mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224075 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			206 lines
		
	
	
		
			7.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			206 lines
		
	
	
		
			7.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file defines the X86 specific subclass of TargetMachine.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "X86TargetMachine.h"
 | 
						|
#include "X86.h"
 | 
						|
#include "X86TargetObjectFile.h"
 | 
						|
#include "llvm/CodeGen/Passes.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/PassManager.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/FormattedStream.h"
 | 
						|
#include "llvm/Support/TargetRegistry.h"
 | 
						|
#include "llvm/Target/TargetOptions.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
extern "C" void LLVMInitializeX86Target() {
 | 
						|
  // Register the target.
 | 
						|
  RegisterTargetMachine<X86TargetMachine> X(TheX86_32Target);
 | 
						|
  RegisterTargetMachine<X86TargetMachine> Y(TheX86_64Target);
 | 
						|
}
 | 
						|
 | 
						|
static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
 | 
						|
  if (TT.isOSBinFormatMachO()) {
 | 
						|
    if (TT.getArch() == Triple::x86_64)
 | 
						|
      return make_unique<X86_64MachoTargetObjectFile>();
 | 
						|
    return make_unique<TargetLoweringObjectFileMachO>();
 | 
						|
  }
 | 
						|
 | 
						|
  if (TT.isOSLinux())
 | 
						|
    return make_unique<X86LinuxTargetObjectFile>();
 | 
						|
  if (TT.isOSBinFormatELF())
 | 
						|
    return make_unique<TargetLoweringObjectFileELF>();
 | 
						|
  if (TT.isKnownWindowsMSVCEnvironment())
 | 
						|
    return make_unique<X86WindowsTargetObjectFile>();
 | 
						|
  if (TT.isOSBinFormatCOFF())
 | 
						|
    return make_unique<TargetLoweringObjectFileCOFF>();
 | 
						|
  llvm_unreachable("unknown subtarget type");
 | 
						|
}
 | 
						|
 | 
						|
/// X86TargetMachine ctor - Create an X86 target.
 | 
						|
///
 | 
						|
X86TargetMachine::X86TargetMachine(const Target &T, StringRef TT, StringRef CPU,
 | 
						|
                                   StringRef FS, const TargetOptions &Options,
 | 
						|
                                   Reloc::Model RM, CodeModel::Model CM,
 | 
						|
                                   CodeGenOpt::Level OL)
 | 
						|
    : LLVMTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL),
 | 
						|
      TLOF(createTLOF(Triple(getTargetTriple()))),
 | 
						|
      Subtarget(TT, CPU, FS, *this, Options.StackAlignmentOverride) {
 | 
						|
  // default to hard float ABI
 | 
						|
  if (Options.FloatABIType == FloatABI::Default)
 | 
						|
    this->Options.FloatABIType = FloatABI::Hard;
 | 
						|
 | 
						|
  // Windows stack unwinder gets confused when execution flow "falls through"
 | 
						|
  // after a call to 'noreturn' function.
 | 
						|
  // To prevent that, we emit a trap for 'unreachable' IR instructions.
 | 
						|
  // (which on X86, happens to be the 'ud2' instruction)
 | 
						|
  if (Subtarget.isTargetWin64())
 | 
						|
    this->Options.TrapUnreachable = true;
 | 
						|
 | 
						|
  initAsmInfo();
 | 
						|
}
 | 
						|
 | 
						|
X86TargetMachine::~X86TargetMachine() {}
 | 
						|
 | 
						|
const X86Subtarget *
 | 
						|
X86TargetMachine::getSubtargetImpl(const Function &F) const {
 | 
						|
  AttributeSet FnAttrs = F.getAttributes();
 | 
						|
  Attribute CPUAttr =
 | 
						|
      FnAttrs.getAttribute(AttributeSet::FunctionIndex, "target-cpu");
 | 
						|
  Attribute FSAttr =
 | 
						|
      FnAttrs.getAttribute(AttributeSet::FunctionIndex, "target-features");
 | 
						|
 | 
						|
  std::string CPU = !CPUAttr.hasAttribute(Attribute::None)
 | 
						|
                        ? CPUAttr.getValueAsString().str()
 | 
						|
                        : TargetCPU;
 | 
						|
  std::string FS = !FSAttr.hasAttribute(Attribute::None)
 | 
						|
                       ? FSAttr.getValueAsString().str()
 | 
						|
                       : TargetFS;
 | 
						|
 | 
						|
  // FIXME: This is related to the code below to reset the target options,
 | 
						|
  // we need to know whether or not the soft float flag is set on the
 | 
						|
  // function before we can generate a subtarget. We also need to use
 | 
						|
  // it as a key for the subtarget since that can be the only difference
 | 
						|
  // between two functions.
 | 
						|
  Attribute SFAttr =
 | 
						|
      FnAttrs.getAttribute(AttributeSet::FunctionIndex, "use-soft-float");
 | 
						|
  bool SoftFloat = !SFAttr.hasAttribute(Attribute::None)
 | 
						|
                       ? SFAttr.getValueAsString() == "true"
 | 
						|
                       : Options.UseSoftFloat;
 | 
						|
 | 
						|
  auto &I = SubtargetMap[CPU + FS + (SoftFloat ? "use-soft-float=true"
 | 
						|
                                               : "use-soft-float=false")];
 | 
						|
  if (!I) {
 | 
						|
    // This needs to be done before we create a new subtarget since any
 | 
						|
    // creation will depend on the TM and the code generation flags on the
 | 
						|
    // function that reside in TargetOptions.
 | 
						|
    resetTargetOptions(F);
 | 
						|
    I = llvm::make_unique<X86Subtarget>(TargetTriple, CPU, FS, *this,
 | 
						|
                                        Options.StackAlignmentOverride);
 | 
						|
  }
 | 
						|
  return I.get();
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Command line options for x86
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
static cl::opt<bool>
 | 
						|
UseVZeroUpper("x86-use-vzeroupper", cl::Hidden,
 | 
						|
  cl::desc("Minimize AVX to SSE transition penalty"),
 | 
						|
  cl::init(true));
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// X86 Analysis Pass Setup
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
void X86TargetMachine::addAnalysisPasses(PassManagerBase &PM) {
 | 
						|
  // Add first the target-independent BasicTTI pass, then our X86 pass. This
 | 
						|
  // allows the X86 pass to delegate to the target independent layer when
 | 
						|
  // appropriate.
 | 
						|
  PM.add(createBasicTargetTransformInfoPass(this));
 | 
						|
  PM.add(createX86TargetTransformInfoPass(this));
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Pass Pipeline Configuration
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
/// X86 Code Generator Pass Configuration Options.
 | 
						|
class X86PassConfig : public TargetPassConfig {
 | 
						|
public:
 | 
						|
  X86PassConfig(X86TargetMachine *TM, PassManagerBase &PM)
 | 
						|
    : TargetPassConfig(TM, PM) {}
 | 
						|
 | 
						|
  X86TargetMachine &getX86TargetMachine() const {
 | 
						|
    return getTM<X86TargetMachine>();
 | 
						|
  }
 | 
						|
 | 
						|
  const X86Subtarget &getX86Subtarget() const {
 | 
						|
    return *getX86TargetMachine().getSubtargetImpl();
 | 
						|
  }
 | 
						|
 | 
						|
  void addIRPasses() override;
 | 
						|
  bool addInstSelector() override;
 | 
						|
  bool addILPOpts() override;
 | 
						|
  void addPostRegAlloc() override;
 | 
						|
  void addPreEmitPass() override;
 | 
						|
};
 | 
						|
} // namespace
 | 
						|
 | 
						|
TargetPassConfig *X86TargetMachine::createPassConfig(PassManagerBase &PM) {
 | 
						|
  return new X86PassConfig(this, PM);
 | 
						|
}
 | 
						|
 | 
						|
void X86PassConfig::addIRPasses() {
 | 
						|
  addPass(createAtomicExpandPass(&getX86TargetMachine()));
 | 
						|
 | 
						|
  TargetPassConfig::addIRPasses();
 | 
						|
}
 | 
						|
 | 
						|
bool X86PassConfig::addInstSelector() {
 | 
						|
  // Install an instruction selector.
 | 
						|
  addPass(createX86ISelDag(getX86TargetMachine(), getOptLevel()));
 | 
						|
 | 
						|
  // For ELF, cleanup any local-dynamic TLS accesses.
 | 
						|
  if (getX86Subtarget().isTargetELF() && getOptLevel() != CodeGenOpt::None)
 | 
						|
    addPass(createCleanupLocalDynamicTLSPass());
 | 
						|
 | 
						|
  addPass(createX86GlobalBaseRegPass());
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool X86PassConfig::addILPOpts() {
 | 
						|
  addPass(&EarlyIfConverterID);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void X86PassConfig::addPostRegAlloc() {
 | 
						|
  addPass(createX86FloatingPointStackifierPass());
 | 
						|
}
 | 
						|
 | 
						|
void X86PassConfig::addPreEmitPass() {
 | 
						|
  if (getOptLevel() != CodeGenOpt::None && getX86Subtarget().hasSSE2())
 | 
						|
    addPass(createExecutionDependencyFixPass(&X86::VR128RegClass));
 | 
						|
 | 
						|
  if (UseVZeroUpper)
 | 
						|
    addPass(createX86IssueVZeroUpperPass());
 | 
						|
 | 
						|
  if (getOptLevel() != CodeGenOpt::None) {
 | 
						|
    addPass(createX86PadShortFunctions());
 | 
						|
    addPass(createX86FixupLEAs());
 | 
						|
  }
 | 
						|
}
 |