mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208839 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			729 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			729 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- LazyCallGraph.cpp - Analysis of a Module's call graph --------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Analysis/LazyCallGraph.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/IR/CallSite.h"
 | 
						|
#include "llvm/IR/InstVisitor.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/PassManager.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "lcg"
 | 
						|
 | 
						|
static void findCallees(
 | 
						|
    SmallVectorImpl<Constant *> &Worklist, SmallPtrSetImpl<Constant *> &Visited,
 | 
						|
    SmallVectorImpl<PointerUnion<Function *, LazyCallGraph::Node *>> &Callees,
 | 
						|
    DenseMap<Function *, size_t> &CalleeIndexMap) {
 | 
						|
  while (!Worklist.empty()) {
 | 
						|
    Constant *C = Worklist.pop_back_val();
 | 
						|
 | 
						|
    if (Function *F = dyn_cast<Function>(C)) {
 | 
						|
      // Note that we consider *any* function with a definition to be a viable
 | 
						|
      // edge. Even if the function's definition is subject to replacement by
 | 
						|
      // some other module (say, a weak definition) there may still be
 | 
						|
      // optimizations which essentially speculate based on the definition and
 | 
						|
      // a way to check that the specific definition is in fact the one being
 | 
						|
      // used. For example, this could be done by moving the weak definition to
 | 
						|
      // a strong (internal) definition and making the weak definition be an
 | 
						|
      // alias. Then a test of the address of the weak function against the new
 | 
						|
      // strong definition's address would be an effective way to determine the
 | 
						|
      // safety of optimizing a direct call edge.
 | 
						|
      if (!F->isDeclaration() &&
 | 
						|
          CalleeIndexMap.insert(std::make_pair(F, Callees.size())).second) {
 | 
						|
        DEBUG(dbgs() << "    Added callable function: " << F->getName()
 | 
						|
                     << "\n");
 | 
						|
        Callees.push_back(F);
 | 
						|
      }
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    for (Value *Op : C->operand_values())
 | 
						|
      if (Visited.insert(cast<Constant>(Op)))
 | 
						|
        Worklist.push_back(cast<Constant>(Op));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
LazyCallGraph::Node::Node(LazyCallGraph &G, Function &F)
 | 
						|
    : G(&G), F(F), DFSNumber(0), LowLink(0) {
 | 
						|
  DEBUG(dbgs() << "  Adding functions called by '" << F.getName()
 | 
						|
               << "' to the graph.\n");
 | 
						|
 | 
						|
  SmallVector<Constant *, 16> Worklist;
 | 
						|
  SmallPtrSet<Constant *, 16> Visited;
 | 
						|
  // Find all the potential callees in this function. First walk the
 | 
						|
  // instructions and add every operand which is a constant to the worklist.
 | 
						|
  for (BasicBlock &BB : F)
 | 
						|
    for (Instruction &I : BB)
 | 
						|
      for (Value *Op : I.operand_values())
 | 
						|
        if (Constant *C = dyn_cast<Constant>(Op))
 | 
						|
          if (Visited.insert(C))
 | 
						|
            Worklist.push_back(C);
 | 
						|
 | 
						|
  // We've collected all the constant (and thus potentially function or
 | 
						|
  // function containing) operands to all of the instructions in the function.
 | 
						|
  // Process them (recursively) collecting every function found.
 | 
						|
  findCallees(Worklist, Visited, Callees, CalleeIndexMap);
 | 
						|
}
 | 
						|
 | 
						|
void LazyCallGraph::Node::insertEdgeInternal(Function &Callee) {
 | 
						|
  if (Node *N = G->lookup(Callee))
 | 
						|
    return insertEdgeInternal(*N);
 | 
						|
 | 
						|
  CalleeIndexMap.insert(std::make_pair(&Callee, Callees.size()));
 | 
						|
  Callees.push_back(&Callee);
 | 
						|
}
 | 
						|
 | 
						|
void LazyCallGraph::Node::insertEdgeInternal(Node &CalleeN) {
 | 
						|
  CalleeIndexMap.insert(std::make_pair(&CalleeN.getFunction(), Callees.size()));
 | 
						|
  Callees.push_back(&CalleeN);
 | 
						|
}
 | 
						|
 | 
						|
void LazyCallGraph::Node::removeEdgeInternal(Function &Callee) {
 | 
						|
  auto IndexMapI = CalleeIndexMap.find(&Callee);
 | 
						|
  assert(IndexMapI != CalleeIndexMap.end() &&
 | 
						|
         "Callee not in the callee set for this caller?");
 | 
						|
 | 
						|
  Callees[IndexMapI->second] = nullptr;
 | 
						|
  CalleeIndexMap.erase(IndexMapI);
 | 
						|
}
 | 
						|
 | 
						|
LazyCallGraph::LazyCallGraph(Module &M) : NextDFSNumber(0) {
 | 
						|
  DEBUG(dbgs() << "Building CG for module: " << M.getModuleIdentifier()
 | 
						|
               << "\n");
 | 
						|
  for (Function &F : M)
 | 
						|
    if (!F.isDeclaration() && !F.hasLocalLinkage())
 | 
						|
      if (EntryIndexMap.insert(std::make_pair(&F, EntryNodes.size())).second) {
 | 
						|
        DEBUG(dbgs() << "  Adding '" << F.getName()
 | 
						|
                     << "' to entry set of the graph.\n");
 | 
						|
        EntryNodes.push_back(&F);
 | 
						|
      }
 | 
						|
 | 
						|
  // Now add entry nodes for functions reachable via initializers to globals.
 | 
						|
  SmallVector<Constant *, 16> Worklist;
 | 
						|
  SmallPtrSet<Constant *, 16> Visited;
 | 
						|
  for (GlobalVariable &GV : M.globals())
 | 
						|
    if (GV.hasInitializer())
 | 
						|
      if (Visited.insert(GV.getInitializer()))
 | 
						|
        Worklist.push_back(GV.getInitializer());
 | 
						|
 | 
						|
  DEBUG(dbgs() << "  Adding functions referenced by global initializers to the "
 | 
						|
                  "entry set.\n");
 | 
						|
  findCallees(Worklist, Visited, EntryNodes, EntryIndexMap);
 | 
						|
 | 
						|
  for (auto &Entry : EntryNodes) {
 | 
						|
    assert(!Entry.isNull() &&
 | 
						|
           "We can't have removed edges before we finish the constructor!");
 | 
						|
    if (Function *F = Entry.dyn_cast<Function *>())
 | 
						|
      SCCEntryNodes.push_back(F);
 | 
						|
    else
 | 
						|
      SCCEntryNodes.push_back(&Entry.get<Node *>()->getFunction());
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
LazyCallGraph::LazyCallGraph(LazyCallGraph &&G)
 | 
						|
    : BPA(std::move(G.BPA)), NodeMap(std::move(G.NodeMap)),
 | 
						|
      EntryNodes(std::move(G.EntryNodes)),
 | 
						|
      EntryIndexMap(std::move(G.EntryIndexMap)), SCCBPA(std::move(G.SCCBPA)),
 | 
						|
      SCCMap(std::move(G.SCCMap)), LeafSCCs(std::move(G.LeafSCCs)),
 | 
						|
      DFSStack(std::move(G.DFSStack)),
 | 
						|
      SCCEntryNodes(std::move(G.SCCEntryNodes)),
 | 
						|
      NextDFSNumber(G.NextDFSNumber) {
 | 
						|
  updateGraphPtrs();
 | 
						|
}
 | 
						|
 | 
						|
LazyCallGraph &LazyCallGraph::operator=(LazyCallGraph &&G) {
 | 
						|
  BPA = std::move(G.BPA);
 | 
						|
  NodeMap = std::move(G.NodeMap);
 | 
						|
  EntryNodes = std::move(G.EntryNodes);
 | 
						|
  EntryIndexMap = std::move(G.EntryIndexMap);
 | 
						|
  SCCBPA = std::move(G.SCCBPA);
 | 
						|
  SCCMap = std::move(G.SCCMap);
 | 
						|
  LeafSCCs = std::move(G.LeafSCCs);
 | 
						|
  DFSStack = std::move(G.DFSStack);
 | 
						|
  SCCEntryNodes = std::move(G.SCCEntryNodes);
 | 
						|
  NextDFSNumber = G.NextDFSNumber;
 | 
						|
  updateGraphPtrs();
 | 
						|
  return *this;
 | 
						|
}
 | 
						|
 | 
						|
void LazyCallGraph::SCC::insert(Node &N) {
 | 
						|
  N.DFSNumber = N.LowLink = -1;
 | 
						|
  Nodes.push_back(&N);
 | 
						|
  G->SCCMap[&N] = this;
 | 
						|
}
 | 
						|
 | 
						|
bool LazyCallGraph::SCC::isDescendantOf(const SCC &C) const {
 | 
						|
  // Walk up the parents of this SCC and verify that we eventually find C.
 | 
						|
  SmallVector<const SCC *, 4> AncestorWorklist;
 | 
						|
  AncestorWorklist.push_back(this);
 | 
						|
  do {
 | 
						|
    const SCC *AncestorC = AncestorWorklist.pop_back_val();
 | 
						|
    if (AncestorC->isChildOf(C))
 | 
						|
      return true;
 | 
						|
    for (const SCC *ParentC : AncestorC->ParentSCCs)
 | 
						|
      AncestorWorklist.push_back(ParentC);
 | 
						|
  } while (!AncestorWorklist.empty());
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void LazyCallGraph::SCC::insertIntraSCCEdge(Node &CallerN, Node &CalleeN) {
 | 
						|
  // First insert it into the caller.
 | 
						|
  CallerN.insertEdgeInternal(CalleeN);
 | 
						|
 | 
						|
  assert(G->SCCMap.lookup(&CallerN) == this && "Caller must be in this SCC.");
 | 
						|
  assert(G->SCCMap.lookup(&CalleeN) == this && "Callee must be in this SCC.");
 | 
						|
 | 
						|
  // Nothing changes about this SCC or any other.
 | 
						|
}
 | 
						|
 | 
						|
void LazyCallGraph::SCC::insertOutgoingEdge(Node &CallerN, Node &CalleeN) {
 | 
						|
  // First insert it into the caller.
 | 
						|
  CallerN.insertEdgeInternal(CalleeN);
 | 
						|
 | 
						|
  assert(G->SCCMap.lookup(&CallerN) == this && "Caller must be in this SCC.");
 | 
						|
 | 
						|
  SCC &CalleeC = *G->SCCMap.lookup(&CalleeN);
 | 
						|
  assert(&CalleeC != this && "Callee must not be in this SCC.");
 | 
						|
  assert(CalleeC.isDescendantOf(*this) &&
 | 
						|
         "Callee must be a descendant of the Caller.");
 | 
						|
 | 
						|
  // The only change required is to add this SCC to the parent set of the callee.
 | 
						|
  CalleeC.ParentSCCs.insert(this);
 | 
						|
}
 | 
						|
 | 
						|
SmallVector<LazyCallGraph::SCC *, 1>
 | 
						|
LazyCallGraph::SCC::insertIncomingEdge(Node &CallerN, Node &CalleeN) {
 | 
						|
  // First insert it into the caller.
 | 
						|
  CallerN.insertEdgeInternal(CalleeN);
 | 
						|
 | 
						|
  assert(G->SCCMap.lookup(&CalleeN) == this && "Callee must be in this SCC.");
 | 
						|
 | 
						|
  SCC &CallerC = *G->SCCMap.lookup(&CallerN);
 | 
						|
  assert(&CallerC != this && "Caller must not be in this SCC.");
 | 
						|
  assert(CallerC.isDescendantOf(*this) &&
 | 
						|
         "Caller must be a descendant of the Callee.");
 | 
						|
 | 
						|
  // The algorithm we use for merging SCCs based on the cycle introduced here
 | 
						|
  // is to walk the SCC inverted DAG formed by the parent SCC sets. The inverse
 | 
						|
  // graph has the same cycle properties as the actual DAG of the SCCs, and
 | 
						|
  // when forming SCCs lazily by a DFS, the bottom of the graph won't exist in
 | 
						|
  // many cases which should prune the search space.
 | 
						|
  //
 | 
						|
  // FIXME: We can get this pruning behavior even after the incremental SCC
 | 
						|
  // formation by leaving behind (conservative) DFS numberings in the nodes,
 | 
						|
  // and pruning the search with them. These would need to be cleverly updated
 | 
						|
  // during the removal of intra-SCC edges, but could be preserved
 | 
						|
  // conservatively.
 | 
						|
 | 
						|
  // The set of SCCs that are connected to the caller, and thus will
 | 
						|
  // participate in the merged connected component.
 | 
						|
  SmallPtrSet<SCC *, 8> ConnectedSCCs;
 | 
						|
  ConnectedSCCs.insert(this);
 | 
						|
  ConnectedSCCs.insert(&CallerC);
 | 
						|
 | 
						|
  // We build up a DFS stack of the parents chains.
 | 
						|
  SmallVector<std::pair<SCC *, SCC::parent_iterator>, 8> DFSSCCs;
 | 
						|
  SmallPtrSet<SCC *, 8> VisitedSCCs;
 | 
						|
  int ConnectedDepth = -1;
 | 
						|
  SCC *C = this;
 | 
						|
  parent_iterator I = parent_begin(), E = parent_end();
 | 
						|
  for (;;) {
 | 
						|
    while (I != E) {
 | 
						|
      SCC &ParentSCC = *I++;
 | 
						|
 | 
						|
      // If we have already processed this parent SCC, skip it, and remember
 | 
						|
      // whether it was connected so we don't have to check the rest of the
 | 
						|
      // stack. This also handles when we reach a child of the 'this' SCC (the
 | 
						|
      // callee) which terminates the search.
 | 
						|
      if (ConnectedSCCs.count(&ParentSCC)) {
 | 
						|
        ConnectedDepth = std::max<int>(ConnectedDepth, DFSSCCs.size());
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      if (VisitedSCCs.count(&ParentSCC))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // We fully explore the depth-first space, adding nodes to the connected
 | 
						|
      // set only as we pop them off, so "recurse" by rotating to the parent.
 | 
						|
      DFSSCCs.push_back(std::make_pair(C, I));
 | 
						|
      C = &ParentSCC;
 | 
						|
      I = ParentSCC.parent_begin();
 | 
						|
      E = ParentSCC.parent_end();
 | 
						|
    }
 | 
						|
 | 
						|
    // If we've found a connection anywhere below this point on the stack (and
 | 
						|
    // thus up the parent graph from the caller), the current node needs to be
 | 
						|
    // added to the connected set now that we've processed all of its parents.
 | 
						|
    if ((int)DFSSCCs.size() == ConnectedDepth) {
 | 
						|
      --ConnectedDepth; // We're finished with this connection.
 | 
						|
      ConnectedSCCs.insert(C);
 | 
						|
    } else {
 | 
						|
      // Otherwise remember that its parents don't ever connect.
 | 
						|
      assert(ConnectedDepth < (int)DFSSCCs.size() &&
 | 
						|
             "Cannot have a connected depth greater than the DFS depth!");
 | 
						|
      VisitedSCCs.insert(C);
 | 
						|
    }
 | 
						|
 | 
						|
    if (DFSSCCs.empty())
 | 
						|
      break; // We've walked all the parents of the caller transitively.
 | 
						|
 | 
						|
    // Pop off the prior node and position to unwind the depth first recursion.
 | 
						|
    std::tie(C, I) = DFSSCCs.pop_back_val();
 | 
						|
    E = C->parent_end();
 | 
						|
  }
 | 
						|
 | 
						|
  // Now that we have identified all of the SCCs which need to be merged into
 | 
						|
  // a connected set with the inserted edge, merge all of them into this SCC.
 | 
						|
  // FIXME: This operation currently creates ordering stability problems
 | 
						|
  // because we don't use stably ordered containers for the parent SCCs or the
 | 
						|
  // connected SCCs.
 | 
						|
  unsigned NewNodeBeginIdx = Nodes.size();
 | 
						|
  for (SCC *C : ConnectedSCCs) {
 | 
						|
    if (C == this)
 | 
						|
      continue;
 | 
						|
    for (SCC *ParentC : C->ParentSCCs)
 | 
						|
      if (!ConnectedSCCs.count(ParentC))
 | 
						|
        ParentSCCs.insert(ParentC);
 | 
						|
    C->ParentSCCs.clear();
 | 
						|
 | 
						|
    for (Node *N : *C) {
 | 
						|
      for (Node &ChildN : *N) {
 | 
						|
        SCC &ChildC = *G->SCCMap.lookup(&ChildN);
 | 
						|
        if (&ChildC != C)
 | 
						|
          ChildC.ParentSCCs.erase(C);
 | 
						|
      }
 | 
						|
      G->SCCMap[N] = this;
 | 
						|
      Nodes.push_back(N);
 | 
						|
    }
 | 
						|
    C->Nodes.clear();
 | 
						|
  }
 | 
						|
  for (auto I = Nodes.begin() + NewNodeBeginIdx, E = Nodes.end(); I != E; ++I)
 | 
						|
    for (Node &ChildN : **I) {
 | 
						|
      SCC &ChildC = *G->SCCMap.lookup(&ChildN);
 | 
						|
      if (&ChildC != this)
 | 
						|
        ChildC.ParentSCCs.insert(this);
 | 
						|
    }
 | 
						|
 | 
						|
  // We return the list of SCCs which were merged so that callers can
 | 
						|
  // invalidate any data they have associated with those SCCs. Note that these
 | 
						|
  // SCCs are no longer in an interesting state (they are totally empty) but
 | 
						|
  // the pointers will remain stable for the life of the graph itself.
 | 
						|
  return SmallVector<SCC *, 1>(ConnectedSCCs.begin(), ConnectedSCCs.end());
 | 
						|
}
 | 
						|
 | 
						|
void LazyCallGraph::SCC::removeInterSCCEdge(Node &CallerN, Node &CalleeN) {
 | 
						|
  // First remove it from the node.
 | 
						|
  CallerN.removeEdgeInternal(CalleeN.getFunction());
 | 
						|
 | 
						|
  assert(G->SCCMap.lookup(&CallerN) == this &&
 | 
						|
         "The caller must be a member of this SCC.");
 | 
						|
 | 
						|
  SCC &CalleeC = *G->SCCMap.lookup(&CalleeN);
 | 
						|
  assert(&CalleeC != this &&
 | 
						|
         "This API only supports the rmoval of inter-SCC edges.");
 | 
						|
 | 
						|
  assert(std::find(G->LeafSCCs.begin(), G->LeafSCCs.end(), this) ==
 | 
						|
             G->LeafSCCs.end() &&
 | 
						|
         "Cannot have a leaf SCC caller with a different SCC callee.");
 | 
						|
 | 
						|
  bool HasOtherCallToCalleeC = false;
 | 
						|
  bool HasOtherCallOutsideSCC = false;
 | 
						|
  for (Node *N : *this) {
 | 
						|
    for (Node &OtherCalleeN : *N) {
 | 
						|
      SCC &OtherCalleeC = *G->SCCMap.lookup(&OtherCalleeN);
 | 
						|
      if (&OtherCalleeC == &CalleeC) {
 | 
						|
        HasOtherCallToCalleeC = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      if (&OtherCalleeC != this)
 | 
						|
        HasOtherCallOutsideSCC = true;
 | 
						|
    }
 | 
						|
    if (HasOtherCallToCalleeC)
 | 
						|
      break;
 | 
						|
  }
 | 
						|
  // Because the SCCs form a DAG, deleting such an edge cannot change the set
 | 
						|
  // of SCCs in the graph. However, it may cut an edge of the SCC DAG, making
 | 
						|
  // the caller no longer a parent of the callee. Walk the other call edges
 | 
						|
  // in the caller to tell.
 | 
						|
  if (!HasOtherCallToCalleeC) {
 | 
						|
    bool Removed = CalleeC.ParentSCCs.erase(this);
 | 
						|
    (void)Removed;
 | 
						|
    assert(Removed &&
 | 
						|
           "Did not find the caller SCC in the callee SCC's parent list!");
 | 
						|
 | 
						|
    // It may orphan an SCC if it is the last edge reaching it, but that does
 | 
						|
    // not violate any invariants of the graph.
 | 
						|
    if (CalleeC.ParentSCCs.empty())
 | 
						|
      DEBUG(dbgs() << "LCG: Update removing " << CallerN.getFunction().getName()
 | 
						|
                   << " -> " << CalleeN.getFunction().getName()
 | 
						|
                   << " edge orphaned the callee's SCC!\n");
 | 
						|
  }
 | 
						|
 | 
						|
  // It may make the Caller SCC a leaf SCC.
 | 
						|
  if (!HasOtherCallOutsideSCC)
 | 
						|
    G->LeafSCCs.push_back(this);
 | 
						|
}
 | 
						|
 | 
						|
void LazyCallGraph::SCC::internalDFS(
 | 
						|
    SmallVectorImpl<std::pair<Node *, Node::iterator>> &DFSStack,
 | 
						|
    SmallVectorImpl<Node *> &PendingSCCStack, Node *N,
 | 
						|
    SmallVectorImpl<SCC *> &ResultSCCs) {
 | 
						|
  Node::iterator I = N->begin();
 | 
						|
  N->LowLink = N->DFSNumber = 1;
 | 
						|
  int NextDFSNumber = 2;
 | 
						|
  for (;;) {
 | 
						|
    assert(N->DFSNumber != 0 && "We should always assign a DFS number "
 | 
						|
                                "before processing a node.");
 | 
						|
 | 
						|
    // We simulate recursion by popping out of the nested loop and continuing.
 | 
						|
    Node::iterator E = N->end();
 | 
						|
    while (I != E) {
 | 
						|
      Node &ChildN = *I;
 | 
						|
      if (SCC *ChildSCC = G->SCCMap.lookup(&ChildN)) {
 | 
						|
        // Check if we have reached a node in the new (known connected) set of
 | 
						|
        // this SCC. If so, the entire stack is necessarily in that set and we
 | 
						|
        // can re-start.
 | 
						|
        if (ChildSCC == this) {
 | 
						|
          insert(*N);
 | 
						|
          while (!PendingSCCStack.empty())
 | 
						|
            insert(*PendingSCCStack.pop_back_val());
 | 
						|
          while (!DFSStack.empty())
 | 
						|
            insert(*DFSStack.pop_back_val().first);
 | 
						|
          return;
 | 
						|
        }
 | 
						|
 | 
						|
        // If this child isn't currently in this SCC, no need to process it.
 | 
						|
        // However, we do need to remove this SCC from its SCC's parent set.
 | 
						|
        ChildSCC->ParentSCCs.erase(this);
 | 
						|
        ++I;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      if (ChildN.DFSNumber == 0) {
 | 
						|
        // Mark that we should start at this child when next this node is the
 | 
						|
        // top of the stack. We don't start at the next child to ensure this
 | 
						|
        // child's lowlink is reflected.
 | 
						|
        DFSStack.push_back(std::make_pair(N, I));
 | 
						|
 | 
						|
        // Continue, resetting to the child node.
 | 
						|
        ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++;
 | 
						|
        N = &ChildN;
 | 
						|
        I = ChildN.begin();
 | 
						|
        E = ChildN.end();
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Track the lowest link of the children, if any are still in the stack.
 | 
						|
      // Any child not on the stack will have a LowLink of -1.
 | 
						|
      assert(ChildN.LowLink != 0 &&
 | 
						|
             "Low-link must not be zero with a non-zero DFS number.");
 | 
						|
      if (ChildN.LowLink >= 0 && ChildN.LowLink < N->LowLink)
 | 
						|
        N->LowLink = ChildN.LowLink;
 | 
						|
      ++I;
 | 
						|
    }
 | 
						|
 | 
						|
    if (N->LowLink == N->DFSNumber) {
 | 
						|
      ResultSCCs.push_back(G->formSCC(N, PendingSCCStack));
 | 
						|
      if (DFSStack.empty())
 | 
						|
        return;
 | 
						|
    } else {
 | 
						|
      // At this point we know that N cannot ever be an SCC root. Its low-link
 | 
						|
      // is not its dfs-number, and we've processed all of its children. It is
 | 
						|
      // just sitting here waiting until some node further down the stack gets
 | 
						|
      // low-link == dfs-number and pops it off as well. Move it to the pending
 | 
						|
      // stack which is pulled into the next SCC to be formed.
 | 
						|
      PendingSCCStack.push_back(N);
 | 
						|
 | 
						|
      assert(!DFSStack.empty() && "We shouldn't have an empty stack!");
 | 
						|
    }
 | 
						|
 | 
						|
    N = DFSStack.back().first;
 | 
						|
    I = DFSStack.back().second;
 | 
						|
    DFSStack.pop_back();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
SmallVector<LazyCallGraph::SCC *, 1>
 | 
						|
LazyCallGraph::SCC::removeIntraSCCEdge(Node &CallerN,
 | 
						|
                                       Node &CalleeN) {
 | 
						|
  // First remove it from the node.
 | 
						|
  CallerN.removeEdgeInternal(CalleeN.getFunction());
 | 
						|
 | 
						|
  // We return a list of the resulting *new* SCCs in postorder.
 | 
						|
  SmallVector<SCC *, 1> ResultSCCs;
 | 
						|
 | 
						|
  // Direct recursion doesn't impact the SCC graph at all.
 | 
						|
  if (&CallerN == &CalleeN)
 | 
						|
    return ResultSCCs;
 | 
						|
 | 
						|
  // The worklist is every node in the original SCC.
 | 
						|
  SmallVector<Node *, 1> Worklist;
 | 
						|
  Worklist.swap(Nodes);
 | 
						|
  for (Node *N : Worklist) {
 | 
						|
    // The nodes formerly in this SCC are no longer in any SCC.
 | 
						|
    N->DFSNumber = 0;
 | 
						|
    N->LowLink = 0;
 | 
						|
    G->SCCMap.erase(N);
 | 
						|
  }
 | 
						|
  assert(Worklist.size() > 1 && "We have to have at least two nodes to have an "
 | 
						|
                                "edge between them that is within the SCC.");
 | 
						|
 | 
						|
  // The callee can already reach every node in this SCC (by definition). It is
 | 
						|
  // the only node we know will stay inside this SCC. Everything which
 | 
						|
  // transitively reaches Callee will also remain in the SCC. To model this we
 | 
						|
  // incrementally add any chain of nodes which reaches something in the new
 | 
						|
  // node set to the new node set. This short circuits one side of the Tarjan's
 | 
						|
  // walk.
 | 
						|
  insert(CalleeN);
 | 
						|
 | 
						|
  // We're going to do a full mini-Tarjan's walk using a local stack here.
 | 
						|
  SmallVector<std::pair<Node *, Node::iterator>, 4> DFSStack;
 | 
						|
  SmallVector<Node *, 4> PendingSCCStack;
 | 
						|
  do {
 | 
						|
    Node *N = Worklist.pop_back_val();
 | 
						|
    if (N->DFSNumber == 0)
 | 
						|
      internalDFS(DFSStack, PendingSCCStack, N, ResultSCCs);
 | 
						|
 | 
						|
    assert(DFSStack.empty() && "Didn't flush the entire DFS stack!");
 | 
						|
    assert(PendingSCCStack.empty() && "Didn't flush all pending SCC nodes!");
 | 
						|
  } while (!Worklist.empty());
 | 
						|
 | 
						|
  // Now we need to reconnect the current SCC to the graph.
 | 
						|
  bool IsLeafSCC = true;
 | 
						|
  for (Node *N : Nodes) {
 | 
						|
    for (Node &ChildN : *N) {
 | 
						|
      SCC &ChildSCC = *G->SCCMap.lookup(&ChildN);
 | 
						|
      if (&ChildSCC == this)
 | 
						|
        continue;
 | 
						|
      ChildSCC.ParentSCCs.insert(this);
 | 
						|
      IsLeafSCC = false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
#ifndef NDEBUG
 | 
						|
  if (!ResultSCCs.empty())
 | 
						|
    assert(!IsLeafSCC && "This SCC cannot be a leaf as we have split out new "
 | 
						|
                         "SCCs by removing this edge.");
 | 
						|
  if (!std::any_of(G->LeafSCCs.begin(), G->LeafSCCs.end(),
 | 
						|
                   [&](SCC *C) { return C == this; }))
 | 
						|
    assert(!IsLeafSCC && "This SCC cannot be a leaf as it already had child "
 | 
						|
                         "SCCs before we removed this edge.");
 | 
						|
#endif
 | 
						|
  // If this SCC stopped being a leaf through this edge removal, remove it from
 | 
						|
  // the leaf SCC list.
 | 
						|
  if (!IsLeafSCC && !ResultSCCs.empty())
 | 
						|
    G->LeafSCCs.erase(std::remove(G->LeafSCCs.begin(), G->LeafSCCs.end(), this),
 | 
						|
                     G->LeafSCCs.end());
 | 
						|
 | 
						|
  // Return the new list of SCCs.
 | 
						|
  return ResultSCCs;
 | 
						|
}
 | 
						|
 | 
						|
void LazyCallGraph::insertEdge(Node &CallerN, Function &Callee) {
 | 
						|
  assert(SCCMap.empty() && DFSStack.empty() &&
 | 
						|
         "This method cannot be called after SCCs have been formed!");
 | 
						|
 | 
						|
  return CallerN.insertEdgeInternal(Callee);
 | 
						|
}
 | 
						|
 | 
						|
void LazyCallGraph::removeEdge(Node &CallerN, Function &Callee) {
 | 
						|
  assert(SCCMap.empty() && DFSStack.empty() &&
 | 
						|
         "This method cannot be called after SCCs have been formed!");
 | 
						|
 | 
						|
  return CallerN.removeEdgeInternal(Callee);
 | 
						|
}
 | 
						|
 | 
						|
LazyCallGraph::Node &LazyCallGraph::insertInto(Function &F, Node *&MappedN) {
 | 
						|
  return *new (MappedN = BPA.Allocate()) Node(*this, F);
 | 
						|
}
 | 
						|
 | 
						|
void LazyCallGraph::updateGraphPtrs() {
 | 
						|
  // Process all nodes updating the graph pointers.
 | 
						|
  {
 | 
						|
    SmallVector<Node *, 16> Worklist;
 | 
						|
    for (auto &Entry : EntryNodes)
 | 
						|
      if (Node *EntryN = Entry.dyn_cast<Node *>())
 | 
						|
        Worklist.push_back(EntryN);
 | 
						|
 | 
						|
    while (!Worklist.empty()) {
 | 
						|
      Node *N = Worklist.pop_back_val();
 | 
						|
      N->G = this;
 | 
						|
      for (auto &Callee : N->Callees)
 | 
						|
        if (!Callee.isNull())
 | 
						|
          if (Node *CalleeN = Callee.dyn_cast<Node *>())
 | 
						|
            Worklist.push_back(CalleeN);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Process all SCCs updating the graph pointers.
 | 
						|
  {
 | 
						|
    SmallVector<SCC *, 16> Worklist(LeafSCCs.begin(), LeafSCCs.end());
 | 
						|
 | 
						|
    while (!Worklist.empty()) {
 | 
						|
      SCC *C = Worklist.pop_back_val();
 | 
						|
      C->G = this;
 | 
						|
      Worklist.insert(Worklist.end(), C->ParentSCCs.begin(),
 | 
						|
                      C->ParentSCCs.end());
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
LazyCallGraph::SCC *LazyCallGraph::formSCC(Node *RootN,
 | 
						|
                                           SmallVectorImpl<Node *> &NodeStack) {
 | 
						|
  // The tail of the stack is the new SCC. Allocate the SCC and pop the stack
 | 
						|
  // into it.
 | 
						|
  SCC *NewSCC = new (SCCBPA.Allocate()) SCC(*this);
 | 
						|
 | 
						|
  while (!NodeStack.empty() && NodeStack.back()->DFSNumber > RootN->DFSNumber) {
 | 
						|
    assert(NodeStack.back()->LowLink >= RootN->LowLink &&
 | 
						|
           "We cannot have a low link in an SCC lower than its root on the "
 | 
						|
           "stack!");
 | 
						|
    NewSCC->insert(*NodeStack.pop_back_val());
 | 
						|
  }
 | 
						|
  NewSCC->insert(*RootN);
 | 
						|
 | 
						|
  // A final pass over all edges in the SCC (this remains linear as we only
 | 
						|
  // do this once when we build the SCC) to connect it to the parent sets of
 | 
						|
  // its children.
 | 
						|
  bool IsLeafSCC = true;
 | 
						|
  for (Node *SCCN : NewSCC->Nodes)
 | 
						|
    for (Node &SCCChildN : *SCCN) {
 | 
						|
      SCC &ChildSCC = *SCCMap.lookup(&SCCChildN);
 | 
						|
      if (&ChildSCC == NewSCC)
 | 
						|
        continue;
 | 
						|
      ChildSCC.ParentSCCs.insert(NewSCC);
 | 
						|
      IsLeafSCC = false;
 | 
						|
    }
 | 
						|
 | 
						|
  // For the SCCs where we fine no child SCCs, add them to the leaf list.
 | 
						|
  if (IsLeafSCC)
 | 
						|
    LeafSCCs.push_back(NewSCC);
 | 
						|
 | 
						|
  return NewSCC;
 | 
						|
}
 | 
						|
 | 
						|
LazyCallGraph::SCC *LazyCallGraph::getNextSCCInPostOrder() {
 | 
						|
  Node *N;
 | 
						|
  Node::iterator I;
 | 
						|
  if (!DFSStack.empty()) {
 | 
						|
    N = DFSStack.back().first;
 | 
						|
    I = DFSStack.back().second;
 | 
						|
    DFSStack.pop_back();
 | 
						|
  } else {
 | 
						|
    // If we've handled all candidate entry nodes to the SCC forest, we're done.
 | 
						|
    do {
 | 
						|
      if (SCCEntryNodes.empty())
 | 
						|
        return nullptr;
 | 
						|
 | 
						|
      N = &get(*SCCEntryNodes.pop_back_val());
 | 
						|
    } while (N->DFSNumber != 0);
 | 
						|
    I = N->begin();
 | 
						|
    N->LowLink = N->DFSNumber = 1;
 | 
						|
    NextDFSNumber = 2;
 | 
						|
  }
 | 
						|
 | 
						|
  for (;;) {
 | 
						|
    assert(N->DFSNumber != 0 && "We should always assign a DFS number "
 | 
						|
                                "before placing a node onto the stack.");
 | 
						|
 | 
						|
    Node::iterator E = N->end();
 | 
						|
    while (I != E) {
 | 
						|
      Node &ChildN = *I;
 | 
						|
      if (ChildN.DFSNumber == 0) {
 | 
						|
        // Mark that we should start at this child when next this node is the
 | 
						|
        // top of the stack. We don't start at the next child to ensure this
 | 
						|
        // child's lowlink is reflected.
 | 
						|
        DFSStack.push_back(std::make_pair(N, N->begin()));
 | 
						|
 | 
						|
        // Recurse onto this node via a tail call.
 | 
						|
        assert(!SCCMap.count(&ChildN) &&
 | 
						|
               "Found a node with 0 DFS number but already in an SCC!");
 | 
						|
        ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++;
 | 
						|
        N = &ChildN;
 | 
						|
        I = ChildN.begin();
 | 
						|
        E = ChildN.end();
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Track the lowest link of the children, if any are still in the stack.
 | 
						|
      assert(ChildN.LowLink != 0 &&
 | 
						|
             "Low-link must not be zero with a non-zero DFS number.");
 | 
						|
      if (ChildN.LowLink >= 0 && ChildN.LowLink < N->LowLink)
 | 
						|
        N->LowLink = ChildN.LowLink;
 | 
						|
      ++I;
 | 
						|
    }
 | 
						|
 | 
						|
    if (N->LowLink == N->DFSNumber)
 | 
						|
      // Form the new SCC out of the top of the DFS stack.
 | 
						|
      return formSCC(N, PendingSCCStack);
 | 
						|
 | 
						|
    // At this point we know that N cannot ever be an SCC root. Its low-link
 | 
						|
    // is not its dfs-number, and we've processed all of its children. It is
 | 
						|
    // just sitting here waiting until some node further down the stack gets
 | 
						|
    // low-link == dfs-number and pops it off as well. Move it to the pending
 | 
						|
    // stack which is pulled into the next SCC to be formed.
 | 
						|
    PendingSCCStack.push_back(N);
 | 
						|
 | 
						|
    assert(!DFSStack.empty() && "We never found a viable root!");
 | 
						|
    N = DFSStack.back().first;
 | 
						|
    I = DFSStack.back().second;
 | 
						|
    DFSStack.pop_back();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
char LazyCallGraphAnalysis::PassID;
 | 
						|
 | 
						|
LazyCallGraphPrinterPass::LazyCallGraphPrinterPass(raw_ostream &OS) : OS(OS) {}
 | 
						|
 | 
						|
static void printNodes(raw_ostream &OS, LazyCallGraph::Node &N,
 | 
						|
                       SmallPtrSetImpl<LazyCallGraph::Node *> &Printed) {
 | 
						|
  // Recurse depth first through the nodes.
 | 
						|
  for (LazyCallGraph::Node &ChildN : N)
 | 
						|
    if (Printed.insert(&ChildN))
 | 
						|
      printNodes(OS, ChildN, Printed);
 | 
						|
 | 
						|
  OS << "  Call edges in function: " << N.getFunction().getName() << "\n";
 | 
						|
  for (LazyCallGraph::iterator I = N.begin(), E = N.end(); I != E; ++I)
 | 
						|
    OS << "    -> " << I->getFunction().getName() << "\n";
 | 
						|
 | 
						|
  OS << "\n";
 | 
						|
}
 | 
						|
 | 
						|
static void printSCC(raw_ostream &OS, LazyCallGraph::SCC &SCC) {
 | 
						|
  ptrdiff_t SCCSize = std::distance(SCC.begin(), SCC.end());
 | 
						|
  OS << "  SCC with " << SCCSize << " functions:\n";
 | 
						|
 | 
						|
  for (LazyCallGraph::Node *N : SCC)
 | 
						|
    OS << "    " << N->getFunction().getName() << "\n";
 | 
						|
 | 
						|
  OS << "\n";
 | 
						|
}
 | 
						|
 | 
						|
PreservedAnalyses LazyCallGraphPrinterPass::run(Module *M,
 | 
						|
                                                ModuleAnalysisManager *AM) {
 | 
						|
  LazyCallGraph &G = AM->getResult<LazyCallGraphAnalysis>(M);
 | 
						|
 | 
						|
  OS << "Printing the call graph for module: " << M->getModuleIdentifier()
 | 
						|
     << "\n\n";
 | 
						|
 | 
						|
  SmallPtrSet<LazyCallGraph::Node *, 16> Printed;
 | 
						|
  for (LazyCallGraph::Node &N : G)
 | 
						|
    if (Printed.insert(&N))
 | 
						|
      printNodes(OS, N, Printed);
 | 
						|
 | 
						|
  for (LazyCallGraph::SCC &SCC : G.postorder_sccs())
 | 
						|
    printSCC(OS, SCC);
 | 
						|
 | 
						|
  return PreservedAnalyses::all();
 | 
						|
 | 
						|
}
 |