mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	as a machine description for instruction scheduling. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@397 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			296 lines
		
	
	
		
			8.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			296 lines
		
	
	
		
			8.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
// $Id$
 | 
						|
//***************************************************************************
 | 
						|
// File:
 | 
						|
//	TargetMachine.cpp
 | 
						|
// 
 | 
						|
// Purpose:
 | 
						|
//	
 | 
						|
// History:
 | 
						|
//	7/12/01	 -  Vikram Adve  -  Created
 | 
						|
//**************************************************************************/
 | 
						|
 | 
						|
 | 
						|
//*************************** User Include Files ***************************/
 | 
						|
 | 
						|
#include "llvm/CodeGen/TargetMachine.h"
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
 | 
						|
//************************ Exported Constants ******************************/
 | 
						|
 | 
						|
 | 
						|
// External object describing the machine instructions
 | 
						|
// Initialized only when the TargetMachine class is created
 | 
						|
// and reset when that class is destroyed.
 | 
						|
// 
 | 
						|
const MachineInstrDescriptor* TargetInstrDescriptors = NULL;
 | 
						|
 | 
						|
resourceId_t MachineResource::nextId = 0;
 | 
						|
 | 
						|
//************************* Forward Declarations **************************/
 | 
						|
 | 
						|
static cycles_t	ComputeMinGap		(const InstrRUsage& fromRU,
 | 
						|
					 const InstrRUsage& toRU);
 | 
						|
 | 
						|
static bool	RUConflict		(const vector<resourceId_t>& fromRVec,
 | 
						|
					 const vector<resourceId_t>& fromRVec);
 | 
						|
 | 
						|
 | 
						|
//************************ Class Implementations **************************/
 | 
						|
 | 
						|
//---------------------------------------------------------------------------
 | 
						|
// class TargetMachine
 | 
						|
// 
 | 
						|
// Purpose:
 | 
						|
//   Machine description.
 | 
						|
// 
 | 
						|
//---------------------------------------------------------------------------
 | 
						|
 | 
						|
 | 
						|
// function TargetMachine::findOptimalStorageSize 
 | 
						|
// 
 | 
						|
// Purpose:
 | 
						|
//   This default implementation assumes that all sub-word data items use
 | 
						|
//   space equal to optSizeForSubWordData, and all other primitive data
 | 
						|
//   items use space according to the type.
 | 
						|
//   
 | 
						|
unsigned int TargetMachine::findOptimalStorageSize(const Type* ty) const {
 | 
						|
  switch(ty->getPrimitiveID()) {
 | 
						|
  case Type::BoolTyID:
 | 
						|
  case Type::UByteTyID:
 | 
						|
  case Type::SByteTyID:     
 | 
						|
  case Type::UShortTyID:
 | 
						|
  case Type::ShortTyID:     
 | 
						|
    return optSizeForSubWordData;
 | 
						|
    
 | 
						|
  default:
 | 
						|
    return DataLayout.getTypeSize(ty);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//---------------------------------------------------------------------------
 | 
						|
// class MachineInstructionInfo
 | 
						|
//	Interface to description of machine instructions
 | 
						|
//---------------------------------------------------------------------------
 | 
						|
 | 
						|
 | 
						|
/*ctor*/
 | 
						|
MachineInstrInfo::MachineInstrInfo(const MachineInstrDescriptor* _desc,
 | 
						|
				   unsigned int _descSize,
 | 
						|
				   unsigned int _numRealOpCodes)
 | 
						|
  : desc(_desc), descSize(_descSize), numRealOpCodes(_numRealOpCodes)
 | 
						|
{
 | 
						|
  assert(TargetInstrDescriptors == NULL && desc != NULL);
 | 
						|
  TargetInstrDescriptors = desc;	// initialize global variable
 | 
						|
}  
 | 
						|
 | 
						|
 | 
						|
/*dtor*/
 | 
						|
MachineInstrInfo::~MachineInstrInfo()
 | 
						|
{
 | 
						|
  TargetInstrDescriptors = NULL;	// reset global variable
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
bool
 | 
						|
MachineInstrInfo::constantFitsInImmedField(MachineOpCode opCode,
 | 
						|
					   int64_t intValue) const
 | 
						|
{
 | 
						|
  // First, check if opCode has an immed field.
 | 
						|
  bool isSignExtended;
 | 
						|
  uint64_t maxImmedValue = this->maxImmedConstant(opCode, isSignExtended);
 | 
						|
  if (maxImmedValue != 0)
 | 
						|
    {
 | 
						|
      // Now check if the constant fits
 | 
						|
      if (intValue <= (int64_t) maxImmedValue &&
 | 
						|
	  intValue >= -((int64_t) maxImmedValue+1))
 | 
						|
	return true;
 | 
						|
    }
 | 
						|
  
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//---------------------------------------------------------------------------
 | 
						|
// class MachineSchedInfo
 | 
						|
//	Interface to machine description for instruction scheduling
 | 
						|
//---------------------------------------------------------------------------
 | 
						|
 | 
						|
/*ctor*/
 | 
						|
MachineSchedInfo::MachineSchedInfo(int                     _numSchedClasses,
 | 
						|
				   const MachineInstrInfo* _mii,
 | 
						|
				   const InstrClassRUsage* _classRUsages,
 | 
						|
				   const InstrRUsageDelta* _usageDeltas,
 | 
						|
				   const InstrIssueDelta*  _issueDeltas,
 | 
						|
				   unsigned int		   _numUsageDeltas,
 | 
						|
				   unsigned int		   _numIssueDeltas)
 | 
						|
  : numSchedClasses(_numSchedClasses),
 | 
						|
    mii(_mii),
 | 
						|
    classRUsages(_classRUsages),
 | 
						|
    usageDeltas(_usageDeltas),
 | 
						|
    issueDeltas(_issueDeltas),
 | 
						|
    numUsageDeltas(_numUsageDeltas),
 | 
						|
    numIssueDeltas(_numIssueDeltas)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
MachineSchedInfo::initializeResources()
 | 
						|
{
 | 
						|
  assert(MAX_NUM_SLOTS >= (int) getMaxNumIssueTotal()
 | 
						|
	 && "Insufficient slots for static data! Increase MAX_NUM_SLOTS");
 | 
						|
  
 | 
						|
  // First, compute common resource usage info for each class because
 | 
						|
  // most instructions will probably behave the same as their class.
 | 
						|
  // Cannot allocate a vector of InstrRUsage so new each one.
 | 
						|
  // 
 | 
						|
  vector<InstrRUsage> instrRUForClasses;
 | 
						|
  instrRUForClasses.resize(numSchedClasses);
 | 
						|
  for (InstrSchedClass sc=0; sc < numSchedClasses; sc++)
 | 
						|
    {
 | 
						|
      // instrRUForClasses.push_back(new InstrRUsage);
 | 
						|
      instrRUForClasses[sc].setMaxSlots(getMaxNumIssueTotal());
 | 
						|
      instrRUForClasses[sc] = classRUsages[sc];
 | 
						|
    }
 | 
						|
  
 | 
						|
  computeInstrResources(instrRUForClasses);
 | 
						|
  
 | 
						|
  computeIssueGaps(instrRUForClasses);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void
 | 
						|
MachineSchedInfo::computeInstrResources(const vector<InstrRUsage>& instrRUForClasses)
 | 
						|
{
 | 
						|
  int numOpCodes =  mii->getNumRealOpCodes();
 | 
						|
  instrRUsages.resize(numOpCodes);
 | 
						|
  
 | 
						|
  // First get the resource usage information from the class resource usages.
 | 
						|
  for (MachineOpCode op=0; op < numOpCodes; op++)
 | 
						|
    {
 | 
						|
      InstrSchedClass sc = getSchedClass(op);
 | 
						|
      assert(sc >= 0 && sc < numSchedClasses);
 | 
						|
      instrRUsages[op] = instrRUForClasses[sc];
 | 
						|
    }
 | 
						|
  
 | 
						|
  // Now, modify the resource usages as specified in the deltas.
 | 
						|
  for (unsigned i=0; i < numUsageDeltas; i++)
 | 
						|
    {
 | 
						|
      MachineOpCode op = usageDeltas[i].opCode;
 | 
						|
      assert(op < numOpCodes);
 | 
						|
      instrRUsages[op].addUsageDelta(usageDeltas[i]);
 | 
						|
    }
 | 
						|
  
 | 
						|
  // Then modify the issue restrictions as specified in the deltas.
 | 
						|
  for (unsigned i=0; i < numIssueDeltas; i++)
 | 
						|
    {
 | 
						|
      MachineOpCode op = issueDeltas[i].opCode;
 | 
						|
      assert(op < numOpCodes);
 | 
						|
      instrRUsages[issueDeltas[i].opCode].addIssueDelta(issueDeltas[i]);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void
 | 
						|
MachineSchedInfo::computeIssueGaps(const vector<InstrRUsage>& instrRUForClasses)
 | 
						|
{
 | 
						|
  int numOpCodes =  mii->getNumRealOpCodes();
 | 
						|
  instrRUsages.resize(numOpCodes);
 | 
						|
  
 | 
						|
  assert(numOpCodes < (1 << MAX_OPCODE_SIZE) - 1
 | 
						|
	 && "numOpCodes invalid for implementation of class OpCodePair!");
 | 
						|
  
 | 
						|
  // First, compute issue gaps between pairs of classes based on common
 | 
						|
  // resources usages for each class, because most instruction pairs will
 | 
						|
  // usually behave the same as their class.
 | 
						|
  // 
 | 
						|
  int classPairGaps[numSchedClasses][numSchedClasses];
 | 
						|
  for (InstrSchedClass fromSC=0; fromSC < numSchedClasses; fromSC++)
 | 
						|
    for (InstrSchedClass toSC=0; toSC < numSchedClasses; toSC++)
 | 
						|
      {
 | 
						|
	int classPairGap = ComputeMinGap(instrRUForClasses[fromSC],
 | 
						|
				      instrRUForClasses[toSC]);
 | 
						|
	classPairGaps[fromSC][toSC] = classPairGap; 
 | 
						|
      }
 | 
						|
  
 | 
						|
  // Now, for each pair of instructions, use the class pair gap if both
 | 
						|
  // instructions have identical resource usage as their respective classes.
 | 
						|
  // If not, recompute the gap for the pair from scratch.
 | 
						|
 | 
						|
  longestIssueConflict = 0;
 | 
						|
  
 | 
						|
  for (MachineOpCode fromOp=0; fromOp < numOpCodes; fromOp++)
 | 
						|
    for (MachineOpCode toOp=0; toOp < numOpCodes; toOp++)
 | 
						|
    {
 | 
						|
      int instrPairGap = 
 | 
						|
	(instrRUsages[fromOp].sameAsClass && instrRUsages[toOp].sameAsClass)
 | 
						|
	? classPairGaps[getSchedClass(fromOp)][getSchedClass(toOp)]
 | 
						|
	: ComputeMinGap(instrRUsages[fromOp], instrRUsages[toOp]);
 | 
						|
      
 | 
						|
      if (instrPairGap > 0)
 | 
						|
	{
 | 
						|
	  issueGaps[OpCodePair(fromOp,toOp)] = instrPairGap;
 | 
						|
	  conflictLists[fromOp].push_back(toOp);
 | 
						|
	  longestIssueConflict = max(longestIssueConflict, instrPairGap);
 | 
						|
	}
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Check if fromRVec and toRVec have *any* common entries.
 | 
						|
// Assume the vectors are sorted in increasing order.
 | 
						|
// Algorithm copied from function set_intersection() for sorted ranges (stl_algo.h).
 | 
						|
inline static bool 
 | 
						|
RUConflict(const vector<resourceId_t>& fromRVec,
 | 
						|
	   const vector<resourceId_t>& toRVec)
 | 
						|
{
 | 
						|
  bool commonElementFound = false;
 | 
						|
  
 | 
						|
  unsigned fN = fromRVec.size(), tN = toRVec.size(); 
 | 
						|
  unsigned fi = 0, ti = 0;
 | 
						|
  while (fi < fN && ti < tN)
 | 
						|
    if (fromRVec[fi] < toRVec[ti])
 | 
						|
      ++fi;
 | 
						|
    else if (toRVec[ti] < fromRVec[fi])
 | 
						|
      ++ti;
 | 
						|
    else
 | 
						|
      {
 | 
						|
	commonElementFound = true;
 | 
						|
	break;
 | 
						|
      }
 | 
						|
  
 | 
						|
  return commonElementFound; 
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static cycles_t
 | 
						|
ComputeMinGap(const InstrRUsage& fromRU, const InstrRUsage& toRU)
 | 
						|
{
 | 
						|
  cycles_t minGap = 0;
 | 
						|
  
 | 
						|
  if (fromRU.numBubbles > 0)
 | 
						|
    minGap = fromRU.numBubbles;
 | 
						|
  
 | 
						|
  if (minGap < fromRU.numCycles)
 | 
						|
    {
 | 
						|
      // only need to check from cycle `minGap' onwards
 | 
						|
      for (cycles_t gap=minGap; gap <= fromRU.numCycles-1; gap++)
 | 
						|
	{
 | 
						|
	  // check if instr. #2 can start executing `gap' cycles after #1
 | 
						|
	  // by checking for resource conflicts in each overlapping cycle
 | 
						|
	  cycles_t numOverlap = min(fromRU.numCycles - gap, toRU.numCycles);
 | 
						|
	  for (cycles_t c = 0; c <= numOverlap-1; c++)
 | 
						|
	    if (RUConflict(fromRU.resourcesByCycle[gap + c],
 | 
						|
			   toRU.resourcesByCycle[c]))
 | 
						|
	      {// conflict found so minGap must be more than `gap'
 | 
						|
		minGap = gap+1;
 | 
						|
		break;
 | 
						|
	      }
 | 
						|
	}
 | 
						|
    }
 | 
						|
  
 | 
						|
  return minGap;
 | 
						|
}
 | 
						|
 | 
						|
//---------------------------------------------------------------------------
 |