mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@3674 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			390 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			390 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- ADCE.cpp - Code to perform aggressive dead code elimination --------===//
 | 
						|
//
 | 
						|
// This file implements "aggressive" dead code elimination.  ADCE is DCe where
 | 
						|
// values are assumed to be dead until proven otherwise.  This is similar to 
 | 
						|
// SCCP, except applied to the liveness of values.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | 
						|
#include "llvm/Type.h"
 | 
						|
#include "llvm/Analysis/PostDominators.h"
 | 
						|
#include "llvm/iTerminators.h"
 | 
						|
#include "llvm/iPHINode.h"
 | 
						|
#include "llvm/Constant.h"
 | 
						|
#include "llvm/Support/CFG.h"
 | 
						|
#include "Support/STLExtras.h"
 | 
						|
#include "Support/DepthFirstIterator.h"
 | 
						|
#include "Support/StatisticReporter.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <iostream>
 | 
						|
using std::cerr;
 | 
						|
using std::vector;
 | 
						|
 | 
						|
static Statistic<> NumBlockRemoved("adce\t\t- Number of basic blocks removed");
 | 
						|
static Statistic<> NumInstRemoved ("adce\t\t- Number of instructions removed");
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// ADCE Class
 | 
						|
//
 | 
						|
// This class does all of the work of Aggressive Dead Code Elimination.
 | 
						|
// It's public interface consists of a constructor and a doADCE() method.
 | 
						|
//
 | 
						|
class ADCE : public FunctionPass {
 | 
						|
  Function *Func;                       // The function that we are working on
 | 
						|
  std::vector<Instruction*> WorkList;   // Instructions that just became live
 | 
						|
  std::set<Instruction*>    LiveSet;    // The set of live instructions
 | 
						|
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
  // The public interface for this class
 | 
						|
  //
 | 
						|
public:
 | 
						|
  // Execute the Aggressive Dead Code Elimination Algorithm
 | 
						|
  //
 | 
						|
  virtual bool runOnFunction(Function &F) {
 | 
						|
    Func = &F;
 | 
						|
    bool Changed = doADCE();
 | 
						|
    assert(WorkList.empty());
 | 
						|
    LiveSet.clear();
 | 
						|
    return Changed;
 | 
						|
  }
 | 
						|
  // getAnalysisUsage - We require post dominance frontiers (aka Control
 | 
						|
  // Dependence Graph)
 | 
						|
  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
    AU.addRequired<PostDominatorTree>();
 | 
						|
    AU.addRequired<PostDominanceFrontier>();
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
  // The implementation of this class
 | 
						|
  //
 | 
						|
private:
 | 
						|
  // doADCE() - Run the Aggressive Dead Code Elimination algorithm, returning
 | 
						|
  // true if the function was modified.
 | 
						|
  //
 | 
						|
  bool doADCE();
 | 
						|
 | 
						|
  void markBlockAlive(BasicBlock *BB);
 | 
						|
 | 
						|
 | 
						|
  // dropReferencesOfDeadInstructionsInLiveBlock - Loop over all of the
 | 
						|
  // instructions in the specified basic block, dropping references on
 | 
						|
  // instructions that are dead according to LiveSet.
 | 
						|
  bool dropReferencesOfDeadInstructionsInLiveBlock(BasicBlock *BB);
 | 
						|
 | 
						|
  inline void markInstructionLive(Instruction *I) {
 | 
						|
    if (LiveSet.count(I)) return;
 | 
						|
    DEBUG(cerr << "Insn Live: " << I);
 | 
						|
    LiveSet.insert(I);
 | 
						|
    WorkList.push_back(I);
 | 
						|
  }
 | 
						|
 | 
						|
  inline void markTerminatorLive(const BasicBlock *BB) {
 | 
						|
    DEBUG(cerr << "Terminat Live: " << BB->getTerminator());
 | 
						|
    markInstructionLive((Instruction*)BB->getTerminator());
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
  RegisterOpt<ADCE> X("adce", "Aggressive Dead Code Elimination");
 | 
						|
} // End of anonymous namespace
 | 
						|
 | 
						|
Pass *createAggressiveDCEPass() { return new ADCE(); }
 | 
						|
 | 
						|
void ADCE::markBlockAlive(BasicBlock *BB) {
 | 
						|
  // Mark the basic block as being newly ALIVE... and mark all branches that
 | 
						|
  // this block is control dependant on as being alive also...
 | 
						|
  //
 | 
						|
  PostDominanceFrontier &CDG = getAnalysis<PostDominanceFrontier>();
 | 
						|
 | 
						|
  PostDominanceFrontier::const_iterator It = CDG.find(BB);
 | 
						|
  if (It != CDG.end()) {
 | 
						|
    // Get the blocks that this node is control dependant on...
 | 
						|
    const PostDominanceFrontier::DomSetType &CDB = It->second;
 | 
						|
    for_each(CDB.begin(), CDB.end(),   // Mark all their terminators as live
 | 
						|
             bind_obj(this, &ADCE::markTerminatorLive));
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If this basic block is live, then the terminator must be as well!
 | 
						|
  markTerminatorLive(BB);
 | 
						|
}
 | 
						|
 | 
						|
// dropReferencesOfDeadInstructionsInLiveBlock - Loop over all of the
 | 
						|
// instructions in the specified basic block, dropping references on
 | 
						|
// instructions that are dead according to LiveSet.
 | 
						|
bool ADCE::dropReferencesOfDeadInstructionsInLiveBlock(BasicBlock *BB) {
 | 
						|
  bool Changed = false;
 | 
						|
  for (BasicBlock::iterator I = BB->begin(), E = --BB->end(); I != E; )
 | 
						|
    if (!LiveSet.count(I)) {              // Is this instruction alive?
 | 
						|
      I->dropAllReferences();             // Nope, drop references... 
 | 
						|
      if (PHINode *PN = dyn_cast<PHINode>(&*I)) {
 | 
						|
        // We don't want to leave PHI nodes in the program that have
 | 
						|
        // #arguments != #predecessors, so we remove them now.
 | 
						|
        //
 | 
						|
        PN->replaceAllUsesWith(Constant::getNullValue(PN->getType()));
 | 
						|
        
 | 
						|
        // Delete the instruction...
 | 
						|
        I = BB->getInstList().erase(I);
 | 
						|
        Changed = true;
 | 
						|
      } else {
 | 
						|
        ++I;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      ++I;
 | 
						|
    }
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// doADCE() - Run the Aggressive Dead Code Elimination algorithm, returning
 | 
						|
// true if the function was modified.
 | 
						|
//
 | 
						|
bool ADCE::doADCE() {
 | 
						|
  bool MadeChanges = false;
 | 
						|
 | 
						|
  // Iterate over all of the instructions in the function, eliminating trivially
 | 
						|
  // dead instructions, and marking instructions live that are known to be 
 | 
						|
  // needed.  Perform the walk in depth first order so that we avoid marking any
 | 
						|
  // instructions live in basic blocks that are unreachable.  These blocks will
 | 
						|
  // be eliminated later, along with the instructions inside.
 | 
						|
  //
 | 
						|
  for (df_iterator<Function*> BBI = df_begin(Func), BBE = df_end(Func);
 | 
						|
       BBI != BBE; ++BBI) {
 | 
						|
    BasicBlock *BB = *BBI;
 | 
						|
    for (BasicBlock::iterator II = BB->begin(), EI = BB->end(); II != EI; ) {
 | 
						|
      if (II->hasSideEffects() || II->getOpcode() == Instruction::Ret) {
 | 
						|
	markInstructionLive(II);
 | 
						|
        ++II;  // Increment the inst iterator if the inst wasn't deleted
 | 
						|
      } else if (isInstructionTriviallyDead(II)) {
 | 
						|
        // Remove the instruction from it's basic block...
 | 
						|
        II = BB->getInstList().erase(II);
 | 
						|
        ++NumInstRemoved;
 | 
						|
        MadeChanges = true;
 | 
						|
      } else {
 | 
						|
        ++II;  // Increment the inst iterator if the inst wasn't deleted
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(cerr << "Processing work list\n");
 | 
						|
 | 
						|
  // AliveBlocks - Set of basic blocks that we know have instructions that are
 | 
						|
  // alive in them...
 | 
						|
  //
 | 
						|
  std::set<BasicBlock*> AliveBlocks;
 | 
						|
 | 
						|
  // Process the work list of instructions that just became live... if they
 | 
						|
  // became live, then that means that all of their operands are neccesary as
 | 
						|
  // well... make them live as well.
 | 
						|
  //
 | 
						|
  while (!WorkList.empty()) {
 | 
						|
    Instruction *I = WorkList.back(); // Get an instruction that became live...
 | 
						|
    WorkList.pop_back();
 | 
						|
 | 
						|
    BasicBlock *BB = I->getParent();
 | 
						|
    if (!AliveBlocks.count(BB)) {     // Basic block not alive yet...
 | 
						|
      AliveBlocks.insert(BB);         // Block is now ALIVE!
 | 
						|
      markBlockAlive(BB);             // Make it so now!
 | 
						|
    }
 | 
						|
 | 
						|
    // PHI nodes are a special case, because the incoming values are actually
 | 
						|
    // defined in the predecessor nodes of this block, meaning that the PHI
 | 
						|
    // makes the predecessors alive.
 | 
						|
    //
 | 
						|
    if (PHINode *PN = dyn_cast<PHINode>(I))
 | 
						|
      for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI)
 | 
						|
        if (!AliveBlocks.count(*PI)) {
 | 
						|
          AliveBlocks.insert(BB);         // Block is now ALIVE!
 | 
						|
          markBlockAlive(*PI);
 | 
						|
        }
 | 
						|
 | 
						|
    // Loop over all of the operands of the live instruction, making sure that
 | 
						|
    // they are known to be alive as well...
 | 
						|
    //
 | 
						|
    for (unsigned op = 0, End = I->getNumOperands(); op != End; ++op)
 | 
						|
      if (Instruction *Operand = dyn_cast<Instruction>(I->getOperand(op)))
 | 
						|
	markInstructionLive(Operand);
 | 
						|
  }
 | 
						|
 | 
						|
  if (DebugFlag) {
 | 
						|
    cerr << "Current Function: X = Live\n";
 | 
						|
    for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I)
 | 
						|
      for (BasicBlock::iterator BI = I->begin(), BE = I->end(); BI != BE; ++BI){
 | 
						|
        if (LiveSet.count(BI)) cerr << "X ";
 | 
						|
        cerr << *BI;
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  // Find the first postdominator of the entry node that is alive.  Make it the
 | 
						|
  // new entry node...
 | 
						|
  //
 | 
						|
  PostDominatorTree &DT = getAnalysis<PostDominatorTree>();
 | 
						|
 | 
						|
 | 
						|
  if (AliveBlocks.size() == Func->size()) {  // No dead blocks?
 | 
						|
    for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I)
 | 
						|
      // Loop over all of the instructions in the function, telling dead
 | 
						|
      // instructions to drop their references.  This is so that the next sweep
 | 
						|
      // over the program can safely delete dead instructions without other dead
 | 
						|
      // instructions still refering to them.
 | 
						|
      //
 | 
						|
      dropReferencesOfDeadInstructionsInLiveBlock(I);
 | 
						|
    
 | 
						|
  } else {                                   // If there are some blocks dead...
 | 
						|
    // If the entry node is dead, insert a new entry node to eliminate the entry
 | 
						|
    // node as a special case.
 | 
						|
    //
 | 
						|
    if (!AliveBlocks.count(&Func->front())) {
 | 
						|
      BasicBlock *NewEntry = new BasicBlock();
 | 
						|
      NewEntry->getInstList().push_back(new BranchInst(&Func->front()));
 | 
						|
      Func->getBasicBlockList().push_front(NewEntry);
 | 
						|
      AliveBlocks.insert(NewEntry);    // This block is always alive!
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Loop over all of the alive blocks in the function.  If any successor
 | 
						|
    // blocks are not alive, we adjust the outgoing branches to branch to the
 | 
						|
    // first live postdominator of the live block, adjusting any PHI nodes in
 | 
						|
    // the block to reflect this.
 | 
						|
    //
 | 
						|
    for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I)
 | 
						|
      if (AliveBlocks.count(I)) {
 | 
						|
        BasicBlock *BB = I;
 | 
						|
        TerminatorInst *TI = BB->getTerminator();
 | 
						|
      
 | 
						|
        // Loop over all of the successors, looking for ones that are not alive.
 | 
						|
        // We cannot save the number of successors in the terminator instruction
 | 
						|
        // here because we may remove them if we don't have a postdominator...
 | 
						|
        //
 | 
						|
        for (unsigned i = 0; i != TI->getNumSuccessors(); ++i)
 | 
						|
          if (!AliveBlocks.count(TI->getSuccessor(i))) {
 | 
						|
            // Scan up the postdominator tree, looking for the first
 | 
						|
            // postdominator that is alive, and the last postdominator that is
 | 
						|
            // dead...
 | 
						|
            //
 | 
						|
            PostDominatorTree::Node *LastNode = DT[TI->getSuccessor(i)];
 | 
						|
 | 
						|
            // There is a special case here... if there IS no post-dominator for
 | 
						|
            // the block we have no owhere to point our branch to.  Instead,
 | 
						|
            // convert it to a return.  This can only happen if the code
 | 
						|
            // branched into an infinite loop.  Note that this may not be
 | 
						|
            // desirable, because we _are_ altering the behavior of the code.
 | 
						|
            // This is a well known drawback of ADCE, so in the future if we
 | 
						|
            // choose to revisit the decision, this is where it should be.
 | 
						|
            //
 | 
						|
            if (LastNode == 0) {        // No postdominator!
 | 
						|
              // Call RemoveSuccessor to transmogrify the terminator instruction
 | 
						|
              // to not contain the outgoing branch, or to create a new
 | 
						|
              // terminator if the form fundementally changes (ie unconditional
 | 
						|
              // branch to return).  Note that this will change a branch into an
 | 
						|
              // infinite loop into a return instruction!
 | 
						|
              //
 | 
						|
              RemoveSuccessor(TI, i);
 | 
						|
 | 
						|
              // RemoveSuccessor may replace TI... make sure we have a fresh
 | 
						|
              // pointer... and e variable.
 | 
						|
              //
 | 
						|
              TI = BB->getTerminator();
 | 
						|
 | 
						|
              // Rescan this successor...
 | 
						|
              --i;
 | 
						|
            } else {
 | 
						|
              PostDominatorTree::Node *NextNode = LastNode->getIDom();
 | 
						|
 | 
						|
              while (!AliveBlocks.count(NextNode->getNode())) {
 | 
						|
                LastNode = NextNode;
 | 
						|
                NextNode = NextNode->getIDom();
 | 
						|
              }
 | 
						|
            
 | 
						|
              // Get the basic blocks that we need...
 | 
						|
              BasicBlock *LastDead = LastNode->getNode();
 | 
						|
              BasicBlock *NextAlive = NextNode->getNode();
 | 
						|
 | 
						|
              // Make the conditional branch now go to the next alive block...
 | 
						|
              TI->getSuccessor(i)->removePredecessor(BB);
 | 
						|
              TI->setSuccessor(i, NextAlive);
 | 
						|
 | 
						|
              // If there are PHI nodes in NextAlive, we need to add entries to
 | 
						|
              // the PHI nodes for the new incoming edge.  The incoming values
 | 
						|
              // should be identical to the incoming values for LastDead.
 | 
						|
              //
 | 
						|
              for (BasicBlock::iterator II = NextAlive->begin();
 | 
						|
                   PHINode *PN = dyn_cast<PHINode>(&*II); ++II) {
 | 
						|
                // Get the incoming value for LastDead...
 | 
						|
                int OldIdx = PN->getBasicBlockIndex(LastDead);
 | 
						|
                assert(OldIdx != -1 && "LastDead is not a pred of NextAlive!");
 | 
						|
                Value *InVal = PN->getIncomingValue(OldIdx);
 | 
						|
                
 | 
						|
                // Add an incoming value for BB now...
 | 
						|
                PN->addIncoming(InVal, BB);
 | 
						|
              }
 | 
						|
            }
 | 
						|
          }
 | 
						|
 | 
						|
        // Now loop over all of the instructions in the basic block, telling
 | 
						|
        // dead instructions to drop their references.  This is so that the next
 | 
						|
        // sweep over the program can safely delete dead instructions without
 | 
						|
        // other dead instructions still refering to them.
 | 
						|
        //
 | 
						|
        dropReferencesOfDeadInstructionsInLiveBlock(BB);
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  // Loop over all of the basic blocks in the function, dropping references of
 | 
						|
  // the dead basic blocks
 | 
						|
  //
 | 
						|
  for (Function::iterator BB = Func->begin(), E = Func->end(); BB != E; ++BB) {
 | 
						|
    if (!AliveBlocks.count(BB)) {
 | 
						|
      // Remove all outgoing edges from this basic block and convert the
 | 
						|
      // terminator into a return instruction.
 | 
						|
      vector<BasicBlock*> Succs(succ_begin(BB), succ_end(BB));
 | 
						|
      
 | 
						|
      if (!Succs.empty()) {
 | 
						|
        // Loop over all of the successors, removing this block from PHI node
 | 
						|
        // entries that might be in the block...
 | 
						|
        while (!Succs.empty()) {
 | 
						|
          Succs.back()->removePredecessor(BB);
 | 
						|
          Succs.pop_back();
 | 
						|
        }
 | 
						|
        
 | 
						|
        // Delete the old terminator instruction...
 | 
						|
        BB->getInstList().pop_back();
 | 
						|
        const Type *RetTy = Func->getReturnType();
 | 
						|
        BB->getInstList().push_back(new ReturnInst(RetTy != Type::VoidTy ?
 | 
						|
                                           Constant::getNullValue(RetTy) : 0));
 | 
						|
      }
 | 
						|
 | 
						|
      BB->dropAllReferences();
 | 
						|
      ++NumBlockRemoved;
 | 
						|
      MadeChanges = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Now loop through all of the blocks and delete the dead ones.  We can safely
 | 
						|
  // do this now because we know that there are no references to dead blocks
 | 
						|
  // (because they have dropped all of their references...  we also remove dead
 | 
						|
  // instructions from alive blocks.
 | 
						|
  //
 | 
						|
  for (Function::iterator BI = Func->begin(); BI != Func->end(); )
 | 
						|
    if (!AliveBlocks.count(BI)) {                // Delete dead blocks...
 | 
						|
      BI = Func->getBasicBlockList().erase(BI);
 | 
						|
    } else {                                     // Scan alive blocks...
 | 
						|
      for (BasicBlock::iterator II = BI->begin(); II != --BI->end(); )
 | 
						|
        if (!LiveSet.count(II)) {             // Is this instruction alive?
 | 
						|
          // Nope... remove the instruction from it's basic block...
 | 
						|
          II = BI->getInstList().erase(II);
 | 
						|
          ++NumInstRemoved;
 | 
						|
          MadeChanges = true;
 | 
						|
        } else {
 | 
						|
          ++II;
 | 
						|
        }
 | 
						|
 | 
						|
      ++BI;                                           // Increment iterator...
 | 
						|
    }
 | 
						|
 | 
						|
  return MadeChanges;
 | 
						|
}
 |