mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	This is to be consistent with StringSet and ultimately with the standard library's associative container insert function. This lead to updating SmallSet::insert to return pair<iterator, bool>, and then to update SmallPtrSet::insert to return pair<iterator, bool>, and then to update all the existing users of those functions... git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222334 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			728 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			728 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- Lint.cpp - Check for common errors in LLVM IR ---------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass statically checks for common and easily-identified constructs
 | |
| // which produce undefined or likely unintended behavior in LLVM IR.
 | |
| //
 | |
| // It is not a guarantee of correctness, in two ways. First, it isn't
 | |
| // comprehensive. There are checks which could be done statically which are
 | |
| // not yet implemented. Some of these are indicated by TODO comments, but
 | |
| // those aren't comprehensive either. Second, many conditions cannot be
 | |
| // checked statically. This pass does no dynamic instrumentation, so it
 | |
| // can't check for all possible problems.
 | |
| //
 | |
| // Another limitation is that it assumes all code will be executed. A store
 | |
| // through a null pointer in a basic block which is never reached is harmless,
 | |
| // but this pass will warn about it anyway. This is the main reason why most
 | |
| // of these checks live here instead of in the Verifier pass.
 | |
| //
 | |
| // Optimization passes may make conditions that this pass checks for more or
 | |
| // less obvious. If an optimization pass appears to be introducing a warning,
 | |
| // it may be that the optimization pass is merely exposing an existing
 | |
| // condition in the code.
 | |
| //
 | |
| // This code may be run before instcombine. In many cases, instcombine checks
 | |
| // for the same kinds of things and turns instructions with undefined behavior
 | |
| // into unreachable (or equivalent). Because of this, this pass makes some
 | |
| // effort to look through bitcasts and so on.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/Lint.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/AssumptionTracker.h"
 | |
| #include "llvm/Analysis/ConstantFolding.h"
 | |
| #include "llvm/Analysis/InstructionSimplify.h"
 | |
| #include "llvm/Analysis/Loads.h"
 | |
| #include "llvm/Analysis/Passes.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/IR/CallSite.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/InstVisitor.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/PassManager.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Target/TargetLibraryInfo.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace {
 | |
|   namespace MemRef {
 | |
|     static unsigned Read     = 1;
 | |
|     static unsigned Write    = 2;
 | |
|     static unsigned Callee   = 4;
 | |
|     static unsigned Branchee = 8;
 | |
|   }
 | |
| 
 | |
|   class Lint : public FunctionPass, public InstVisitor<Lint> {
 | |
|     friend class InstVisitor<Lint>;
 | |
| 
 | |
|     void visitFunction(Function &F);
 | |
| 
 | |
|     void visitCallSite(CallSite CS);
 | |
|     void visitMemoryReference(Instruction &I, Value *Ptr,
 | |
|                               uint64_t Size, unsigned Align,
 | |
|                               Type *Ty, unsigned Flags);
 | |
| 
 | |
|     void visitCallInst(CallInst &I);
 | |
|     void visitInvokeInst(InvokeInst &I);
 | |
|     void visitReturnInst(ReturnInst &I);
 | |
|     void visitLoadInst(LoadInst &I);
 | |
|     void visitStoreInst(StoreInst &I);
 | |
|     void visitXor(BinaryOperator &I);
 | |
|     void visitSub(BinaryOperator &I);
 | |
|     void visitLShr(BinaryOperator &I);
 | |
|     void visitAShr(BinaryOperator &I);
 | |
|     void visitShl(BinaryOperator &I);
 | |
|     void visitSDiv(BinaryOperator &I);
 | |
|     void visitUDiv(BinaryOperator &I);
 | |
|     void visitSRem(BinaryOperator &I);
 | |
|     void visitURem(BinaryOperator &I);
 | |
|     void visitAllocaInst(AllocaInst &I);
 | |
|     void visitVAArgInst(VAArgInst &I);
 | |
|     void visitIndirectBrInst(IndirectBrInst &I);
 | |
|     void visitExtractElementInst(ExtractElementInst &I);
 | |
|     void visitInsertElementInst(InsertElementInst &I);
 | |
|     void visitUnreachableInst(UnreachableInst &I);
 | |
| 
 | |
|     Value *findValue(Value *V, bool OffsetOk) const;
 | |
|     Value *findValueImpl(Value *V, bool OffsetOk,
 | |
|                          SmallPtrSetImpl<Value *> &Visited) const;
 | |
| 
 | |
|   public:
 | |
|     Module *Mod;
 | |
|     AliasAnalysis *AA;
 | |
|     AssumptionTracker *AT;
 | |
|     DominatorTree *DT;
 | |
|     const DataLayout *DL;
 | |
|     TargetLibraryInfo *TLI;
 | |
| 
 | |
|     std::string Messages;
 | |
|     raw_string_ostream MessagesStr;
 | |
| 
 | |
|     static char ID; // Pass identification, replacement for typeid
 | |
|     Lint() : FunctionPass(ID), MessagesStr(Messages) {
 | |
|       initializeLintPass(*PassRegistry::getPassRegistry());
 | |
|     }
 | |
| 
 | |
|     bool runOnFunction(Function &F) override;
 | |
| 
 | |
|     void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|       AU.setPreservesAll();
 | |
|       AU.addRequired<AliasAnalysis>();
 | |
|       AU.addRequired<AssumptionTracker>();
 | |
|       AU.addRequired<TargetLibraryInfo>();
 | |
|       AU.addRequired<DominatorTreeWrapperPass>();
 | |
|     }
 | |
|     void print(raw_ostream &O, const Module *M) const override {}
 | |
| 
 | |
|     void WriteValue(const Value *V) {
 | |
|       if (!V) return;
 | |
|       if (isa<Instruction>(V)) {
 | |
|         MessagesStr << *V << '\n';
 | |
|       } else {
 | |
|         V->printAsOperand(MessagesStr, true, Mod);
 | |
|         MessagesStr << '\n';
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // CheckFailed - A check failed, so print out the condition and the message
 | |
|     // that failed.  This provides a nice place to put a breakpoint if you want
 | |
|     // to see why something is not correct.
 | |
|     void CheckFailed(const Twine &Message,
 | |
|                      const Value *V1 = nullptr, const Value *V2 = nullptr,
 | |
|                      const Value *V3 = nullptr, const Value *V4 = nullptr) {
 | |
|       MessagesStr << Message.str() << "\n";
 | |
|       WriteValue(V1);
 | |
|       WriteValue(V2);
 | |
|       WriteValue(V3);
 | |
|       WriteValue(V4);
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| char Lint::ID = 0;
 | |
| INITIALIZE_PASS_BEGIN(Lint, "lint", "Statically lint-checks LLVM IR",
 | |
|                       false, true)
 | |
| INITIALIZE_PASS_DEPENDENCY(AssumptionTracker)
 | |
| INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
 | |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | |
| INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
 | |
| INITIALIZE_PASS_END(Lint, "lint", "Statically lint-checks LLVM IR",
 | |
|                     false, true)
 | |
| 
 | |
| // Assert - We know that cond should be true, if not print an error message.
 | |
| #define Assert(C, M) \
 | |
|     do { if (!(C)) { CheckFailed(M); return; } } while (0)
 | |
| #define Assert1(C, M, V1) \
 | |
|     do { if (!(C)) { CheckFailed(M, V1); return; } } while (0)
 | |
| #define Assert2(C, M, V1, V2) \
 | |
|     do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0)
 | |
| #define Assert3(C, M, V1, V2, V3) \
 | |
|     do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0)
 | |
| #define Assert4(C, M, V1, V2, V3, V4) \
 | |
|     do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0)
 | |
| 
 | |
| // Lint::run - This is the main Analysis entry point for a
 | |
| // function.
 | |
| //
 | |
| bool Lint::runOnFunction(Function &F) {
 | |
|   Mod = F.getParent();
 | |
|   AA = &getAnalysis<AliasAnalysis>();
 | |
|   AT = &getAnalysis<AssumptionTracker>();
 | |
|   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | |
|   DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
 | |
|   DL = DLP ? &DLP->getDataLayout() : nullptr;
 | |
|   TLI = &getAnalysis<TargetLibraryInfo>();
 | |
|   visit(F);
 | |
|   dbgs() << MessagesStr.str();
 | |
|   Messages.clear();
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void Lint::visitFunction(Function &F) {
 | |
|   // This isn't undefined behavior, it's just a little unusual, and it's a
 | |
|   // fairly common mistake to neglect to name a function.
 | |
|   Assert1(F.hasName() || F.hasLocalLinkage(),
 | |
|           "Unusual: Unnamed function with non-local linkage", &F);
 | |
| 
 | |
|   // TODO: Check for irreducible control flow.
 | |
| }
 | |
| 
 | |
| void Lint::visitCallSite(CallSite CS) {
 | |
|   Instruction &I = *CS.getInstruction();
 | |
|   Value *Callee = CS.getCalledValue();
 | |
| 
 | |
|   visitMemoryReference(I, Callee, AliasAnalysis::UnknownSize,
 | |
|                        0, nullptr, MemRef::Callee);
 | |
| 
 | |
|   if (Function *F = dyn_cast<Function>(findValue(Callee, /*OffsetOk=*/false))) {
 | |
|     Assert1(CS.getCallingConv() == F->getCallingConv(),
 | |
|             "Undefined behavior: Caller and callee calling convention differ",
 | |
|             &I);
 | |
| 
 | |
|     FunctionType *FT = F->getFunctionType();
 | |
|     unsigned NumActualArgs = CS.arg_size();
 | |
| 
 | |
|     Assert1(FT->isVarArg() ?
 | |
|               FT->getNumParams() <= NumActualArgs :
 | |
|               FT->getNumParams() == NumActualArgs,
 | |
|             "Undefined behavior: Call argument count mismatches callee "
 | |
|             "argument count", &I);
 | |
| 
 | |
|     Assert1(FT->getReturnType() == I.getType(),
 | |
|             "Undefined behavior: Call return type mismatches "
 | |
|             "callee return type", &I);
 | |
| 
 | |
|     // Check argument types (in case the callee was casted) and attributes.
 | |
|     // TODO: Verify that caller and callee attributes are compatible.
 | |
|     Function::arg_iterator PI = F->arg_begin(), PE = F->arg_end();
 | |
|     CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
 | |
|     for (; AI != AE; ++AI) {
 | |
|       Value *Actual = *AI;
 | |
|       if (PI != PE) {
 | |
|         Argument *Formal = PI++;
 | |
|         Assert1(Formal->getType() == Actual->getType(),
 | |
|                 "Undefined behavior: Call argument type mismatches "
 | |
|                 "callee parameter type", &I);
 | |
| 
 | |
|         // Check that noalias arguments don't alias other arguments. This is
 | |
|         // not fully precise because we don't know the sizes of the dereferenced
 | |
|         // memory regions.
 | |
|         if (Formal->hasNoAliasAttr() && Actual->getType()->isPointerTy())
 | |
|           for (CallSite::arg_iterator BI = CS.arg_begin(); BI != AE; ++BI)
 | |
|             if (AI != BI && (*BI)->getType()->isPointerTy()) {
 | |
|               AliasAnalysis::AliasResult Result = AA->alias(*AI, *BI);
 | |
|               Assert1(Result != AliasAnalysis::MustAlias &&
 | |
|                       Result != AliasAnalysis::PartialAlias,
 | |
|                       "Unusual: noalias argument aliases another argument", &I);
 | |
|             }
 | |
| 
 | |
|         // Check that an sret argument points to valid memory.
 | |
|         if (Formal->hasStructRetAttr() && Actual->getType()->isPointerTy()) {
 | |
|           Type *Ty =
 | |
|             cast<PointerType>(Formal->getType())->getElementType();
 | |
|           visitMemoryReference(I, Actual, AA->getTypeStoreSize(Ty),
 | |
|                                DL ? DL->getABITypeAlignment(Ty) : 0,
 | |
|                                Ty, MemRef::Read | MemRef::Write);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (CS.isCall() && cast<CallInst>(CS.getInstruction())->isTailCall())
 | |
|     for (CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
 | |
|          AI != AE; ++AI) {
 | |
|       Value *Obj = findValue(*AI, /*OffsetOk=*/true);
 | |
|       Assert1(!isa<AllocaInst>(Obj),
 | |
|               "Undefined behavior: Call with \"tail\" keyword references "
 | |
|               "alloca", &I);
 | |
|     }
 | |
| 
 | |
| 
 | |
|   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I))
 | |
|     switch (II->getIntrinsicID()) {
 | |
|     default: break;
 | |
| 
 | |
|     // TODO: Check more intrinsics
 | |
| 
 | |
|     case Intrinsic::memcpy: {
 | |
|       MemCpyInst *MCI = cast<MemCpyInst>(&I);
 | |
|       // TODO: If the size is known, use it.
 | |
|       visitMemoryReference(I, MCI->getDest(), AliasAnalysis::UnknownSize,
 | |
|                            MCI->getAlignment(), nullptr,
 | |
|                            MemRef::Write);
 | |
|       visitMemoryReference(I, MCI->getSource(), AliasAnalysis::UnknownSize,
 | |
|                            MCI->getAlignment(), nullptr,
 | |
|                            MemRef::Read);
 | |
| 
 | |
|       // Check that the memcpy arguments don't overlap. The AliasAnalysis API
 | |
|       // isn't expressive enough for what we really want to do. Known partial
 | |
|       // overlap is not distinguished from the case where nothing is known.
 | |
|       uint64_t Size = 0;
 | |
|       if (const ConstantInt *Len =
 | |
|             dyn_cast<ConstantInt>(findValue(MCI->getLength(),
 | |
|                                             /*OffsetOk=*/false)))
 | |
|         if (Len->getValue().isIntN(32))
 | |
|           Size = Len->getValue().getZExtValue();
 | |
|       Assert1(AA->alias(MCI->getSource(), Size, MCI->getDest(), Size) !=
 | |
|               AliasAnalysis::MustAlias,
 | |
|               "Undefined behavior: memcpy source and destination overlap", &I);
 | |
|       break;
 | |
|     }
 | |
|     case Intrinsic::memmove: {
 | |
|       MemMoveInst *MMI = cast<MemMoveInst>(&I);
 | |
|       // TODO: If the size is known, use it.
 | |
|       visitMemoryReference(I, MMI->getDest(), AliasAnalysis::UnknownSize,
 | |
|                            MMI->getAlignment(), nullptr,
 | |
|                            MemRef::Write);
 | |
|       visitMemoryReference(I, MMI->getSource(), AliasAnalysis::UnknownSize,
 | |
|                            MMI->getAlignment(), nullptr,
 | |
|                            MemRef::Read);
 | |
|       break;
 | |
|     }
 | |
|     case Intrinsic::memset: {
 | |
|       MemSetInst *MSI = cast<MemSetInst>(&I);
 | |
|       // TODO: If the size is known, use it.
 | |
|       visitMemoryReference(I, MSI->getDest(), AliasAnalysis::UnknownSize,
 | |
|                            MSI->getAlignment(), nullptr,
 | |
|                            MemRef::Write);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case Intrinsic::vastart:
 | |
|       Assert1(I.getParent()->getParent()->isVarArg(),
 | |
|               "Undefined behavior: va_start called in a non-varargs function",
 | |
|               &I);
 | |
| 
 | |
|       visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize,
 | |
|                            0, nullptr, MemRef::Read | MemRef::Write);
 | |
|       break;
 | |
|     case Intrinsic::vacopy:
 | |
|       visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize,
 | |
|                            0, nullptr, MemRef::Write);
 | |
|       visitMemoryReference(I, CS.getArgument(1), AliasAnalysis::UnknownSize,
 | |
|                            0, nullptr, MemRef::Read);
 | |
|       break;
 | |
|     case Intrinsic::vaend:
 | |
|       visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize,
 | |
|                            0, nullptr, MemRef::Read | MemRef::Write);
 | |
|       break;
 | |
| 
 | |
|     case Intrinsic::stackrestore:
 | |
|       // Stackrestore doesn't read or write memory, but it sets the
 | |
|       // stack pointer, which the compiler may read from or write to
 | |
|       // at any time, so check it for both readability and writeability.
 | |
|       visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize,
 | |
|                            0, nullptr, MemRef::Read | MemRef::Write);
 | |
|       break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void Lint::visitCallInst(CallInst &I) {
 | |
|   return visitCallSite(&I);
 | |
| }
 | |
| 
 | |
| void Lint::visitInvokeInst(InvokeInst &I) {
 | |
|   return visitCallSite(&I);
 | |
| }
 | |
| 
 | |
| void Lint::visitReturnInst(ReturnInst &I) {
 | |
|   Function *F = I.getParent()->getParent();
 | |
|   Assert1(!F->doesNotReturn(),
 | |
|           "Unusual: Return statement in function with noreturn attribute",
 | |
|           &I);
 | |
| 
 | |
|   if (Value *V = I.getReturnValue()) {
 | |
|     Value *Obj = findValue(V, /*OffsetOk=*/true);
 | |
|     Assert1(!isa<AllocaInst>(Obj),
 | |
|             "Unusual: Returning alloca value", &I);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // TODO: Check that the reference is in bounds.
 | |
| // TODO: Check readnone/readonly function attributes.
 | |
| void Lint::visitMemoryReference(Instruction &I,
 | |
|                                 Value *Ptr, uint64_t Size, unsigned Align,
 | |
|                                 Type *Ty, unsigned Flags) {
 | |
|   // If no memory is being referenced, it doesn't matter if the pointer
 | |
|   // is valid.
 | |
|   if (Size == 0)
 | |
|     return;
 | |
| 
 | |
|   Value *UnderlyingObject = findValue(Ptr, /*OffsetOk=*/true);
 | |
|   Assert1(!isa<ConstantPointerNull>(UnderlyingObject),
 | |
|           "Undefined behavior: Null pointer dereference", &I);
 | |
|   Assert1(!isa<UndefValue>(UnderlyingObject),
 | |
|           "Undefined behavior: Undef pointer dereference", &I);
 | |
|   Assert1(!isa<ConstantInt>(UnderlyingObject) ||
 | |
|           !cast<ConstantInt>(UnderlyingObject)->isAllOnesValue(),
 | |
|           "Unusual: All-ones pointer dereference", &I);
 | |
|   Assert1(!isa<ConstantInt>(UnderlyingObject) ||
 | |
|           !cast<ConstantInt>(UnderlyingObject)->isOne(),
 | |
|           "Unusual: Address one pointer dereference", &I);
 | |
| 
 | |
|   if (Flags & MemRef::Write) {
 | |
|     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(UnderlyingObject))
 | |
|       Assert1(!GV->isConstant(),
 | |
|               "Undefined behavior: Write to read-only memory", &I);
 | |
|     Assert1(!isa<Function>(UnderlyingObject) &&
 | |
|             !isa<BlockAddress>(UnderlyingObject),
 | |
|             "Undefined behavior: Write to text section", &I);
 | |
|   }
 | |
|   if (Flags & MemRef::Read) {
 | |
|     Assert1(!isa<Function>(UnderlyingObject),
 | |
|             "Unusual: Load from function body", &I);
 | |
|     Assert1(!isa<BlockAddress>(UnderlyingObject),
 | |
|             "Undefined behavior: Load from block address", &I);
 | |
|   }
 | |
|   if (Flags & MemRef::Callee) {
 | |
|     Assert1(!isa<BlockAddress>(UnderlyingObject),
 | |
|             "Undefined behavior: Call to block address", &I);
 | |
|   }
 | |
|   if (Flags & MemRef::Branchee) {
 | |
|     Assert1(!isa<Constant>(UnderlyingObject) ||
 | |
|             isa<BlockAddress>(UnderlyingObject),
 | |
|             "Undefined behavior: Branch to non-blockaddress", &I);
 | |
|   }
 | |
| 
 | |
|   // Check for buffer overflows and misalignment.
 | |
|   // Only handles memory references that read/write something simple like an
 | |
|   // alloca instruction or a global variable.
 | |
|   int64_t Offset = 0;
 | |
|   if (Value *Base = GetPointerBaseWithConstantOffset(Ptr, Offset, DL)) {
 | |
|     // OK, so the access is to a constant offset from Ptr.  Check that Ptr is
 | |
|     // something we can handle and if so extract the size of this base object
 | |
|     // along with its alignment.
 | |
|     uint64_t BaseSize = AliasAnalysis::UnknownSize;
 | |
|     unsigned BaseAlign = 0;
 | |
| 
 | |
|     if (AllocaInst *AI = dyn_cast<AllocaInst>(Base)) {
 | |
|       Type *ATy = AI->getAllocatedType();
 | |
|       if (DL && !AI->isArrayAllocation() && ATy->isSized())
 | |
|         BaseSize = DL->getTypeAllocSize(ATy);
 | |
|       BaseAlign = AI->getAlignment();
 | |
|       if (DL && BaseAlign == 0 && ATy->isSized())
 | |
|         BaseAlign = DL->getABITypeAlignment(ATy);
 | |
|     } else if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Base)) {
 | |
|       // If the global may be defined differently in another compilation unit
 | |
|       // then don't warn about funky memory accesses.
 | |
|       if (GV->hasDefinitiveInitializer()) {
 | |
|         Type *GTy = GV->getType()->getElementType();
 | |
|         if (DL && GTy->isSized())
 | |
|           BaseSize = DL->getTypeAllocSize(GTy);
 | |
|         BaseAlign = GV->getAlignment();
 | |
|         if (DL && BaseAlign == 0 && GTy->isSized())
 | |
|           BaseAlign = DL->getABITypeAlignment(GTy);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Accesses from before the start or after the end of the object are not
 | |
|     // defined.
 | |
|     Assert1(Size == AliasAnalysis::UnknownSize ||
 | |
|             BaseSize == AliasAnalysis::UnknownSize ||
 | |
|             (Offset >= 0 && Offset + Size <= BaseSize),
 | |
|             "Undefined behavior: Buffer overflow", &I);
 | |
| 
 | |
|     // Accesses that say that the memory is more aligned than it is are not
 | |
|     // defined.
 | |
|     if (DL && Align == 0 && Ty && Ty->isSized())
 | |
|       Align = DL->getABITypeAlignment(Ty);
 | |
|     Assert1(!BaseAlign || Align <= MinAlign(BaseAlign, Offset),
 | |
|             "Undefined behavior: Memory reference address is misaligned", &I);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Lint::visitLoadInst(LoadInst &I) {
 | |
|   visitMemoryReference(I, I.getPointerOperand(),
 | |
|                        AA->getTypeStoreSize(I.getType()), I.getAlignment(),
 | |
|                        I.getType(), MemRef::Read);
 | |
| }
 | |
| 
 | |
| void Lint::visitStoreInst(StoreInst &I) {
 | |
|   visitMemoryReference(I, I.getPointerOperand(),
 | |
|                        AA->getTypeStoreSize(I.getOperand(0)->getType()),
 | |
|                        I.getAlignment(),
 | |
|                        I.getOperand(0)->getType(), MemRef::Write);
 | |
| }
 | |
| 
 | |
| void Lint::visitXor(BinaryOperator &I) {
 | |
|   Assert1(!isa<UndefValue>(I.getOperand(0)) ||
 | |
|           !isa<UndefValue>(I.getOperand(1)),
 | |
|           "Undefined result: xor(undef, undef)", &I);
 | |
| }
 | |
| 
 | |
| void Lint::visitSub(BinaryOperator &I) {
 | |
|   Assert1(!isa<UndefValue>(I.getOperand(0)) ||
 | |
|           !isa<UndefValue>(I.getOperand(1)),
 | |
|           "Undefined result: sub(undef, undef)", &I);
 | |
| }
 | |
| 
 | |
| void Lint::visitLShr(BinaryOperator &I) {
 | |
|   if (ConstantInt *CI =
 | |
|         dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
 | |
|     Assert1(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
 | |
|             "Undefined result: Shift count out of range", &I);
 | |
| }
 | |
| 
 | |
| void Lint::visitAShr(BinaryOperator &I) {
 | |
|   if (ConstantInt *CI =
 | |
|         dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
 | |
|     Assert1(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
 | |
|             "Undefined result: Shift count out of range", &I);
 | |
| }
 | |
| 
 | |
| void Lint::visitShl(BinaryOperator &I) {
 | |
|   if (ConstantInt *CI =
 | |
|         dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
 | |
|     Assert1(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
 | |
|             "Undefined result: Shift count out of range", &I);
 | |
| }
 | |
| 
 | |
| static bool isZero(Value *V, const DataLayout *DL, DominatorTree *DT,
 | |
|                    AssumptionTracker *AT) {
 | |
|   // Assume undef could be zero.
 | |
|   if (isa<UndefValue>(V))
 | |
|     return true;
 | |
| 
 | |
|   VectorType *VecTy = dyn_cast<VectorType>(V->getType());
 | |
|   if (!VecTy) {
 | |
|     unsigned BitWidth = V->getType()->getIntegerBitWidth();
 | |
|     APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
 | |
|     computeKnownBits(V, KnownZero, KnownOne, DL,
 | |
|                      0, AT, dyn_cast<Instruction>(V), DT);
 | |
|     return KnownZero.isAllOnesValue();
 | |
|   }
 | |
| 
 | |
|   // Per-component check doesn't work with zeroinitializer
 | |
|   Constant *C = dyn_cast<Constant>(V);
 | |
|   if (!C)
 | |
|     return false;
 | |
| 
 | |
|   if (C->isZeroValue())
 | |
|     return true;
 | |
| 
 | |
|   // For a vector, KnownZero will only be true if all values are zero, so check
 | |
|   // this per component
 | |
|   unsigned BitWidth = VecTy->getElementType()->getIntegerBitWidth();
 | |
|   for (unsigned I = 0, N = VecTy->getNumElements(); I != N; ++I) {
 | |
|     Constant *Elem = C->getAggregateElement(I);
 | |
|     if (isa<UndefValue>(Elem))
 | |
|       return true;
 | |
| 
 | |
|     APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
 | |
|     computeKnownBits(Elem, KnownZero, KnownOne, DL);
 | |
|     if (KnownZero.isAllOnesValue())
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void Lint::visitSDiv(BinaryOperator &I) {
 | |
|   Assert1(!isZero(I.getOperand(1), DL, DT, AT),
 | |
|           "Undefined behavior: Division by zero", &I);
 | |
| }
 | |
| 
 | |
| void Lint::visitUDiv(BinaryOperator &I) {
 | |
|   Assert1(!isZero(I.getOperand(1), DL, DT, AT),
 | |
|           "Undefined behavior: Division by zero", &I);
 | |
| }
 | |
| 
 | |
| void Lint::visitSRem(BinaryOperator &I) {
 | |
|   Assert1(!isZero(I.getOperand(1), DL, DT, AT),
 | |
|           "Undefined behavior: Division by zero", &I);
 | |
| }
 | |
| 
 | |
| void Lint::visitURem(BinaryOperator &I) {
 | |
|   Assert1(!isZero(I.getOperand(1), DL, DT, AT),
 | |
|           "Undefined behavior: Division by zero", &I);
 | |
| }
 | |
| 
 | |
| void Lint::visitAllocaInst(AllocaInst &I) {
 | |
|   if (isa<ConstantInt>(I.getArraySize()))
 | |
|     // This isn't undefined behavior, it's just an obvious pessimization.
 | |
|     Assert1(&I.getParent()->getParent()->getEntryBlock() == I.getParent(),
 | |
|             "Pessimization: Static alloca outside of entry block", &I);
 | |
| 
 | |
|   // TODO: Check for an unusual size (MSB set?)
 | |
| }
 | |
| 
 | |
| void Lint::visitVAArgInst(VAArgInst &I) {
 | |
|   visitMemoryReference(I, I.getOperand(0), AliasAnalysis::UnknownSize, 0,
 | |
|                        nullptr, MemRef::Read | MemRef::Write);
 | |
| }
 | |
| 
 | |
| void Lint::visitIndirectBrInst(IndirectBrInst &I) {
 | |
|   visitMemoryReference(I, I.getAddress(), AliasAnalysis::UnknownSize, 0,
 | |
|                        nullptr, MemRef::Branchee);
 | |
| 
 | |
|   Assert1(I.getNumDestinations() != 0,
 | |
|           "Undefined behavior: indirectbr with no destinations", &I);
 | |
| }
 | |
| 
 | |
| void Lint::visitExtractElementInst(ExtractElementInst &I) {
 | |
|   if (ConstantInt *CI =
 | |
|         dyn_cast<ConstantInt>(findValue(I.getIndexOperand(),
 | |
|                                         /*OffsetOk=*/false)))
 | |
|     Assert1(CI->getValue().ult(I.getVectorOperandType()->getNumElements()),
 | |
|             "Undefined result: extractelement index out of range", &I);
 | |
| }
 | |
| 
 | |
| void Lint::visitInsertElementInst(InsertElementInst &I) {
 | |
|   if (ConstantInt *CI =
 | |
|         dyn_cast<ConstantInt>(findValue(I.getOperand(2),
 | |
|                                         /*OffsetOk=*/false)))
 | |
|     Assert1(CI->getValue().ult(I.getType()->getNumElements()),
 | |
|             "Undefined result: insertelement index out of range", &I);
 | |
| }
 | |
| 
 | |
| void Lint::visitUnreachableInst(UnreachableInst &I) {
 | |
|   // This isn't undefined behavior, it's merely suspicious.
 | |
|   Assert1(&I == I.getParent()->begin() ||
 | |
|           std::prev(BasicBlock::iterator(&I))->mayHaveSideEffects(),
 | |
|           "Unusual: unreachable immediately preceded by instruction without "
 | |
|           "side effects", &I);
 | |
| }
 | |
| 
 | |
| /// findValue - Look through bitcasts and simple memory reference patterns
 | |
| /// to identify an equivalent, but more informative, value.  If OffsetOk
 | |
| /// is true, look through getelementptrs with non-zero offsets too.
 | |
| ///
 | |
| /// Most analysis passes don't require this logic, because instcombine
 | |
| /// will simplify most of these kinds of things away. But it's a goal of
 | |
| /// this Lint pass to be useful even on non-optimized IR.
 | |
| Value *Lint::findValue(Value *V, bool OffsetOk) const {
 | |
|   SmallPtrSet<Value *, 4> Visited;
 | |
|   return findValueImpl(V, OffsetOk, Visited);
 | |
| }
 | |
| 
 | |
| /// findValueImpl - Implementation helper for findValue.
 | |
| Value *Lint::findValueImpl(Value *V, bool OffsetOk,
 | |
|                            SmallPtrSetImpl<Value *> &Visited) const {
 | |
|   // Detect self-referential values.
 | |
|   if (!Visited.insert(V).second)
 | |
|     return UndefValue::get(V->getType());
 | |
| 
 | |
|   // TODO: Look through sext or zext cast, when the result is known to
 | |
|   // be interpreted as signed or unsigned, respectively.
 | |
|   // TODO: Look through eliminable cast pairs.
 | |
|   // TODO: Look through calls with unique return values.
 | |
|   // TODO: Look through vector insert/extract/shuffle.
 | |
|   V = OffsetOk ? GetUnderlyingObject(V, DL) : V->stripPointerCasts();
 | |
|   if (LoadInst *L = dyn_cast<LoadInst>(V)) {
 | |
|     BasicBlock::iterator BBI = L;
 | |
|     BasicBlock *BB = L->getParent();
 | |
|     SmallPtrSet<BasicBlock *, 4> VisitedBlocks;
 | |
|     for (;;) {
 | |
|       if (!VisitedBlocks.insert(BB).second)
 | |
|         break;
 | |
|       if (Value *U = FindAvailableLoadedValue(L->getPointerOperand(),
 | |
|                                               BB, BBI, 6, AA))
 | |
|         return findValueImpl(U, OffsetOk, Visited);
 | |
|       if (BBI != BB->begin()) break;
 | |
|       BB = BB->getUniquePredecessor();
 | |
|       if (!BB) break;
 | |
|       BBI = BB->end();
 | |
|     }
 | |
|   } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
 | |
|     if (Value *W = PN->hasConstantValue())
 | |
|       if (W != V)
 | |
|         return findValueImpl(W, OffsetOk, Visited);
 | |
|   } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
 | |
|     if (CI->isNoopCast(DL))
 | |
|       return findValueImpl(CI->getOperand(0), OffsetOk, Visited);
 | |
|   } else if (ExtractValueInst *Ex = dyn_cast<ExtractValueInst>(V)) {
 | |
|     if (Value *W = FindInsertedValue(Ex->getAggregateOperand(),
 | |
|                                      Ex->getIndices()))
 | |
|       if (W != V)
 | |
|         return findValueImpl(W, OffsetOk, Visited);
 | |
|   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
 | |
|     // Same as above, but for ConstantExpr instead of Instruction.
 | |
|     if (Instruction::isCast(CE->getOpcode())) {
 | |
|       if (CastInst::isNoopCast(Instruction::CastOps(CE->getOpcode()),
 | |
|                                CE->getOperand(0)->getType(),
 | |
|                                CE->getType(),
 | |
|                                DL ? DL->getIntPtrType(V->getType()) :
 | |
|                                     Type::getInt64Ty(V->getContext())))
 | |
|         return findValueImpl(CE->getOperand(0), OffsetOk, Visited);
 | |
|     } else if (CE->getOpcode() == Instruction::ExtractValue) {
 | |
|       ArrayRef<unsigned> Indices = CE->getIndices();
 | |
|       if (Value *W = FindInsertedValue(CE->getOperand(0), Indices))
 | |
|         if (W != V)
 | |
|           return findValueImpl(W, OffsetOk, Visited);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // As a last resort, try SimplifyInstruction or constant folding.
 | |
|   if (Instruction *Inst = dyn_cast<Instruction>(V)) {
 | |
|     if (Value *W = SimplifyInstruction(Inst, DL, TLI, DT, AT))
 | |
|       return findValueImpl(W, OffsetOk, Visited);
 | |
|   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
 | |
|     if (Value *W = ConstantFoldConstantExpression(CE, DL, TLI))
 | |
|       if (W != V)
 | |
|         return findValueImpl(W, OffsetOk, Visited);
 | |
|   }
 | |
| 
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Implement the public interfaces to this file...
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| FunctionPass *llvm::createLintPass() {
 | |
|   return new Lint();
 | |
| }
 | |
| 
 | |
| /// lintFunction - Check a function for errors, printing messages on stderr.
 | |
| ///
 | |
| void llvm::lintFunction(const Function &f) {
 | |
|   Function &F = const_cast<Function&>(f);
 | |
|   assert(!F.isDeclaration() && "Cannot lint external functions");
 | |
| 
 | |
|   FunctionPassManager FPM(F.getParent());
 | |
|   Lint *V = new Lint();
 | |
|   FPM.add(V);
 | |
|   FPM.run(F);
 | |
| }
 | |
| 
 | |
| /// lintModule - Check a module for errors, printing messages on stderr.
 | |
| ///
 | |
| void llvm::lintModule(const Module &M) {
 | |
|   PassManager PM;
 | |
|   Lint *V = new Lint();
 | |
|   PM.add(V);
 | |
|   PM.run(const_cast<Module&>(M));
 | |
| }
 |