mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@369 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			379 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			379 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- DominatorSet.cpp - Dominator Set Calculation --------------*- C++ -*--=//
 | |
| //
 | |
| // This file provides a simple class to calculate the dominator set of a method.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/Dominators.h"
 | |
| #include "llvm/Analysis/SimplifyCFG.h"   // To get cfg::UnifyAllExitNodes
 | |
| #include "llvm/CFG.h"
 | |
| #include "llvm/Support/STLExtras.h"
 | |
| #include <algorithm>
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Helper Template
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // set_intersect - Identical to set_intersection, except that it works on 
 | |
| // set<>'s and is nicer to use.  Functionally, this iterates through S1, 
 | |
| // removing elements that are not contained in S2.
 | |
| //
 | |
| template <class Ty, class Ty2>
 | |
| void set_intersect(set<Ty> &S1, const set<Ty2> &S2) {
 | |
|   for (typename set<Ty>::iterator I = S1.begin(); I != S1.end();) {
 | |
|     const Ty &E = *I;
 | |
|     ++I;
 | |
|     if (!S2.count(E)) S1.erase(E);   // Erase element if not in S2
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  DominatorBase Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| bool cfg::DominatorBase::isPostDominator() const { 
 | |
|   // Root can be null if there is no exit node from the CFG and is postdom set
 | |
|   return Root == 0 || Root != Root->getParent()->front();
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  DominatorSet Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // DominatorSet ctor - Build either the dominator set or the post-dominator
 | |
| // set for a method...
 | |
| //
 | |
| cfg::DominatorSet::DominatorSet(const Method *M) : DominatorBase(M->front()) {
 | |
|   calcForwardDominatorSet(M);
 | |
| }
 | |
| 
 | |
| // calcForwardDominatorSet - This method calculates the forward dominator sets
 | |
| // for the specified method.
 | |
| //
 | |
| void cfg::DominatorSet::calcForwardDominatorSet(const Method *M) {
 | |
|   assert(Root && M && "Can't build dominator set of null method!");
 | |
|   assert(Root->use_size() == 0 && "Root node has predecessors in method!");
 | |
|   bool Changed;
 | |
|   do {
 | |
|     Changed = false;
 | |
| 
 | |
|     DomSetType WorkingSet;
 | |
|     df_const_iterator It = df_begin(M), End = df_end(M);
 | |
|     for ( ; It != End; ++It) {
 | |
|       const BasicBlock *BB = *It;
 | |
|       pred_const_iterator PI = pred_begin(BB), PEnd = pred_end(BB);
 | |
|       if (PI != PEnd) {                // Is there SOME predecessor?
 | |
| 	// Loop until we get to a predecessor that has had it's dom set filled
 | |
| 	// in at least once.  We are guaranteed to have this because we are
 | |
| 	// traversing the graph in DFO and have handled start nodes specially.
 | |
| 	//
 | |
| 	while (Doms[*PI].size() == 0) ++PI;
 | |
| 	WorkingSet = Doms[*PI];
 | |
| 
 | |
| 	for (++PI; PI != PEnd; ++PI) { // Intersect all of the predecessor sets
 | |
| 	  DomSetType &PredSet = Doms[*PI];
 | |
| 	  if (PredSet.size())
 | |
| 	    set_intersect(WorkingSet, PredSet);
 | |
| 	}
 | |
|       }
 | |
| 	
 | |
|       WorkingSet.insert(BB);           // A block always dominates itself
 | |
|       DomSetType &BBSet = Doms[BB];
 | |
|       if (BBSet != WorkingSet) {
 | |
| 	BBSet.swap(WorkingSet);        // Constant time operation!
 | |
| 	Changed = true;                // The sets changed.
 | |
|       }
 | |
|       WorkingSet.clear();              // Clear out the set for next iteration
 | |
|     }
 | |
|   } while (Changed);
 | |
| }
 | |
| 
 | |
| // Postdominator set constructor.  This ctor converts the specified method to
 | |
| // only have a single exit node (return stmt), then calculates the post
 | |
| // dominance sets for the method.
 | |
| //
 | |
| cfg::DominatorSet::DominatorSet(Method *M, bool PostDomSet)
 | |
|   : DominatorBase(M->front()) {
 | |
|   if (!PostDomSet) { calcForwardDominatorSet(M); return; }
 | |
| 
 | |
|   Root = cfg::UnifyAllExitNodes(M);
 | |
|   if (Root == 0) {  // No exit node for the method?  Postdomsets are all empty
 | |
|     for (Method::iterator MI = M->begin(), ME = M->end(); MI != ME; ++MI)
 | |
|       Doms[*MI] = DomSetType();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   bool Changed;
 | |
|   do {
 | |
|     Changed = false;
 | |
| 
 | |
|     set<const BasicBlock*> Visited;
 | |
|     DomSetType WorkingSet;
 | |
|     idf_const_iterator It = idf_begin(Root), End = idf_end(Root);
 | |
|     for ( ; It != End; ++It) {
 | |
|       const BasicBlock *BB = *It;
 | |
|       succ_const_iterator PI = succ_begin(BB), PEnd = succ_end(BB);
 | |
|       if (PI != PEnd) {                // Is there SOME predecessor?
 | |
| 	// Loop until we get to a successor that has had it's dom set filled
 | |
| 	// in at least once.  We are guaranteed to have this because we are
 | |
| 	// traversing the graph in DFO and have handled start nodes specially.
 | |
| 	//
 | |
| 	while (Doms[*PI].size() == 0) ++PI;
 | |
| 	WorkingSet = Doms[*PI];
 | |
| 
 | |
| 	for (++PI; PI != PEnd; ++PI) { // Intersect all of the successor sets
 | |
| 	  DomSetType &PredSet = Doms[*PI];
 | |
| 	  if (PredSet.size())
 | |
| 	    set_intersect(WorkingSet, PredSet);
 | |
| 	}
 | |
|       }
 | |
| 	
 | |
|       WorkingSet.insert(BB);           // A block always dominates itself
 | |
|       DomSetType &BBSet = Doms[BB];
 | |
|       if (BBSet != WorkingSet) {
 | |
| 	BBSet.swap(WorkingSet);        // Constant time operation!
 | |
| 	Changed = true;                // The sets changed.
 | |
|       }
 | |
|       WorkingSet.clear();              // Clear out the set for next iteration
 | |
|     }
 | |
|   } while (Changed);
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  ImmediateDominators Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // calcIDoms - Calculate the immediate dominator mapping, given a set of
 | |
| // dominators for every basic block.
 | |
| void cfg::ImmediateDominators::calcIDoms(const DominatorSet &DS) {
 | |
|   // Loop over all of the nodes that have dominators... figuring out the IDOM
 | |
|   // for each node...
 | |
|   //
 | |
|   for (DominatorSet::const_iterator DI = DS.begin(), DEnd = DS.end(); 
 | |
|        DI != DEnd; ++DI) {
 | |
|     const BasicBlock *BB = DI->first;
 | |
|     const DominatorSet::DomSetType &Dominators = DI->second;
 | |
|     unsigned DomSetSize = Dominators.size();
 | |
|     if (DomSetSize == 1) continue;  // Root node... IDom = null
 | |
| 
 | |
|     // Loop over all dominators of this node.  This corresponds to looping over
 | |
|     // nodes in the dominator chain, looking for a node whose dominator set is
 | |
|     // equal to the current nodes, except that the current node does not exist
 | |
|     // in it.  This means that it is one level higher in the dom chain than the
 | |
|     // current node, and it is our idom!
 | |
|     //
 | |
|     DominatorSet::DomSetType::const_iterator I = Dominators.begin();
 | |
|     DominatorSet::DomSetType::const_iterator End = Dominators.end();
 | |
|     for (; I != End; ++I) {   // Iterate over dominators...
 | |
|       // All of our dominators should form a chain, where the number of elements
 | |
|       // in the dominator set indicates what level the node is at in the chain.
 | |
|       // We want the node immediately above us, so it will have an identical 
 | |
|       // dominator set, except that BB will not dominate it... therefore it's
 | |
|       // dominator set size will be one less than BB's...
 | |
|       //
 | |
|       if (DS.getDominators(*I).size() == DomSetSize - 1) {
 | |
| 	IDoms[BB] = *I;
 | |
| 	break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  DominatorTree Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // DominatorTree dtor - Free all of the tree node memory.
 | |
| //
 | |
| cfg::DominatorTree::~DominatorTree() { 
 | |
|   for (NodeMapType::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I)
 | |
|     delete I->second;
 | |
| }
 | |
| 
 | |
| 
 | |
| cfg::DominatorTree::DominatorTree(const ImmediateDominators &IDoms) 
 | |
|   : DominatorBase(IDoms.getRoot()) {
 | |
|   const Method *M = Root->getParent();
 | |
| 
 | |
|   Nodes[Root] = new Node(Root, 0);   // Add a node for the root...
 | |
| 
 | |
|   // Iterate over all nodes in depth first order...
 | |
|   for (df_const_iterator I = df_begin(M), E = df_end(M); I != E; ++I) {
 | |
|     const BasicBlock *BB = *I, *IDom = IDoms[*I];
 | |
| 
 | |
|     if (IDom != 0) {   // Ignore the root node and other nasty nodes
 | |
|       // We know that the immediate dominator should already have a node, 
 | |
|       // because we are traversing the CFG in depth first order!
 | |
|       //
 | |
|       assert(Nodes[IDom] && "No node for IDOM?");
 | |
|       Node *IDomNode = Nodes[IDom];
 | |
| 
 | |
|       // Add a new tree node for this BasicBlock, and link it as a child of
 | |
|       // IDomNode
 | |
|       Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode));
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void cfg::DominatorTree::calculate(const DominatorSet &DS) {
 | |
|   Nodes[Root] = new Node(Root, 0);   // Add a node for the root...
 | |
| 
 | |
|   if (!isPostDominator()) {
 | |
|     // Iterate over all nodes in depth first order...
 | |
|     for (df_const_iterator I = df_begin(Root), E = df_end(Root); I != E; ++I) {
 | |
|       const BasicBlock *BB = *I;
 | |
|       const DominatorSet::DomSetType &Dominators = DS.getDominators(BB);
 | |
|       unsigned DomSetSize = Dominators.size();
 | |
|       if (DomSetSize == 1) continue;  // Root node... IDom = null
 | |
|       
 | |
|       // Loop over all dominators of this node.  This corresponds to looping over
 | |
|       // nodes in the dominator chain, looking for a node whose dominator set is
 | |
|       // equal to the current nodes, except that the current node does not exist
 | |
|       // in it.  This means that it is one level higher in the dom chain than the
 | |
|       // current node, and it is our idom!  We know that we have already added
 | |
|       // a DominatorTree node for our idom, because the idom must be a
 | |
|       // predecessor in the depth first order that we are iterating through the
 | |
|       // method.
 | |
|       //
 | |
|       DominatorSet::DomSetType::const_iterator I = Dominators.begin();
 | |
|       DominatorSet::DomSetType::const_iterator End = Dominators.end();
 | |
|       for (; I != End; ++I) {   // Iterate over dominators...
 | |
| 	// All of our dominators should form a chain, where the number of elements
 | |
| 	// in the dominator set indicates what level the node is at in the chain.
 | |
| 	// We want the node immediately above us, so it will have an identical 
 | |
| 	// dominator set, except that BB will not dominate it... therefore it's
 | |
| 	// dominator set size will be one less than BB's...
 | |
| 	//
 | |
| 	if (DS.getDominators(*I).size() == DomSetSize - 1) {
 | |
| 	  // We know that the immediate dominator should already have a node, 
 | |
| 	  // because we are traversing the CFG in depth first order!
 | |
| 	  //
 | |
| 	  Node *IDomNode = Nodes[*I];
 | |
| 	  assert(IDomNode && "No node for IDOM?");
 | |
| 	  
 | |
| 	  // Add a new tree node for this BasicBlock, and link it as a child of
 | |
| 	  // IDomNode
 | |
| 	  Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode));
 | |
| 	  break;
 | |
| 	}
 | |
|       }
 | |
|     }
 | |
|   } else if (Root) {
 | |
|     // Iterate over all nodes in depth first order...
 | |
|     for (idf_const_iterator I = idf_begin(Root), E = idf_end(Root); I != E; ++I) {
 | |
|       const BasicBlock *BB = *I;
 | |
|       const DominatorSet::DomSetType &Dominators = DS.getDominators(BB);
 | |
|       unsigned DomSetSize = Dominators.size();
 | |
|       if (DomSetSize == 1) continue;  // Root node... IDom = null
 | |
|       
 | |
|       // Loop over all dominators of this node.  This corresponds to looping over
 | |
|       // nodes in the dominator chain, looking for a node whose dominator set is
 | |
|       // equal to the current nodes, except that the current node does not exist
 | |
|       // in it.  This means that it is one level higher in the dom chain than the
 | |
|       // current node, and it is our idom!  We know that we have already added
 | |
|       // a DominatorTree node for our idom, because the idom must be a
 | |
|       // predecessor in the depth first order that we are iterating through the
 | |
|       // method.
 | |
|       //
 | |
|       DominatorSet::DomSetType::const_iterator I = Dominators.begin();
 | |
|       DominatorSet::DomSetType::const_iterator End = Dominators.end();
 | |
|       for (; I != End; ++I) {   // Iterate over dominators...
 | |
| 	// All of our dominators should form a chain, where the number of elements
 | |
| 	// in the dominator set indicates what level the node is at in the chain.
 | |
| 	// We want the node immediately above us, so it will have an identical 
 | |
| 	// dominator set, except that BB will not dominate it... therefore it's
 | |
| 	// dominator set size will be one less than BB's...
 | |
| 	//
 | |
| 	if (DS.getDominators(*I).size() == DomSetSize - 1) {
 | |
| 	  // We know that the immediate dominator should already have a node, 
 | |
| 	  // because we are traversing the CFG in depth first order!
 | |
| 	  //
 | |
| 	  Node *IDomNode = Nodes[*I];
 | |
| 	  assert(IDomNode && "No node for IDOM?");
 | |
| 	  
 | |
| 	  // Add a new tree node for this BasicBlock, and link it as a child of
 | |
| 	  // IDomNode
 | |
| 	  Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode));
 | |
| 	  break;
 | |
| 	}
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  DominanceFrontier Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| const cfg::DominanceFrontier::DomSetType &
 | |
| cfg::DominanceFrontier::calcDomFrontier(const DominatorTree &DT, 
 | |
| 					const DominatorTree::Node *Node) {
 | |
|   // Loop over CFG successors to calculate DFlocal[Node]
 | |
|   const BasicBlock *BB = Node->getNode();
 | |
|   DomSetType &S = Frontiers[BB];       // The new set to fill in...
 | |
| 
 | |
|   for (succ_const_iterator SI = succ_begin(BB), SE = succ_end(BB); 
 | |
|        SI != SE; ++SI) {
 | |
|     // Does Node immediately dominate this successor?
 | |
|     if (DT[*SI]->getIDom() != Node)
 | |
|       S.insert(*SI);
 | |
|   }
 | |
| 
 | |
|   // At this point, S is DFlocal.  Now we union in DFup's of our children...
 | |
|   // Loop through and visit the nodes that Node immediately dominates (Node's
 | |
|   // children in the IDomTree)
 | |
|   //
 | |
|   for (DominatorTree::Node::const_iterator NI = Node->begin(), NE = Node->end();
 | |
|        NI != NE; ++NI) {
 | |
|     DominatorTree::Node *IDominee = *NI;
 | |
|     const DomSetType &ChildDF = calcDomFrontier(DT, IDominee);
 | |
| 
 | |
|     DomSetType::const_iterator CDFI = ChildDF.begin(), CDFE = ChildDF.end();
 | |
|     for (; CDFI != CDFE; ++CDFI) {
 | |
|       if (!Node->dominates(DT[*CDFI]))
 | |
| 	S.insert(*CDFI);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return S;
 | |
| }
 | |
| 
 | |
| const cfg::DominanceFrontier::DomSetType &
 | |
| cfg::DominanceFrontier::calcPostDomFrontier(const DominatorTree &DT, 
 | |
| 					    const DominatorTree::Node *Node) {
 | |
|   // Loop over CFG successors to calculate DFlocal[Node]
 | |
|   const BasicBlock *BB = Node->getNode();
 | |
|   DomSetType &S = Frontiers[BB];       // The new set to fill in...
 | |
|   if (!Root) return S;
 | |
| 
 | |
|   for (pred_const_iterator SI = pred_begin(BB), SE = pred_end(BB); 
 | |
|        SI != SE; ++SI) {
 | |
|     // Does Node immediately dominate this predeccessor?
 | |
|     if (DT[*SI]->getIDom() != Node)
 | |
|       S.insert(*SI);
 | |
|   }
 | |
| 
 | |
|   // At this point, S is DFlocal.  Now we union in DFup's of our children...
 | |
|   // Loop through and visit the nodes that Node immediately dominates (Node's
 | |
|   // children in the IDomTree)
 | |
|   //
 | |
|   for (DominatorTree::Node::const_iterator NI = Node->begin(), NE = Node->end();
 | |
|        NI != NE; ++NI) {
 | |
|     DominatorTree::Node *IDominee = *NI;
 | |
|     const DomSetType &ChildDF = calcPostDomFrontier(DT, IDominee);
 | |
| 
 | |
|     DomSetType::const_iterator CDFI = ChildDF.begin(), CDFE = ChildDF.end();
 | |
|     for (; CDFI != CDFE; ++CDFI) {
 | |
|       if (!Node->dominates(DT[*CDFI]))
 | |
| 	S.insert(*CDFI);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return S;
 | |
| }
 |