "<tt>va_list</tt>".  The LLVM assembly language reference manual does not define
 | |
| what this type is, so all transformations should be prepared to handle
 | |
| intrinsics with any type used.<p>
 | |
| 
 | |
| This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a> instruction
 | |
| and the variable argument handling intrinsic functions are used.<p>
 | |
| 
 | |
| <pre>
 | |
| int %test(int %X, ...) {
 | |
|   ; Allocate two va_list items.  On this target, va_list is of type sbyte*
 | |
|   %ap = alloca sbyte*
 | |
|   %aq = alloca sbyte*
 | |
| 
 | |
|   ; Initialize variable argument processing
 | |
|   call void (sbyte**)* %<a href="#i_va_start">llvm.va_start</a>(sbyte** %ap)
 | |
| 
 | |
|   ; Read a single integer argument
 | |
|   %tmp = <a href="#i_va_arg">va_arg</a> sbyte** %ap, int 
 | |
| 
 | |
|   ; Demonstrate usage of llvm.va_copy and llvm_va_end
 | |
|   %apv = load sbyte** %ap
 | |
|   call void %<a href="#i_va_copy">llvm.va_copy</a>(sbyte** %aq, sbyte* %apv)
 | |
|   call void %<a href="#i_va_end">llvm.va_end</a>(sbyte** %aq)
 | |
| 
 | |
|   ; Stop processing of arguments.
 | |
|   call void %<a href="#i_va_end">llvm.va_end</a>(sbyte** %ap)
 | |
|   ret int %tmp
 | |
| }
 | |
| </pre>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| </ul><a name="i_va_start"><h4><hr size=0>'<tt>llvm.va_start</tt>' Intrinsic</h4><ul>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   call void (va_list*)* %llvm.va_start(<va_list>* <arglist>)
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| 
 | |
| The '<tt>llvm.va_start</tt>' intrinsic initializes <tt>*<arglist></tt> for
 | |
| subsequent use by <tt><a href="#i_va_arg">va_arg</a></tt> and <tt><a
 | |
| href="#i_va_end">llvm.va_end</a></tt>, and must be called before either are
 | |
| invoked.<p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| 
 | |
| The argument is a pointer to a <tt>va_list</tt> element to initialize.<p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| 
 | |
| The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
 | |
| macro available in C.  In a target-dependent way, it initializes the
 | |
| <tt>va_list</tt> element the argument points to, so that the next call to
 | |
| <tt>va_arg</tt> will produce the first variable argument passed to the function.
 | |
| Unlike the C <tt>va_start</tt> macro, this intrinsic does not need to know the
 | |
| last argument of the function, the compiler can figure that out.<p>
 | |
| 
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| </ul><a name="i_va_end"><h4><hr size=0>'<tt>llvm.va_end</tt>' Intrinsic</h4><ul>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   call void (va_list*)* %llvm.va_end(<va_list>* <arglist>)
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| 
 | |
| The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*<arglist></tt> which
 | |
| has been initialized previously with <tt><a
 | |
| href="#i_va_begin">llvm.va_begin</a></tt>.<p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| 
 | |
| The argument is a pointer to a <tt>va_list</tt> element to destroy.<p>
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| 
 | |
| The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt> macro
 | |
| available in C.  In a target-dependent way, it destroys the <tt>va_list</tt>
 | |
| that the argument points to.  Calls to <a
 | |
| href="#i_va_start"><tt>llvm.va_start</tt></a> and <a
 | |
| href="#i_va_copy"><tt>llvm.va_copy</tt></a> must be matched exactly with calls
 | |
| to <tt>llvm.va_end</tt>.<p>
 | |
| 
 | |
| 
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| </ul><a name="i_va_copy"><h4><hr size=0>'<tt>llvm.va_copy</tt>' Intrinsic</h4><ul>
 | |
| 
 | |
| <h5>Syntax:</h5>
 | |
| <pre>
 | |
|   call void (va_list*, va_list)* %va_copy(<va_list>* <destarglist>,
 | |
|                                           <va_list> <srcarglist>)
 | |
| </pre>
 | |
| 
 | |
| <h5>Overview:</h5>
 | |
| 
 | |
| The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position from
 | |
| the source argument list to the destination argument list.<p>
 | |
| 
 | |
| <h5>Arguments:</h5>
 | |
| 
 | |
| The first argument is a pointer to a <tt>va_list</tt> element to initialize.
 | |
| The second argument is a <tt>va_list</tt> element to copy from.<p>
 | |
| 
 | |
| 
 | |
| <h5>Semantics:</h5>
 | |
| 
 | |
| The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt> macro
 | |
| available in C.  In a target-dependent way, it copies the source
 | |
| <tt>va_list</tt> element into the destination list.  This intrinsic is necessary
 | |
| because the <tt><a href="i_va_begin">llvm.va_begin</a></tt> intrinsic may be
 | |
| arbitrarily complex and require memory allocation, for example.<p>
 | |
| 
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| </ul>
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| 
 | |
| <hr>
 | |
| <font size=-1>
 | |
| <address><a href="mailto:sabre@nondot.org">Chris Lattner</a></address>
 | |
| <!-- Created: Tue Jan 23 15:19:28 CST 2001 -->
 | |
| <!-- hhmts start -->
 | |
| Last modified: Thu Oct  9 23:58:41 CDT 2003
 | |
| <!-- hhmts end -->
 | |
| </font>
 | |
| </body></html>
 |