mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-26 18:20:39 +00:00 
			
		
		
		
	This required converting a bunch of stuff off DOUT and other cleanups. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@79819 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			778 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			778 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- MachOWriter.cpp - Target-independent Mach-O Writer code -----------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the target-independent Mach-O writer.  This file writes
 | |
| // out the Mach-O file in the following order:
 | |
| //
 | |
| //  #1 FatHeader (universal-only)
 | |
| //  #2 FatArch (universal-only, 1 per universal arch)
 | |
| //  Per arch:
 | |
| //    #3 Header
 | |
| //    #4 Load Commands
 | |
| //    #5 Sections
 | |
| //    #6 Relocations
 | |
| //    #7 Symbols
 | |
| //    #8 Strings
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "MachO.h"
 | |
| #include "MachOWriter.h"
 | |
| #include "MachOCodeEmitter.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Module.h"
 | |
| #include "llvm/PassManager.h"
 | |
| #include "llvm/MC/MCAsmInfo.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Target/TargetMachOWriterInfo.h"
 | |
| #include "llvm/Support/Mangler.h"
 | |
| #include "llvm/Support/OutputBuffer.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| /// AddMachOWriter - Concrete function to add the Mach-O writer to the function
 | |
| /// pass manager.
 | |
| ObjectCodeEmitter *AddMachOWriter(PassManagerBase &PM,
 | |
|                                          raw_ostream &O,
 | |
|                                          TargetMachine &TM) {
 | |
|   MachOWriter *MOW = new MachOWriter(O, TM);
 | |
|   PM.add(MOW);
 | |
|   return MOW->getObjectCodeEmitter();
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                          MachOWriter Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| char MachOWriter::ID = 0;
 | |
| 
 | |
| MachOWriter::MachOWriter(raw_ostream &o, TargetMachine &tm)
 | |
|   : MachineFunctionPass(&ID), O(o), TM(tm) {
 | |
|   is64Bit = TM.getTargetData()->getPointerSizeInBits() == 64;
 | |
|   isLittleEndian = TM.getTargetData()->isLittleEndian();
 | |
| 
 | |
|   MAI = TM.getMCAsmInfo();
 | |
| 
 | |
|   // Create the machine code emitter object for this target.
 | |
|   MachOCE = new MachOCodeEmitter(*this, *getTextSection(true));
 | |
| }
 | |
| 
 | |
| MachOWriter::~MachOWriter() {
 | |
|   delete MachOCE;
 | |
| }
 | |
| 
 | |
| bool MachOWriter::doInitialization(Module &M) {
 | |
|   // Set the magic value, now that we know the pointer size and endianness
 | |
|   Header.setMagic(isLittleEndian, is64Bit);
 | |
| 
 | |
|   // Set the file type
 | |
|   // FIXME: this only works for object files, we do not support the creation
 | |
|   //        of dynamic libraries or executables at this time.
 | |
|   Header.filetype = MachOHeader::MH_OBJECT;
 | |
| 
 | |
|   Mang = new Mangler(M);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool MachOWriter::runOnMachineFunction(MachineFunction &MF) {
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// doFinalization - Now that the module has been completely processed, emit
 | |
| /// the Mach-O file to 'O'.
 | |
| bool MachOWriter::doFinalization(Module &M) {
 | |
|   // FIXME: we don't handle debug info yet, we should probably do that.
 | |
|   // Okay, the.text section has been completed, build the .data, .bss, and
 | |
|   // "common" sections next.
 | |
| 
 | |
|   for (Module::global_iterator I = M.global_begin(), E = M.global_end();
 | |
|        I != E; ++I)
 | |
|     EmitGlobal(I);
 | |
| 
 | |
|   // Emit the header and load commands.
 | |
|   EmitHeaderAndLoadCommands();
 | |
| 
 | |
|   // Emit the various sections and their relocation info.
 | |
|   EmitSections();
 | |
|   EmitRelocations();
 | |
| 
 | |
|   // Write the symbol table and the string table to the end of the file.
 | |
|   O.write((char*)&SymT[0], SymT.size());
 | |
|   O.write((char*)&StrT[0], StrT.size());
 | |
| 
 | |
|   // We are done with the abstract symbols.
 | |
|   SectionList.clear();
 | |
|   SymbolTable.clear();
 | |
|   DynamicSymbolTable.clear();
 | |
| 
 | |
|   // Release the name mangler object.
 | |
|   delete Mang; Mang = 0;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // getConstSection - Get constant section for Constant 'C'
 | |
| MachOSection *MachOWriter::getConstSection(Constant *C) {
 | |
|   const ConstantArray *CVA = dyn_cast<ConstantArray>(C);
 | |
|   if (CVA && CVA->isCString())
 | |
|     return getSection("__TEXT", "__cstring", 
 | |
|                       MachOSection::S_CSTRING_LITERALS);
 | |
| 
 | |
|   const Type *Ty = C->getType();
 | |
|   if (Ty->isPrimitiveType() || Ty->isInteger()) {
 | |
|     unsigned Size = TM.getTargetData()->getTypeAllocSize(Ty);
 | |
|     switch(Size) {
 | |
|     default: break; // Fall through to __TEXT,__const
 | |
|     case 4:
 | |
|       return getSection("__TEXT", "__literal4",
 | |
|                         MachOSection::S_4BYTE_LITERALS);
 | |
|     case 8:
 | |
|       return getSection("__TEXT", "__literal8",
 | |
|                         MachOSection::S_8BYTE_LITERALS);
 | |
|     case 16:
 | |
|       return getSection("__TEXT", "__literal16",
 | |
|                         MachOSection::S_16BYTE_LITERALS);
 | |
|     }
 | |
|   }
 | |
|   return getSection("__TEXT", "__const");
 | |
| }
 | |
| 
 | |
| // getJumpTableSection - Select the Jump Table section
 | |
| MachOSection *MachOWriter::getJumpTableSection() {
 | |
|   if (TM.getRelocationModel() == Reloc::PIC_)
 | |
|     return getTextSection(false);
 | |
|   else
 | |
|     return getSection("__TEXT", "__const");
 | |
| }
 | |
| 
 | |
| // getSection - Return the section with the specified name, creating a new
 | |
| // section if one does not already exist.
 | |
| MachOSection *MachOWriter::getSection(const std::string &seg,
 | |
|                                       const std::string §,
 | |
|                                       unsigned Flags /* = 0 */ ) {
 | |
|   MachOSection *MOS = SectionLookup[seg+sect];
 | |
|   if (MOS) return MOS;
 | |
| 
 | |
|   MOS = new MachOSection(seg, sect);
 | |
|   SectionList.push_back(MOS);
 | |
|   MOS->Index = SectionList.size();
 | |
|   MOS->flags = MachOSection::S_REGULAR | Flags;
 | |
|   SectionLookup[seg+sect] = MOS;
 | |
|   return MOS;
 | |
| }
 | |
| 
 | |
| // getTextSection - Return text section with different flags for code/data
 | |
| MachOSection *MachOWriter::getTextSection(bool isCode /* = true */ ) {
 | |
|   if (isCode)
 | |
|     return getSection("__TEXT", "__text",
 | |
|                       MachOSection::S_ATTR_PURE_INSTRUCTIONS |
 | |
|                       MachOSection::S_ATTR_SOME_INSTRUCTIONS);
 | |
|   else
 | |
|     return getSection("__TEXT", "__text");
 | |
| }
 | |
| 
 | |
| MachOSection *MachOWriter::getBSSSection() {
 | |
|   return getSection("__DATA", "__bss", MachOSection::S_ZEROFILL);
 | |
| }
 | |
| 
 | |
| // GetJTRelocation - Get a relocation a new BB relocation based
 | |
| // on target information.
 | |
| MachineRelocation MachOWriter::GetJTRelocation(unsigned Offset,
 | |
|                                                MachineBasicBlock *MBB) const {
 | |
|   return TM.getMachOWriterInfo()->GetJTRelocation(Offset, MBB);
 | |
| }
 | |
| 
 | |
| // GetTargetRelocation - Returns the number of relocations.
 | |
| unsigned MachOWriter::GetTargetRelocation(MachineRelocation &MR,
 | |
|                              unsigned FromIdx, unsigned ToAddr,
 | |
|                              unsigned ToIndex, OutputBuffer &RelocOut,
 | |
|                              OutputBuffer &SecOut, bool Scattered,
 | |
|                              bool Extern) {
 | |
|   return TM.getMachOWriterInfo()->GetTargetRelocation(MR, FromIdx, ToAddr,
 | |
|                                                       ToIndex, RelocOut,
 | |
|                                                       SecOut, Scattered,
 | |
|                                                       Extern);
 | |
| }
 | |
| 
 | |
| void MachOWriter::AddSymbolToSection(MachOSection *Sec, GlobalVariable *GV) {
 | |
|   const Type *Ty = GV->getType()->getElementType();
 | |
|   unsigned Size = TM.getTargetData()->getTypeAllocSize(Ty);
 | |
|   unsigned Align = TM.getTargetData()->getPreferredAlignment(GV);
 | |
| 
 | |
|   // Reserve space in the .bss section for this symbol while maintaining the
 | |
|   // desired section alignment, which must be at least as much as required by
 | |
|   // this symbol.
 | |
|   OutputBuffer SecDataOut(Sec->getData(), is64Bit, isLittleEndian);
 | |
| 
 | |
|   if (Align) {
 | |
|     Align = Log2_32(Align);
 | |
|     Sec->align = std::max(unsigned(Sec->align), Align);
 | |
| 
 | |
|     Sec->emitAlignment(Sec->align);
 | |
|   }
 | |
|   // Globals without external linkage apparently do not go in the symbol table.
 | |
|   if (!GV->hasLocalLinkage()) {
 | |
|     MachOSym Sym(GV, Mang->getMangledName(GV), Sec->Index, MAI);
 | |
|     Sym.n_value = Sec->size();
 | |
|     SymbolTable.push_back(Sym);
 | |
|   }
 | |
| 
 | |
|   // Record the offset of the symbol, and then allocate space for it.
 | |
|   // FIXME: remove when we have unified size + output buffer
 | |
| 
 | |
|   // Now that we know what section the GlovalVariable is going to be emitted
 | |
|   // into, update our mappings.
 | |
|   // FIXME: We may also need to update this when outputting non-GlobalVariable
 | |
|   // GlobalValues such as functions.
 | |
| 
 | |
|   GVSection[GV] = Sec;
 | |
|   GVOffset[GV] = Sec->size();
 | |
| 
 | |
|   // Allocate space in the section for the global.
 | |
|   for (unsigned i = 0; i < Size; ++i)
 | |
|     SecDataOut.outbyte(0);
 | |
| }
 | |
| 
 | |
| void MachOWriter::EmitGlobal(GlobalVariable *GV) {
 | |
|   const Type *Ty = GV->getType()->getElementType();
 | |
|   unsigned Size = TM.getTargetData()->getTypeAllocSize(Ty);
 | |
|   bool NoInit = !GV->hasInitializer();
 | |
| 
 | |
|   // If this global has a zero initializer, it is part of the .bss or common
 | |
|   // section.
 | |
|   if (NoInit || GV->getInitializer()->isNullValue()) {
 | |
|     // If this global is part of the common block, add it now.  Variables are
 | |
|     // part of the common block if they are zero initialized and allowed to be
 | |
|     // merged with other symbols.
 | |
|     if (NoInit || GV->hasLinkOnceLinkage() || GV->hasWeakLinkage() ||
 | |
|         GV->hasCommonLinkage()) {
 | |
|       MachOSym ExtOrCommonSym(GV, Mang->getMangledName(GV),
 | |
|                               MachOSym::NO_SECT, MAI);
 | |
|       // For undefined (N_UNDF) external (N_EXT) types, n_value is the size in
 | |
|       // bytes of the symbol.
 | |
|       ExtOrCommonSym.n_value = Size;
 | |
|       SymbolTable.push_back(ExtOrCommonSym);
 | |
|       // Remember that we've seen this symbol
 | |
|       GVOffset[GV] = Size;
 | |
|       return;
 | |
|     }
 | |
|     // Otherwise, this symbol is part of the .bss section.
 | |
|     MachOSection *BSS = getBSSSection();
 | |
|     AddSymbolToSection(BSS, GV);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Scalar read-only data goes in a literal section if the scalar is 4, 8, or
 | |
|   // 16 bytes, or a cstring.  Other read only data goes into a regular const
 | |
|   // section.  Read-write data goes in the data section.
 | |
|   MachOSection *Sec = GV->isConstant() ? getConstSection(GV->getInitializer()) :
 | |
|                                          getDataSection();
 | |
|   AddSymbolToSection(Sec, GV);
 | |
|   InitMem(GV->getInitializer(), GVOffset[GV], TM.getTargetData(), Sec);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| void MachOWriter::EmitHeaderAndLoadCommands() {
 | |
|   // Step #0: Fill in the segment load command size, since we need it to figure
 | |
|   //          out the rest of the header fields
 | |
| 
 | |
|   MachOSegment SEG("", is64Bit);
 | |
|   SEG.nsects  = SectionList.size();
 | |
|   SEG.cmdsize = SEG.cmdSize(is64Bit) +
 | |
|                 SEG.nsects * SectionList[0]->cmdSize(is64Bit);
 | |
| 
 | |
|   // Step #1: calculate the number of load commands.  We always have at least
 | |
|   //          one, for the LC_SEGMENT load command, plus two for the normal
 | |
|   //          and dynamic symbol tables, if there are any symbols.
 | |
|   Header.ncmds = SymbolTable.empty() ? 1 : 3;
 | |
| 
 | |
|   // Step #2: calculate the size of the load commands
 | |
|   Header.sizeofcmds = SEG.cmdsize;
 | |
|   if (!SymbolTable.empty())
 | |
|     Header.sizeofcmds += SymTab.cmdsize + DySymTab.cmdsize;
 | |
| 
 | |
|   // Step #3: write the header to the file
 | |
|   // Local alias to shortenify coming code.
 | |
|   std::vector<unsigned char> &FH = Header.HeaderData;
 | |
|   OutputBuffer FHOut(FH, is64Bit, isLittleEndian);
 | |
| 
 | |
|   FHOut.outword(Header.magic);
 | |
|   FHOut.outword(TM.getMachOWriterInfo()->getCPUType());
 | |
|   FHOut.outword(TM.getMachOWriterInfo()->getCPUSubType());
 | |
|   FHOut.outword(Header.filetype);
 | |
|   FHOut.outword(Header.ncmds);
 | |
|   FHOut.outword(Header.sizeofcmds);
 | |
|   FHOut.outword(Header.flags);
 | |
|   if (is64Bit)
 | |
|     FHOut.outword(Header.reserved);
 | |
| 
 | |
|   // Step #4: Finish filling in the segment load command and write it out
 | |
|   for (std::vector<MachOSection*>::iterator I = SectionList.begin(),
 | |
|          E = SectionList.end(); I != E; ++I)
 | |
|     SEG.filesize += (*I)->size();
 | |
| 
 | |
|   SEG.vmsize = SEG.filesize;
 | |
|   SEG.fileoff = Header.cmdSize(is64Bit) + Header.sizeofcmds;
 | |
| 
 | |
|   FHOut.outword(SEG.cmd);
 | |
|   FHOut.outword(SEG.cmdsize);
 | |
|   FHOut.outstring(SEG.segname, 16);
 | |
|   FHOut.outaddr(SEG.vmaddr);
 | |
|   FHOut.outaddr(SEG.vmsize);
 | |
|   FHOut.outaddr(SEG.fileoff);
 | |
|   FHOut.outaddr(SEG.filesize);
 | |
|   FHOut.outword(SEG.maxprot);
 | |
|   FHOut.outword(SEG.initprot);
 | |
|   FHOut.outword(SEG.nsects);
 | |
|   FHOut.outword(SEG.flags);
 | |
| 
 | |
|   // Step #5: Finish filling in the fields of the MachOSections
 | |
|   uint64_t currentAddr = 0;
 | |
|   for (std::vector<MachOSection*>::iterator I = SectionList.begin(),
 | |
|          E = SectionList.end(); I != E; ++I) {
 | |
|     MachOSection *MOS = *I;
 | |
|     MOS->addr = currentAddr;
 | |
|     MOS->offset = currentAddr + SEG.fileoff;
 | |
|     // FIXME: do we need to do something with alignment here?
 | |
|     currentAddr += MOS->size();
 | |
|   }
 | |
| 
 | |
|   // Step #6: Emit the symbol table to temporary buffers, so that we know the
 | |
|   // size of the string table when we write the next load command.  This also
 | |
|   // sorts and assigns indices to each of the symbols, which is necessary for
 | |
|   // emitting relocations to externally-defined objects.
 | |
|   BufferSymbolAndStringTable();
 | |
| 
 | |
|   // Step #7: Calculate the number of relocations for each section and write out
 | |
|   // the section commands for each section
 | |
|   currentAddr += SEG.fileoff;
 | |
|   for (std::vector<MachOSection*>::iterator I = SectionList.begin(),
 | |
|          E = SectionList.end(); I != E; ++I) {
 | |
|     MachOSection *MOS = *I;
 | |
| 
 | |
|     // Convert the relocations to target-specific relocations, and fill in the
 | |
|     // relocation offset for this section.
 | |
|     CalculateRelocations(*MOS);
 | |
|     MOS->reloff = MOS->nreloc ? currentAddr : 0;
 | |
|     currentAddr += MOS->nreloc * 8;
 | |
| 
 | |
|     // write the finalized section command to the output buffer
 | |
|     FHOut.outstring(MOS->sectname, 16);
 | |
|     FHOut.outstring(MOS->segname, 16);
 | |
|     FHOut.outaddr(MOS->addr);
 | |
|     FHOut.outaddr(MOS->size());
 | |
|     FHOut.outword(MOS->offset);
 | |
|     FHOut.outword(MOS->align);
 | |
|     FHOut.outword(MOS->reloff);
 | |
|     FHOut.outword(MOS->nreloc);
 | |
|     FHOut.outword(MOS->flags);
 | |
|     FHOut.outword(MOS->reserved1);
 | |
|     FHOut.outword(MOS->reserved2);
 | |
|     if (is64Bit)
 | |
|       FHOut.outword(MOS->reserved3);
 | |
|   }
 | |
| 
 | |
|   // Step #8: Emit LC_SYMTAB/LC_DYSYMTAB load commands
 | |
|   SymTab.symoff  = currentAddr;
 | |
|   SymTab.nsyms   = SymbolTable.size();
 | |
|   SymTab.stroff  = SymTab.symoff + SymT.size();
 | |
|   SymTab.strsize = StrT.size();
 | |
|   FHOut.outword(SymTab.cmd);
 | |
|   FHOut.outword(SymTab.cmdsize);
 | |
|   FHOut.outword(SymTab.symoff);
 | |
|   FHOut.outword(SymTab.nsyms);
 | |
|   FHOut.outword(SymTab.stroff);
 | |
|   FHOut.outword(SymTab.strsize);
 | |
| 
 | |
|   // FIXME: set DySymTab fields appropriately
 | |
|   // We should probably just update these in BufferSymbolAndStringTable since
 | |
|   // thats where we're partitioning up the different kinds of symbols.
 | |
|   FHOut.outword(DySymTab.cmd);
 | |
|   FHOut.outword(DySymTab.cmdsize);
 | |
|   FHOut.outword(DySymTab.ilocalsym);
 | |
|   FHOut.outword(DySymTab.nlocalsym);
 | |
|   FHOut.outword(DySymTab.iextdefsym);
 | |
|   FHOut.outword(DySymTab.nextdefsym);
 | |
|   FHOut.outword(DySymTab.iundefsym);
 | |
|   FHOut.outword(DySymTab.nundefsym);
 | |
|   FHOut.outword(DySymTab.tocoff);
 | |
|   FHOut.outword(DySymTab.ntoc);
 | |
|   FHOut.outword(DySymTab.modtaboff);
 | |
|   FHOut.outword(DySymTab.nmodtab);
 | |
|   FHOut.outword(DySymTab.extrefsymoff);
 | |
|   FHOut.outword(DySymTab.nextrefsyms);
 | |
|   FHOut.outword(DySymTab.indirectsymoff);
 | |
|   FHOut.outword(DySymTab.nindirectsyms);
 | |
|   FHOut.outword(DySymTab.extreloff);
 | |
|   FHOut.outword(DySymTab.nextrel);
 | |
|   FHOut.outword(DySymTab.locreloff);
 | |
|   FHOut.outword(DySymTab.nlocrel);
 | |
| 
 | |
|   O.write((char*)&FH[0], FH.size());
 | |
| }
 | |
| 
 | |
| /// EmitSections - Now that we have constructed the file header and load
 | |
| /// commands, emit the data for each section to the file.
 | |
| void MachOWriter::EmitSections() {
 | |
|   for (std::vector<MachOSection*>::iterator I = SectionList.begin(),
 | |
|          E = SectionList.end(); I != E; ++I)
 | |
|     // Emit the contents of each section
 | |
|     if ((*I)->size())
 | |
|       O.write((char*)&(*I)->getData()[0], (*I)->size());
 | |
| }
 | |
| 
 | |
| /// EmitRelocations - emit relocation data from buffer.
 | |
| void MachOWriter::EmitRelocations() {
 | |
|   for (std::vector<MachOSection*>::iterator I = SectionList.begin(),
 | |
|          E = SectionList.end(); I != E; ++I)
 | |
|     // Emit the relocation entry data for each section.
 | |
|     if ((*I)->RelocBuffer.size())
 | |
|       O.write((char*)&(*I)->RelocBuffer[0], (*I)->RelocBuffer.size());
 | |
| }
 | |
| 
 | |
| /// BufferSymbolAndStringTable - Sort the symbols we encountered and assign them
 | |
| /// each a string table index so that they appear in the correct order in the
 | |
| /// output file.
 | |
| void MachOWriter::BufferSymbolAndStringTable() {
 | |
|   // The order of the symbol table is:
 | |
|   // 1. local symbols
 | |
|   // 2. defined external symbols (sorted by name)
 | |
|   // 3. undefined external symbols (sorted by name)
 | |
| 
 | |
|   // Before sorting the symbols, check the PendingGlobals for any undefined
 | |
|   // globals that need to be put in the symbol table.
 | |
|   for (std::vector<GlobalValue*>::iterator I = PendingGlobals.begin(),
 | |
|          E = PendingGlobals.end(); I != E; ++I) {
 | |
|     if (GVOffset[*I] == 0 && GVSection[*I] == 0) {
 | |
|       MachOSym UndfSym(*I, Mang->getMangledName(*I), MachOSym::NO_SECT, MAI);
 | |
|       SymbolTable.push_back(UndfSym);
 | |
|       GVOffset[*I] = -1;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Sort the symbols by name, so that when we partition the symbols by scope
 | |
|   // of definition, we won't have to sort by name within each partition.
 | |
|   std::sort(SymbolTable.begin(), SymbolTable.end(), MachOSym::SymCmp());
 | |
| 
 | |
|   // Parition the symbol table entries so that all local symbols come before
 | |
|   // all symbols with external linkage. { 1 | 2 3 }
 | |
|   std::partition(SymbolTable.begin(), SymbolTable.end(),
 | |
|                  MachOSym::PartitionByLocal);
 | |
| 
 | |
|   // Advance iterator to beginning of external symbols and partition so that
 | |
|   // all external symbols defined in this module come before all external
 | |
|   // symbols defined elsewhere. { 1 | 2 | 3 }
 | |
|   for (std::vector<MachOSym>::iterator I = SymbolTable.begin(),
 | |
|          E = SymbolTable.end(); I != E; ++I) {
 | |
|     if (!MachOSym::PartitionByLocal(*I)) {
 | |
|       std::partition(I, E, MachOSym::PartitionByDefined);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Calculate the starting index for each of the local, extern defined, and
 | |
|   // undefined symbols, as well as the number of each to put in the LC_DYSYMTAB
 | |
|   // load command.
 | |
|   for (std::vector<MachOSym>::iterator I = SymbolTable.begin(),
 | |
|          E = SymbolTable.end(); I != E; ++I) {
 | |
|     if (MachOSym::PartitionByLocal(*I)) {
 | |
|       ++DySymTab.nlocalsym;
 | |
|       ++DySymTab.iextdefsym;
 | |
|       ++DySymTab.iundefsym;
 | |
|     } else if (MachOSym::PartitionByDefined(*I)) {
 | |
|       ++DySymTab.nextdefsym;
 | |
|       ++DySymTab.iundefsym;
 | |
|     } else {
 | |
|       ++DySymTab.nundefsym;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Write out a leading zero byte when emitting string table, for n_strx == 0
 | |
|   // which means an empty string.
 | |
|   OutputBuffer StrTOut(StrT, is64Bit, isLittleEndian);
 | |
|   StrTOut.outbyte(0);
 | |
| 
 | |
|   // The order of the string table is:
 | |
|   // 1. strings for external symbols
 | |
|   // 2. strings for local symbols
 | |
|   // Since this is the opposite order from the symbol table, which we have just
 | |
|   // sorted, we can walk the symbol table backwards to output the string table.
 | |
|   for (std::vector<MachOSym>::reverse_iterator I = SymbolTable.rbegin(),
 | |
|         E = SymbolTable.rend(); I != E; ++I) {
 | |
|     if (I->GVName == "") {
 | |
|       I->n_strx = 0;
 | |
|     } else {
 | |
|       I->n_strx = StrT.size();
 | |
|       StrTOut.outstring(I->GVName, I->GVName.length()+1);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   OutputBuffer SymTOut(SymT, is64Bit, isLittleEndian);
 | |
| 
 | |
|   unsigned index = 0;
 | |
|   for (std::vector<MachOSym>::iterator I = SymbolTable.begin(),
 | |
|          E = SymbolTable.end(); I != E; ++I, ++index) {
 | |
|     // Add the section base address to the section offset in the n_value field
 | |
|     // to calculate the full address.
 | |
|     // FIXME: handle symbols where the n_value field is not the address
 | |
|     GlobalValue *GV = const_cast<GlobalValue*>(I->GV);
 | |
|     if (GV && GVSection[GV])
 | |
|       I->n_value += GVSection[GV]->addr;
 | |
|     if (GV && (GVOffset[GV] == -1))
 | |
|       GVOffset[GV] = index;
 | |
| 
 | |
|     // Emit nlist to buffer
 | |
|     SymTOut.outword(I->n_strx);
 | |
|     SymTOut.outbyte(I->n_type);
 | |
|     SymTOut.outbyte(I->n_sect);
 | |
|     SymTOut.outhalf(I->n_desc);
 | |
|     SymTOut.outaddr(I->n_value);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// CalculateRelocations - For each MachineRelocation in the current section,
 | |
| /// calculate the index of the section containing the object to be relocated,
 | |
| /// and the offset into that section.  From this information, create the
 | |
| /// appropriate target-specific MachORelocation type and add buffer it to be
 | |
| /// written out after we are finished writing out sections.
 | |
| void MachOWriter::CalculateRelocations(MachOSection &MOS) {
 | |
|   std::vector<MachineRelocation> Relocations =  MOS.getRelocations();
 | |
|   for (unsigned i = 0, e = Relocations.size(); i != e; ++i) {
 | |
|     MachineRelocation &MR = Relocations[i];
 | |
|     unsigned TargetSection = MR.getConstantVal();
 | |
|     unsigned TargetAddr = 0;
 | |
|     unsigned TargetIndex = 0;
 | |
| 
 | |
|     // This is a scattered relocation entry if it points to a global value with
 | |
|     // a non-zero offset.
 | |
|     bool Scattered = false;
 | |
|     bool Extern = false;
 | |
| 
 | |
|     // Since we may not have seen the GlobalValue we were interested in yet at
 | |
|     // the time we emitted the relocation for it, fix it up now so that it
 | |
|     // points to the offset into the correct section.
 | |
|     if (MR.isGlobalValue()) {
 | |
|       GlobalValue *GV = MR.getGlobalValue();
 | |
|       MachOSection *MOSPtr = GVSection[GV];
 | |
|       intptr_t Offset = GVOffset[GV];
 | |
| 
 | |
|       // If we have never seen the global before, it must be to a symbol
 | |
|       // defined in another module (N_UNDF).
 | |
|       if (!MOSPtr) {
 | |
|         // FIXME: need to append stub suffix
 | |
|         Extern = true;
 | |
|         TargetAddr = 0;
 | |
|         TargetIndex = GVOffset[GV];
 | |
|       } else {
 | |
|         Scattered = TargetSection != 0;
 | |
|         TargetSection = MOSPtr->Index;
 | |
|       }
 | |
|       MR.setResultPointer((void*)Offset);
 | |
|     }
 | |
| 
 | |
|     // If the symbol is locally defined, pass in the address of the section and
 | |
|     // the section index to the code which will generate the target relocation.
 | |
|     if (!Extern) {
 | |
|         MachOSection &To = *SectionList[TargetSection - 1];
 | |
|         TargetAddr = To.addr;
 | |
|         TargetIndex = To.Index;
 | |
|     }
 | |
| 
 | |
|     OutputBuffer RelocOut(MOS.RelocBuffer, is64Bit, isLittleEndian);
 | |
|     OutputBuffer SecOut(MOS.getData(), is64Bit, isLittleEndian);
 | |
| 
 | |
|     MOS.nreloc += GetTargetRelocation(MR, MOS.Index, TargetAddr, TargetIndex,
 | |
|                                       RelocOut, SecOut, Scattered, Extern);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // InitMem - Write the value of a Constant to the specified memory location,
 | |
| // converting it into bytes and relocations.
 | |
| void MachOWriter::InitMem(const Constant *C, uintptr_t Offset,
 | |
|                           const TargetData *TD, MachOSection* mos) {
 | |
|   typedef std::pair<const Constant*, intptr_t> CPair;
 | |
|   std::vector<CPair> WorkList;
 | |
|   uint8_t *Addr = &mos->getData()[0];
 | |
| 
 | |
|   WorkList.push_back(CPair(C,(intptr_t)Addr + Offset));
 | |
| 
 | |
|   intptr_t ScatteredOffset = 0;
 | |
| 
 | |
|   while (!WorkList.empty()) {
 | |
|     const Constant *PC = WorkList.back().first;
 | |
|     intptr_t PA = WorkList.back().second;
 | |
|     WorkList.pop_back();
 | |
| 
 | |
|     if (isa<UndefValue>(PC)) {
 | |
|       continue;
 | |
|     } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(PC)) {
 | |
|       unsigned ElementSize =
 | |
|         TD->getTypeAllocSize(CP->getType()->getElementType());
 | |
|       for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
 | |
|         WorkList.push_back(CPair(CP->getOperand(i), PA+i*ElementSize));
 | |
|     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(PC)) {
 | |
|       //
 | |
|       // FIXME: Handle ConstantExpression.  See EE::getConstantValue()
 | |
|       //
 | |
|       switch (CE->getOpcode()) {
 | |
|       case Instruction::GetElementPtr: {
 | |
|         SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end());
 | |
|         ScatteredOffset = TD->getIndexedOffset(CE->getOperand(0)->getType(),
 | |
|                                                &Indices[0], Indices.size());
 | |
|         WorkList.push_back(CPair(CE->getOperand(0), PA));
 | |
|         break;
 | |
|       }
 | |
|       case Instruction::Add:
 | |
|       default:
 | |
|         errs() << "ConstantExpr not handled as global var init: " << *CE <<"\n";
 | |
|         llvm_unreachable(0);
 | |
|       }
 | |
|     } else if (PC->getType()->isSingleValueType()) {
 | |
|       unsigned char *ptr = (unsigned char *)PA;
 | |
|       switch (PC->getType()->getTypeID()) {
 | |
|       case Type::IntegerTyID: {
 | |
|         unsigned NumBits = cast<IntegerType>(PC->getType())->getBitWidth();
 | |
|         uint64_t val = cast<ConstantInt>(PC)->getZExtValue();
 | |
|         if (NumBits <= 8)
 | |
|           ptr[0] = val;
 | |
|         else if (NumBits <= 16) {
 | |
|           if (TD->isBigEndian())
 | |
|             val = ByteSwap_16(val);
 | |
|           ptr[0] = val;
 | |
|           ptr[1] = val >> 8;
 | |
|         } else if (NumBits <= 32) {
 | |
|           if (TD->isBigEndian())
 | |
|             val = ByteSwap_32(val);
 | |
|           ptr[0] = val;
 | |
|           ptr[1] = val >> 8;
 | |
|           ptr[2] = val >> 16;
 | |
|           ptr[3] = val >> 24;
 | |
|         } else if (NumBits <= 64) {
 | |
|           if (TD->isBigEndian())
 | |
|             val = ByteSwap_64(val);
 | |
|           ptr[0] = val;
 | |
|           ptr[1] = val >> 8;
 | |
|           ptr[2] = val >> 16;
 | |
|           ptr[3] = val >> 24;
 | |
|           ptr[4] = val >> 32;
 | |
|           ptr[5] = val >> 40;
 | |
|           ptr[6] = val >> 48;
 | |
|           ptr[7] = val >> 56;
 | |
|         } else {
 | |
|           llvm_unreachable("Not implemented: bit widths > 64");
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|       case Type::FloatTyID: {
 | |
|         uint32_t val = cast<ConstantFP>(PC)->getValueAPF().bitcastToAPInt().
 | |
|                         getZExtValue();
 | |
|         if (TD->isBigEndian())
 | |
|           val = ByteSwap_32(val);
 | |
|         ptr[0] = val;
 | |
|         ptr[1] = val >> 8;
 | |
|         ptr[2] = val >> 16;
 | |
|         ptr[3] = val >> 24;
 | |
|         break;
 | |
|       }
 | |
|       case Type::DoubleTyID: {
 | |
|         uint64_t val = cast<ConstantFP>(PC)->getValueAPF().bitcastToAPInt().
 | |
|                          getZExtValue();
 | |
|         if (TD->isBigEndian())
 | |
|           val = ByteSwap_64(val);
 | |
|         ptr[0] = val;
 | |
|         ptr[1] = val >> 8;
 | |
|         ptr[2] = val >> 16;
 | |
|         ptr[3] = val >> 24;
 | |
|         ptr[4] = val >> 32;
 | |
|         ptr[5] = val >> 40;
 | |
|         ptr[6] = val >> 48;
 | |
|         ptr[7] = val >> 56;
 | |
|         break;
 | |
|       }
 | |
|       case Type::PointerTyID:
 | |
|         if (isa<ConstantPointerNull>(PC))
 | |
|           memset(ptr, 0, TD->getPointerSize());
 | |
|         else if (const GlobalValue* GV = dyn_cast<GlobalValue>(PC)) {
 | |
|           // FIXME: what about function stubs?
 | |
|           mos->addRelocation(MachineRelocation::getGV(PA-(intptr_t)Addr,
 | |
|                                                  MachineRelocation::VANILLA,
 | |
|                                                  const_cast<GlobalValue*>(GV),
 | |
|                                                  ScatteredOffset));
 | |
|           ScatteredOffset = 0;
 | |
|         } else
 | |
|           llvm_unreachable("Unknown constant pointer type!");
 | |
|         break;
 | |
|       default:
 | |
|         std::string msg;
 | |
|         raw_string_ostream Msg(msg);
 | |
|         Msg << "ERROR: Constant unimp for type: " << *PC->getType();
 | |
|         llvm_report_error(Msg.str());
 | |
|       }
 | |
|     } else if (isa<ConstantAggregateZero>(PC)) {
 | |
|       memset((void*)PA, 0, (size_t)TD->getTypeAllocSize(PC->getType()));
 | |
|     } else if (const ConstantArray *CPA = dyn_cast<ConstantArray>(PC)) {
 | |
|       unsigned ElementSize =
 | |
|         TD->getTypeAllocSize(CPA->getType()->getElementType());
 | |
|       for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
 | |
|         WorkList.push_back(CPair(CPA->getOperand(i), PA+i*ElementSize));
 | |
|     } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(PC)) {
 | |
|       const StructLayout *SL =
 | |
|         TD->getStructLayout(cast<StructType>(CPS->getType()));
 | |
|       for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
 | |
|         WorkList.push_back(CPair(CPS->getOperand(i),
 | |
|                                  PA+SL->getElementOffset(i)));
 | |
|     } else {
 | |
|       errs() << "Bad Type: " << *PC->getType() << "\n";
 | |
|       llvm_unreachable("Unknown constant type to initialize memory with!");
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                          MachOSym Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| MachOSym::MachOSym(const GlobalValue *gv, std::string name, uint8_t sect,
 | |
|                    const MCAsmInfo *MAI) :
 | |
|   GV(gv), n_strx(0), n_type(sect == NO_SECT ? N_UNDF : N_SECT), n_sect(sect),
 | |
|   n_desc(0), n_value(0) {
 | |
| 
 | |
|   // FIXME: This is completely broken, it should use the mangler interface.
 | |
|   switch (GV->getLinkage()) {
 | |
|   default:
 | |
|     llvm_unreachable("Unexpected linkage type!");
 | |
|     break;
 | |
|   case GlobalValue::WeakAnyLinkage:
 | |
|   case GlobalValue::WeakODRLinkage:
 | |
|   case GlobalValue::LinkOnceAnyLinkage:
 | |
|   case GlobalValue::LinkOnceODRLinkage:
 | |
|   case GlobalValue::CommonLinkage:
 | |
|     assert(!isa<Function>(gv) && "Unexpected linkage type for Function!");
 | |
|   case GlobalValue::ExternalLinkage:
 | |
|     GVName = MAI->getGlobalPrefix() + name;
 | |
|     n_type |= GV->hasHiddenVisibility() ? N_PEXT : N_EXT;
 | |
|     break;
 | |
|   case GlobalValue::PrivateLinkage:
 | |
|     GVName = MAI->getPrivateGlobalPrefix() + name;
 | |
|     break;
 | |
|   case GlobalValue::LinkerPrivateLinkage:
 | |
|     GVName = MAI->getLinkerPrivateGlobalPrefix() + name;
 | |
|     break;
 | |
|   case GlobalValue::InternalLinkage:
 | |
|     GVName = MAI->getGlobalPrefix() + name;
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| } // end namespace llvm
 |