mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	We have a transform that changes: (x lshr C1) udiv C2 into: x udiv (C2 << C1) However, it is unsafe to do so if C2 << C1 discards any of C2's bits. This fixes PR21255. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219634 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2919 lines
		
	
	
		
			88 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2919 lines
		
	
	
		
			88 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- APInt.cpp - Implement APInt class ---------------------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements a class to represent arbitrary precision integer
 | 
						|
// constant values and provide a variety of arithmetic operations on them.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/ADT/APInt.h"
 | 
						|
#include "llvm/ADT/FoldingSet.h"
 | 
						|
#include "llvm/ADT/Hashing.h"
 | 
						|
#include "llvm/ADT/SmallString.h"
 | 
						|
#include "llvm/ADT/StringRef.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include <cmath>
 | 
						|
#include <cstdlib>
 | 
						|
#include <cstring>
 | 
						|
#include <limits>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "apint"
 | 
						|
 | 
						|
/// A utility function for allocating memory, checking for allocation failures,
 | 
						|
/// and ensuring the contents are zeroed.
 | 
						|
inline static uint64_t* getClearedMemory(unsigned numWords) {
 | 
						|
  uint64_t * result = new uint64_t[numWords];
 | 
						|
  assert(result && "APInt memory allocation fails!");
 | 
						|
  memset(result, 0, numWords * sizeof(uint64_t));
 | 
						|
  return result;
 | 
						|
}
 | 
						|
 | 
						|
/// A utility function for allocating memory and checking for allocation
 | 
						|
/// failure.  The content is not zeroed.
 | 
						|
inline static uint64_t* getMemory(unsigned numWords) {
 | 
						|
  uint64_t * result = new uint64_t[numWords];
 | 
						|
  assert(result && "APInt memory allocation fails!");
 | 
						|
  return result;
 | 
						|
}
 | 
						|
 | 
						|
/// A utility function that converts a character to a digit.
 | 
						|
inline static unsigned getDigit(char cdigit, uint8_t radix) {
 | 
						|
  unsigned r;
 | 
						|
 | 
						|
  if (radix == 16 || radix == 36) {
 | 
						|
    r = cdigit - '0';
 | 
						|
    if (r <= 9)
 | 
						|
      return r;
 | 
						|
 | 
						|
    r = cdigit - 'A';
 | 
						|
    if (r <= radix - 11U)
 | 
						|
      return r + 10;
 | 
						|
 | 
						|
    r = cdigit - 'a';
 | 
						|
    if (r <= radix - 11U)
 | 
						|
      return r + 10;
 | 
						|
    
 | 
						|
    radix = 10;
 | 
						|
  }
 | 
						|
 | 
						|
  r = cdigit - '0';
 | 
						|
  if (r < radix)
 | 
						|
    return r;
 | 
						|
 | 
						|
  return -1U;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void APInt::initSlowCase(unsigned numBits, uint64_t val, bool isSigned) {
 | 
						|
  pVal = getClearedMemory(getNumWords());
 | 
						|
  pVal[0] = val;
 | 
						|
  if (isSigned && int64_t(val) < 0)
 | 
						|
    for (unsigned i = 1; i < getNumWords(); ++i)
 | 
						|
      pVal[i] = -1ULL;
 | 
						|
}
 | 
						|
 | 
						|
void APInt::initSlowCase(const APInt& that) {
 | 
						|
  pVal = getMemory(getNumWords());
 | 
						|
  memcpy(pVal, that.pVal, getNumWords() * APINT_WORD_SIZE);
 | 
						|
}
 | 
						|
 | 
						|
void APInt::initFromArray(ArrayRef<uint64_t> bigVal) {
 | 
						|
  assert(BitWidth && "Bitwidth too small");
 | 
						|
  assert(bigVal.data() && "Null pointer detected!");
 | 
						|
  if (isSingleWord())
 | 
						|
    VAL = bigVal[0];
 | 
						|
  else {
 | 
						|
    // Get memory, cleared to 0
 | 
						|
    pVal = getClearedMemory(getNumWords());
 | 
						|
    // Calculate the number of words to copy
 | 
						|
    unsigned words = std::min<unsigned>(bigVal.size(), getNumWords());
 | 
						|
    // Copy the words from bigVal to pVal
 | 
						|
    memcpy(pVal, bigVal.data(), words * APINT_WORD_SIZE);
 | 
						|
  }
 | 
						|
  // Make sure unused high bits are cleared
 | 
						|
  clearUnusedBits();
 | 
						|
}
 | 
						|
 | 
						|
APInt::APInt(unsigned numBits, ArrayRef<uint64_t> bigVal)
 | 
						|
  : BitWidth(numBits), VAL(0) {
 | 
						|
  initFromArray(bigVal);
 | 
						|
}
 | 
						|
 | 
						|
APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[])
 | 
						|
  : BitWidth(numBits), VAL(0) {
 | 
						|
  initFromArray(makeArrayRef(bigVal, numWords));
 | 
						|
}
 | 
						|
 | 
						|
APInt::APInt(unsigned numbits, StringRef Str, uint8_t radix)
 | 
						|
  : BitWidth(numbits), VAL(0) {
 | 
						|
  assert(BitWidth && "Bitwidth too small");
 | 
						|
  fromString(numbits, Str, radix);
 | 
						|
}
 | 
						|
 | 
						|
APInt& APInt::AssignSlowCase(const APInt& RHS) {
 | 
						|
  // Don't do anything for X = X
 | 
						|
  if (this == &RHS)
 | 
						|
    return *this;
 | 
						|
 | 
						|
  if (BitWidth == RHS.getBitWidth()) {
 | 
						|
    // assume same bit-width single-word case is already handled
 | 
						|
    assert(!isSingleWord());
 | 
						|
    memcpy(pVal, RHS.pVal, getNumWords() * APINT_WORD_SIZE);
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  if (isSingleWord()) {
 | 
						|
    // assume case where both are single words is already handled
 | 
						|
    assert(!RHS.isSingleWord());
 | 
						|
    VAL = 0;
 | 
						|
    pVal = getMemory(RHS.getNumWords());
 | 
						|
    memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
 | 
						|
  } else if (getNumWords() == RHS.getNumWords())
 | 
						|
    memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
 | 
						|
  else if (RHS.isSingleWord()) {
 | 
						|
    delete [] pVal;
 | 
						|
    VAL = RHS.VAL;
 | 
						|
  } else {
 | 
						|
    delete [] pVal;
 | 
						|
    pVal = getMemory(RHS.getNumWords());
 | 
						|
    memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
 | 
						|
  }
 | 
						|
  BitWidth = RHS.BitWidth;
 | 
						|
  return clearUnusedBits();
 | 
						|
}
 | 
						|
 | 
						|
APInt& APInt::operator=(uint64_t RHS) {
 | 
						|
  if (isSingleWord())
 | 
						|
    VAL = RHS;
 | 
						|
  else {
 | 
						|
    pVal[0] = RHS;
 | 
						|
    memset(pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
 | 
						|
  }
 | 
						|
  return clearUnusedBits();
 | 
						|
}
 | 
						|
 | 
						|
/// Profile - This method 'profiles' an APInt for use with FoldingSet.
 | 
						|
void APInt::Profile(FoldingSetNodeID& ID) const {
 | 
						|
  ID.AddInteger(BitWidth);
 | 
						|
 | 
						|
  if (isSingleWord()) {
 | 
						|
    ID.AddInteger(VAL);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned NumWords = getNumWords();
 | 
						|
  for (unsigned i = 0; i < NumWords; ++i)
 | 
						|
    ID.AddInteger(pVal[i]);
 | 
						|
}
 | 
						|
 | 
						|
/// add_1 - This function adds a single "digit" integer, y, to the multiple
 | 
						|
/// "digit" integer array,  x[]. x[] is modified to reflect the addition and
 | 
						|
/// 1 is returned if there is a carry out, otherwise 0 is returned.
 | 
						|
/// @returns the carry of the addition.
 | 
						|
static bool add_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
 | 
						|
  for (unsigned i = 0; i < len; ++i) {
 | 
						|
    dest[i] = y + x[i];
 | 
						|
    if (dest[i] < y)
 | 
						|
      y = 1; // Carry one to next digit.
 | 
						|
    else {
 | 
						|
      y = 0; // No need to carry so exit early
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return y;
 | 
						|
}
 | 
						|
 | 
						|
/// @brief Prefix increment operator. Increments the APInt by one.
 | 
						|
APInt& APInt::operator++() {
 | 
						|
  if (isSingleWord())
 | 
						|
    ++VAL;
 | 
						|
  else
 | 
						|
    add_1(pVal, pVal, getNumWords(), 1);
 | 
						|
  return clearUnusedBits();
 | 
						|
}
 | 
						|
 | 
						|
/// sub_1 - This function subtracts a single "digit" (64-bit word), y, from
 | 
						|
/// the multi-digit integer array, x[], propagating the borrowed 1 value until
 | 
						|
/// no further borrowing is neeeded or it runs out of "digits" in x.  The result
 | 
						|
/// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted.
 | 
						|
/// In other words, if y > x then this function returns 1, otherwise 0.
 | 
						|
/// @returns the borrow out of the subtraction
 | 
						|
static bool sub_1(uint64_t x[], unsigned len, uint64_t y) {
 | 
						|
  for (unsigned i = 0; i < len; ++i) {
 | 
						|
    uint64_t X = x[i];
 | 
						|
    x[i] -= y;
 | 
						|
    if (y > X)
 | 
						|
      y = 1;  // We have to "borrow 1" from next "digit"
 | 
						|
    else {
 | 
						|
      y = 0;  // No need to borrow
 | 
						|
      break;  // Remaining digits are unchanged so exit early
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return bool(y);
 | 
						|
}
 | 
						|
 | 
						|
/// @brief Prefix decrement operator. Decrements the APInt by one.
 | 
						|
APInt& APInt::operator--() {
 | 
						|
  if (isSingleWord())
 | 
						|
    --VAL;
 | 
						|
  else
 | 
						|
    sub_1(pVal, getNumWords(), 1);
 | 
						|
  return clearUnusedBits();
 | 
						|
}
 | 
						|
 | 
						|
/// add - This function adds the integer array x to the integer array Y and
 | 
						|
/// places the result in dest.
 | 
						|
/// @returns the carry out from the addition
 | 
						|
/// @brief General addition of 64-bit integer arrays
 | 
						|
static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y,
 | 
						|
                unsigned len) {
 | 
						|
  bool carry = false;
 | 
						|
  for (unsigned i = 0; i< len; ++i) {
 | 
						|
    uint64_t limit = std::min(x[i],y[i]); // must come first in case dest == x
 | 
						|
    dest[i] = x[i] + y[i] + carry;
 | 
						|
    carry = dest[i] < limit || (carry && dest[i] == limit);
 | 
						|
  }
 | 
						|
  return carry;
 | 
						|
}
 | 
						|
 | 
						|
/// Adds the RHS APint to this APInt.
 | 
						|
/// @returns this, after addition of RHS.
 | 
						|
/// @brief Addition assignment operator.
 | 
						|
APInt& APInt::operator+=(const APInt& RHS) {
 | 
						|
  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
 | 
						|
  if (isSingleWord())
 | 
						|
    VAL += RHS.VAL;
 | 
						|
  else {
 | 
						|
    add(pVal, pVal, RHS.pVal, getNumWords());
 | 
						|
  }
 | 
						|
  return clearUnusedBits();
 | 
						|
}
 | 
						|
 | 
						|
/// Subtracts the integer array y from the integer array x
 | 
						|
/// @returns returns the borrow out.
 | 
						|
/// @brief Generalized subtraction of 64-bit integer arrays.
 | 
						|
static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y,
 | 
						|
                unsigned len) {
 | 
						|
  bool borrow = false;
 | 
						|
  for (unsigned i = 0; i < len; ++i) {
 | 
						|
    uint64_t x_tmp = borrow ? x[i] - 1 : x[i];
 | 
						|
    borrow = y[i] > x_tmp || (borrow && x[i] == 0);
 | 
						|
    dest[i] = x_tmp - y[i];
 | 
						|
  }
 | 
						|
  return borrow;
 | 
						|
}
 | 
						|
 | 
						|
/// Subtracts the RHS APInt from this APInt
 | 
						|
/// @returns this, after subtraction
 | 
						|
/// @brief Subtraction assignment operator.
 | 
						|
APInt& APInt::operator-=(const APInt& RHS) {
 | 
						|
  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
 | 
						|
  if (isSingleWord())
 | 
						|
    VAL -= RHS.VAL;
 | 
						|
  else
 | 
						|
    sub(pVal, pVal, RHS.pVal, getNumWords());
 | 
						|
  return clearUnusedBits();
 | 
						|
}
 | 
						|
 | 
						|
/// Multiplies an integer array, x, by a uint64_t integer and places the result
 | 
						|
/// into dest.
 | 
						|
/// @returns the carry out of the multiplication.
 | 
						|
/// @brief Multiply a multi-digit APInt by a single digit (64-bit) integer.
 | 
						|
static uint64_t mul_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
 | 
						|
  // Split y into high 32-bit part (hy)  and low 32-bit part (ly)
 | 
						|
  uint64_t ly = y & 0xffffffffULL, hy = y >> 32;
 | 
						|
  uint64_t carry = 0;
 | 
						|
 | 
						|
  // For each digit of x.
 | 
						|
  for (unsigned i = 0; i < len; ++i) {
 | 
						|
    // Split x into high and low words
 | 
						|
    uint64_t lx = x[i] & 0xffffffffULL;
 | 
						|
    uint64_t hx = x[i] >> 32;
 | 
						|
    // hasCarry - A flag to indicate if there is a carry to the next digit.
 | 
						|
    // hasCarry == 0, no carry
 | 
						|
    // hasCarry == 1, has carry
 | 
						|
    // hasCarry == 2, no carry and the calculation result == 0.
 | 
						|
    uint8_t hasCarry = 0;
 | 
						|
    dest[i] = carry + lx * ly;
 | 
						|
    // Determine if the add above introduces carry.
 | 
						|
    hasCarry = (dest[i] < carry) ? 1 : 0;
 | 
						|
    carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0);
 | 
						|
    // The upper limit of carry can be (2^32 - 1)(2^32 - 1) +
 | 
						|
    // (2^32 - 1) + 2^32 = 2^64.
 | 
						|
    hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
 | 
						|
 | 
						|
    carry += (lx * hy) & 0xffffffffULL;
 | 
						|
    dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL);
 | 
						|
    carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) +
 | 
						|
            (carry >> 32) + ((lx * hy) >> 32) + hx * hy;
 | 
						|
  }
 | 
						|
  return carry;
 | 
						|
}
 | 
						|
 | 
						|
/// Multiplies integer array x by integer array y and stores the result into
 | 
						|
/// the integer array dest. Note that dest's size must be >= xlen + ylen.
 | 
						|
/// @brief Generalized multiplicate of integer arrays.
 | 
						|
static void mul(uint64_t dest[], uint64_t x[], unsigned xlen, uint64_t y[],
 | 
						|
                unsigned ylen) {
 | 
						|
  dest[xlen] = mul_1(dest, x, xlen, y[0]);
 | 
						|
  for (unsigned i = 1; i < ylen; ++i) {
 | 
						|
    uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32;
 | 
						|
    uint64_t carry = 0, lx = 0, hx = 0;
 | 
						|
    for (unsigned j = 0; j < xlen; ++j) {
 | 
						|
      lx = x[j] & 0xffffffffULL;
 | 
						|
      hx = x[j] >> 32;
 | 
						|
      // hasCarry - A flag to indicate if has carry.
 | 
						|
      // hasCarry == 0, no carry
 | 
						|
      // hasCarry == 1, has carry
 | 
						|
      // hasCarry == 2, no carry and the calculation result == 0.
 | 
						|
      uint8_t hasCarry = 0;
 | 
						|
      uint64_t resul = carry + lx * ly;
 | 
						|
      hasCarry = (resul < carry) ? 1 : 0;
 | 
						|
      carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32);
 | 
						|
      hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
 | 
						|
 | 
						|
      carry += (lx * hy) & 0xffffffffULL;
 | 
						|
      resul = (carry << 32) | (resul & 0xffffffffULL);
 | 
						|
      dest[i+j] += resul;
 | 
						|
      carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+
 | 
						|
              (carry >> 32) + (dest[i+j] < resul ? 1 : 0) +
 | 
						|
              ((lx * hy) >> 32) + hx * hy;
 | 
						|
    }
 | 
						|
    dest[i+xlen] = carry;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
APInt& APInt::operator*=(const APInt& RHS) {
 | 
						|
  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
 | 
						|
  if (isSingleWord()) {
 | 
						|
    VAL *= RHS.VAL;
 | 
						|
    clearUnusedBits();
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  // Get some bit facts about LHS and check for zero
 | 
						|
  unsigned lhsBits = getActiveBits();
 | 
						|
  unsigned lhsWords = !lhsBits ? 0 : whichWord(lhsBits - 1) + 1;
 | 
						|
  if (!lhsWords)
 | 
						|
    // 0 * X ===> 0
 | 
						|
    return *this;
 | 
						|
 | 
						|
  // Get some bit facts about RHS and check for zero
 | 
						|
  unsigned rhsBits = RHS.getActiveBits();
 | 
						|
  unsigned rhsWords = !rhsBits ? 0 : whichWord(rhsBits - 1) + 1;
 | 
						|
  if (!rhsWords) {
 | 
						|
    // X * 0 ===> 0
 | 
						|
    clearAllBits();
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  // Allocate space for the result
 | 
						|
  unsigned destWords = rhsWords + lhsWords;
 | 
						|
  uint64_t *dest = getMemory(destWords);
 | 
						|
 | 
						|
  // Perform the long multiply
 | 
						|
  mul(dest, pVal, lhsWords, RHS.pVal, rhsWords);
 | 
						|
 | 
						|
  // Copy result back into *this
 | 
						|
  clearAllBits();
 | 
						|
  unsigned wordsToCopy = destWords >= getNumWords() ? getNumWords() : destWords;
 | 
						|
  memcpy(pVal, dest, wordsToCopy * APINT_WORD_SIZE);
 | 
						|
  clearUnusedBits();
 | 
						|
 | 
						|
  // delete dest array and return
 | 
						|
  delete[] dest;
 | 
						|
  return *this;
 | 
						|
}
 | 
						|
 | 
						|
APInt& APInt::operator&=(const APInt& RHS) {
 | 
						|
  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
 | 
						|
  if (isSingleWord()) {
 | 
						|
    VAL &= RHS.VAL;
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
  unsigned numWords = getNumWords();
 | 
						|
  for (unsigned i = 0; i < numWords; ++i)
 | 
						|
    pVal[i] &= RHS.pVal[i];
 | 
						|
  return *this;
 | 
						|
}
 | 
						|
 | 
						|
APInt& APInt::operator|=(const APInt& RHS) {
 | 
						|
  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
 | 
						|
  if (isSingleWord()) {
 | 
						|
    VAL |= RHS.VAL;
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
  unsigned numWords = getNumWords();
 | 
						|
  for (unsigned i = 0; i < numWords; ++i)
 | 
						|
    pVal[i] |= RHS.pVal[i];
 | 
						|
  return *this;
 | 
						|
}
 | 
						|
 | 
						|
APInt& APInt::operator^=(const APInt& RHS) {
 | 
						|
  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
 | 
						|
  if (isSingleWord()) {
 | 
						|
    VAL ^= RHS.VAL;
 | 
						|
    this->clearUnusedBits();
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
  unsigned numWords = getNumWords();
 | 
						|
  for (unsigned i = 0; i < numWords; ++i)
 | 
						|
    pVal[i] ^= RHS.pVal[i];
 | 
						|
  return clearUnusedBits();
 | 
						|
}
 | 
						|
 | 
						|
APInt APInt::AndSlowCase(const APInt& RHS) const {
 | 
						|
  unsigned numWords = getNumWords();
 | 
						|
  uint64_t* val = getMemory(numWords);
 | 
						|
  for (unsigned i = 0; i < numWords; ++i)
 | 
						|
    val[i] = pVal[i] & RHS.pVal[i];
 | 
						|
  return APInt(val, getBitWidth());
 | 
						|
}
 | 
						|
 | 
						|
APInt APInt::OrSlowCase(const APInt& RHS) const {
 | 
						|
  unsigned numWords = getNumWords();
 | 
						|
  uint64_t *val = getMemory(numWords);
 | 
						|
  for (unsigned i = 0; i < numWords; ++i)
 | 
						|
    val[i] = pVal[i] | RHS.pVal[i];
 | 
						|
  return APInt(val, getBitWidth());
 | 
						|
}
 | 
						|
 | 
						|
APInt APInt::XorSlowCase(const APInt& RHS) const {
 | 
						|
  unsigned numWords = getNumWords();
 | 
						|
  uint64_t *val = getMemory(numWords);
 | 
						|
  for (unsigned i = 0; i < numWords; ++i)
 | 
						|
    val[i] = pVal[i] ^ RHS.pVal[i];
 | 
						|
 | 
						|
  APInt Result(val, getBitWidth());
 | 
						|
  // 0^0==1 so clear the high bits in case they got set.
 | 
						|
  Result.clearUnusedBits();
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
APInt APInt::operator*(const APInt& RHS) const {
 | 
						|
  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
 | 
						|
  if (isSingleWord())
 | 
						|
    return APInt(BitWidth, VAL * RHS.VAL);
 | 
						|
  APInt Result(*this);
 | 
						|
  Result *= RHS;
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
APInt APInt::operator+(const APInt& RHS) const {
 | 
						|
  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
 | 
						|
  if (isSingleWord())
 | 
						|
    return APInt(BitWidth, VAL + RHS.VAL);
 | 
						|
  APInt Result(BitWidth, 0);
 | 
						|
  add(Result.pVal, this->pVal, RHS.pVal, getNumWords());
 | 
						|
  Result.clearUnusedBits();
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
APInt APInt::operator-(const APInt& RHS) const {
 | 
						|
  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
 | 
						|
  if (isSingleWord())
 | 
						|
    return APInt(BitWidth, VAL - RHS.VAL);
 | 
						|
  APInt Result(BitWidth, 0);
 | 
						|
  sub(Result.pVal, this->pVal, RHS.pVal, getNumWords());
 | 
						|
  Result.clearUnusedBits();
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
bool APInt::EqualSlowCase(const APInt& RHS) const {
 | 
						|
  // Get some facts about the number of bits used in the two operands.
 | 
						|
  unsigned n1 = getActiveBits();
 | 
						|
  unsigned n2 = RHS.getActiveBits();
 | 
						|
 | 
						|
  // If the number of bits isn't the same, they aren't equal
 | 
						|
  if (n1 != n2)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If the number of bits fits in a word, we only need to compare the low word.
 | 
						|
  if (n1 <= APINT_BITS_PER_WORD)
 | 
						|
    return pVal[0] == RHS.pVal[0];
 | 
						|
 | 
						|
  // Otherwise, compare everything
 | 
						|
  for (int i = whichWord(n1 - 1); i >= 0; --i)
 | 
						|
    if (pVal[i] != RHS.pVal[i])
 | 
						|
      return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool APInt::EqualSlowCase(uint64_t Val) const {
 | 
						|
  unsigned n = getActiveBits();
 | 
						|
  if (n <= APINT_BITS_PER_WORD)
 | 
						|
    return pVal[0] == Val;
 | 
						|
  else
 | 
						|
    return false;
 | 
						|
}
 | 
						|
 | 
						|
bool APInt::ult(const APInt& RHS) const {
 | 
						|
  assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
 | 
						|
  if (isSingleWord())
 | 
						|
    return VAL < RHS.VAL;
 | 
						|
 | 
						|
  // Get active bit length of both operands
 | 
						|
  unsigned n1 = getActiveBits();
 | 
						|
  unsigned n2 = RHS.getActiveBits();
 | 
						|
 | 
						|
  // If magnitude of LHS is less than RHS, return true.
 | 
						|
  if (n1 < n2)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // If magnitude of RHS is greather than LHS, return false.
 | 
						|
  if (n2 < n1)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If they bot fit in a word, just compare the low order word
 | 
						|
  if (n1 <= APINT_BITS_PER_WORD && n2 <= APINT_BITS_PER_WORD)
 | 
						|
    return pVal[0] < RHS.pVal[0];
 | 
						|
 | 
						|
  // Otherwise, compare all words
 | 
						|
  unsigned topWord = whichWord(std::max(n1,n2)-1);
 | 
						|
  for (int i = topWord; i >= 0; --i) {
 | 
						|
    if (pVal[i] > RHS.pVal[i])
 | 
						|
      return false;
 | 
						|
    if (pVal[i] < RHS.pVal[i])
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool APInt::slt(const APInt& RHS) const {
 | 
						|
  assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
 | 
						|
  if (isSingleWord()) {
 | 
						|
    int64_t lhsSext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
 | 
						|
    int64_t rhsSext = (int64_t(RHS.VAL) << (64-BitWidth)) >> (64-BitWidth);
 | 
						|
    return lhsSext < rhsSext;
 | 
						|
  }
 | 
						|
 | 
						|
  APInt lhs(*this);
 | 
						|
  APInt rhs(RHS);
 | 
						|
  bool lhsNeg = isNegative();
 | 
						|
  bool rhsNeg = rhs.isNegative();
 | 
						|
  if (lhsNeg) {
 | 
						|
    // Sign bit is set so perform two's complement to make it positive
 | 
						|
    lhs.flipAllBits();
 | 
						|
    ++lhs;
 | 
						|
  }
 | 
						|
  if (rhsNeg) {
 | 
						|
    // Sign bit is set so perform two's complement to make it positive
 | 
						|
    rhs.flipAllBits();
 | 
						|
    ++rhs;
 | 
						|
  }
 | 
						|
 | 
						|
  // Now we have unsigned values to compare so do the comparison if necessary
 | 
						|
  // based on the negativeness of the values.
 | 
						|
  if (lhsNeg)
 | 
						|
    if (rhsNeg)
 | 
						|
      return lhs.ugt(rhs);
 | 
						|
    else
 | 
						|
      return true;
 | 
						|
  else if (rhsNeg)
 | 
						|
    return false;
 | 
						|
  else
 | 
						|
    return lhs.ult(rhs);
 | 
						|
}
 | 
						|
 | 
						|
void APInt::setBit(unsigned bitPosition) {
 | 
						|
  if (isSingleWord())
 | 
						|
    VAL |= maskBit(bitPosition);
 | 
						|
  else
 | 
						|
    pVal[whichWord(bitPosition)] |= maskBit(bitPosition);
 | 
						|
}
 | 
						|
 | 
						|
/// Set the given bit to 0 whose position is given as "bitPosition".
 | 
						|
/// @brief Set a given bit to 0.
 | 
						|
void APInt::clearBit(unsigned bitPosition) {
 | 
						|
  if (isSingleWord())
 | 
						|
    VAL &= ~maskBit(bitPosition);
 | 
						|
  else
 | 
						|
    pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition);
 | 
						|
}
 | 
						|
 | 
						|
/// @brief Toggle every bit to its opposite value.
 | 
						|
 | 
						|
/// Toggle a given bit to its opposite value whose position is given
 | 
						|
/// as "bitPosition".
 | 
						|
/// @brief Toggles a given bit to its opposite value.
 | 
						|
void APInt::flipBit(unsigned bitPosition) {
 | 
						|
  assert(bitPosition < BitWidth && "Out of the bit-width range!");
 | 
						|
  if ((*this)[bitPosition]) clearBit(bitPosition);
 | 
						|
  else setBit(bitPosition);
 | 
						|
}
 | 
						|
 | 
						|
unsigned APInt::getBitsNeeded(StringRef str, uint8_t radix) {
 | 
						|
  assert(!str.empty() && "Invalid string length");
 | 
						|
  assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 || 
 | 
						|
          radix == 36) &&
 | 
						|
         "Radix should be 2, 8, 10, 16, or 36!");
 | 
						|
 | 
						|
  size_t slen = str.size();
 | 
						|
 | 
						|
  // Each computation below needs to know if it's negative.
 | 
						|
  StringRef::iterator p = str.begin();
 | 
						|
  unsigned isNegative = *p == '-';
 | 
						|
  if (*p == '-' || *p == '+') {
 | 
						|
    p++;
 | 
						|
    slen--;
 | 
						|
    assert(slen && "String is only a sign, needs a value.");
 | 
						|
  }
 | 
						|
 | 
						|
  // For radixes of power-of-two values, the bits required is accurately and
 | 
						|
  // easily computed
 | 
						|
  if (radix == 2)
 | 
						|
    return slen + isNegative;
 | 
						|
  if (radix == 8)
 | 
						|
    return slen * 3 + isNegative;
 | 
						|
  if (radix == 16)
 | 
						|
    return slen * 4 + isNegative;
 | 
						|
 | 
						|
  // FIXME: base 36
 | 
						|
  
 | 
						|
  // This is grossly inefficient but accurate. We could probably do something
 | 
						|
  // with a computation of roughly slen*64/20 and then adjust by the value of
 | 
						|
  // the first few digits. But, I'm not sure how accurate that could be.
 | 
						|
 | 
						|
  // Compute a sufficient number of bits that is always large enough but might
 | 
						|
  // be too large. This avoids the assertion in the constructor. This
 | 
						|
  // calculation doesn't work appropriately for the numbers 0-9, so just use 4
 | 
						|
  // bits in that case.
 | 
						|
  unsigned sufficient 
 | 
						|
    = radix == 10? (slen == 1 ? 4 : slen * 64/18)
 | 
						|
                 : (slen == 1 ? 7 : slen * 16/3);
 | 
						|
 | 
						|
  // Convert to the actual binary value.
 | 
						|
  APInt tmp(sufficient, StringRef(p, slen), radix);
 | 
						|
 | 
						|
  // Compute how many bits are required. If the log is infinite, assume we need
 | 
						|
  // just bit.
 | 
						|
  unsigned log = tmp.logBase2();
 | 
						|
  if (log == (unsigned)-1) {
 | 
						|
    return isNegative + 1;
 | 
						|
  } else {
 | 
						|
    return isNegative + log + 1;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
hash_code llvm::hash_value(const APInt &Arg) {
 | 
						|
  if (Arg.isSingleWord())
 | 
						|
    return hash_combine(Arg.VAL);
 | 
						|
 | 
						|
  return hash_combine_range(Arg.pVal, Arg.pVal + Arg.getNumWords());
 | 
						|
}
 | 
						|
 | 
						|
/// HiBits - This function returns the high "numBits" bits of this APInt.
 | 
						|
APInt APInt::getHiBits(unsigned numBits) const {
 | 
						|
  return APIntOps::lshr(*this, BitWidth - numBits);
 | 
						|
}
 | 
						|
 | 
						|
/// LoBits - This function returns the low "numBits" bits of this APInt.
 | 
						|
APInt APInt::getLoBits(unsigned numBits) const {
 | 
						|
  return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits),
 | 
						|
                        BitWidth - numBits);
 | 
						|
}
 | 
						|
 | 
						|
unsigned APInt::countLeadingZerosSlowCase() const {
 | 
						|
  // Treat the most significand word differently because it might have
 | 
						|
  // meaningless bits set beyond the precision.
 | 
						|
  unsigned BitsInMSW = BitWidth % APINT_BITS_PER_WORD;
 | 
						|
  integerPart MSWMask;
 | 
						|
  if (BitsInMSW) MSWMask = (integerPart(1) << BitsInMSW) - 1;
 | 
						|
  else {
 | 
						|
    MSWMask = ~integerPart(0);
 | 
						|
    BitsInMSW = APINT_BITS_PER_WORD;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned i = getNumWords();
 | 
						|
  integerPart MSW = pVal[i-1] & MSWMask;
 | 
						|
  if (MSW)
 | 
						|
    return llvm::countLeadingZeros(MSW) - (APINT_BITS_PER_WORD - BitsInMSW);
 | 
						|
 | 
						|
  unsigned Count = BitsInMSW;
 | 
						|
  for (--i; i > 0u; --i) {
 | 
						|
    if (pVal[i-1] == 0)
 | 
						|
      Count += APINT_BITS_PER_WORD;
 | 
						|
    else {
 | 
						|
      Count += llvm::countLeadingZeros(pVal[i-1]);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return Count;
 | 
						|
}
 | 
						|
 | 
						|
unsigned APInt::countLeadingOnes() const {
 | 
						|
  if (isSingleWord())
 | 
						|
    return CountLeadingOnes_64(VAL << (APINT_BITS_PER_WORD - BitWidth));
 | 
						|
 | 
						|
  unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD;
 | 
						|
  unsigned shift;
 | 
						|
  if (!highWordBits) {
 | 
						|
    highWordBits = APINT_BITS_PER_WORD;
 | 
						|
    shift = 0;
 | 
						|
  } else {
 | 
						|
    shift = APINT_BITS_PER_WORD - highWordBits;
 | 
						|
  }
 | 
						|
  int i = getNumWords() - 1;
 | 
						|
  unsigned Count = CountLeadingOnes_64(pVal[i] << shift);
 | 
						|
  if (Count == highWordBits) {
 | 
						|
    for (i--; i >= 0; --i) {
 | 
						|
      if (pVal[i] == -1ULL)
 | 
						|
        Count += APINT_BITS_PER_WORD;
 | 
						|
      else {
 | 
						|
        Count += CountLeadingOnes_64(pVal[i]);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return Count;
 | 
						|
}
 | 
						|
 | 
						|
unsigned APInt::countTrailingZeros() const {
 | 
						|
  if (isSingleWord())
 | 
						|
    return std::min(unsigned(llvm::countTrailingZeros(VAL)), BitWidth);
 | 
						|
  unsigned Count = 0;
 | 
						|
  unsigned i = 0;
 | 
						|
  for (; i < getNumWords() && pVal[i] == 0; ++i)
 | 
						|
    Count += APINT_BITS_PER_WORD;
 | 
						|
  if (i < getNumWords())
 | 
						|
    Count += llvm::countTrailingZeros(pVal[i]);
 | 
						|
  return std::min(Count, BitWidth);
 | 
						|
}
 | 
						|
 | 
						|
unsigned APInt::countTrailingOnesSlowCase() const {
 | 
						|
  unsigned Count = 0;
 | 
						|
  unsigned i = 0;
 | 
						|
  for (; i < getNumWords() && pVal[i] == -1ULL; ++i)
 | 
						|
    Count += APINT_BITS_PER_WORD;
 | 
						|
  if (i < getNumWords())
 | 
						|
    Count += CountTrailingOnes_64(pVal[i]);
 | 
						|
  return std::min(Count, BitWidth);
 | 
						|
}
 | 
						|
 | 
						|
unsigned APInt::countPopulationSlowCase() const {
 | 
						|
  unsigned Count = 0;
 | 
						|
  for (unsigned i = 0; i < getNumWords(); ++i)
 | 
						|
    Count += CountPopulation_64(pVal[i]);
 | 
						|
  return Count;
 | 
						|
}
 | 
						|
 | 
						|
/// Perform a logical right-shift from Src to Dst, which must be equal or
 | 
						|
/// non-overlapping, of Words words, by Shift, which must be less than 64.
 | 
						|
static void lshrNear(uint64_t *Dst, uint64_t *Src, unsigned Words,
 | 
						|
                     unsigned Shift) {
 | 
						|
  uint64_t Carry = 0;
 | 
						|
  for (int I = Words - 1; I >= 0; --I) {
 | 
						|
    uint64_t Tmp = Src[I];
 | 
						|
    Dst[I] = (Tmp >> Shift) | Carry;
 | 
						|
    Carry = Tmp << (64 - Shift);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
APInt APInt::byteSwap() const {
 | 
						|
  assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!");
 | 
						|
  if (BitWidth == 16)
 | 
						|
    return APInt(BitWidth, ByteSwap_16(uint16_t(VAL)));
 | 
						|
  if (BitWidth == 32)
 | 
						|
    return APInt(BitWidth, ByteSwap_32(unsigned(VAL)));
 | 
						|
  if (BitWidth == 48) {
 | 
						|
    unsigned Tmp1 = unsigned(VAL >> 16);
 | 
						|
    Tmp1 = ByteSwap_32(Tmp1);
 | 
						|
    uint16_t Tmp2 = uint16_t(VAL);
 | 
						|
    Tmp2 = ByteSwap_16(Tmp2);
 | 
						|
    return APInt(BitWidth, (uint64_t(Tmp2) << 32) | Tmp1);
 | 
						|
  }
 | 
						|
  if (BitWidth == 64)
 | 
						|
    return APInt(BitWidth, ByteSwap_64(VAL));
 | 
						|
 | 
						|
  APInt Result(getNumWords() * APINT_BITS_PER_WORD, 0);
 | 
						|
  for (unsigned I = 0, N = getNumWords(); I != N; ++I)
 | 
						|
    Result.pVal[I] = ByteSwap_64(pVal[N - I - 1]);
 | 
						|
  if (Result.BitWidth != BitWidth) {
 | 
						|
    lshrNear(Result.pVal, Result.pVal, getNumWords(),
 | 
						|
             Result.BitWidth - BitWidth);
 | 
						|
    Result.BitWidth = BitWidth;
 | 
						|
  }
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1,
 | 
						|
                                            const APInt& API2) {
 | 
						|
  APInt A = API1, B = API2;
 | 
						|
  while (!!B) {
 | 
						|
    APInt T = B;
 | 
						|
    B = APIntOps::urem(A, B);
 | 
						|
    A = T;
 | 
						|
  }
 | 
						|
  return A;
 | 
						|
}
 | 
						|
 | 
						|
APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) {
 | 
						|
  union {
 | 
						|
    double D;
 | 
						|
    uint64_t I;
 | 
						|
  } T;
 | 
						|
  T.D = Double;
 | 
						|
 | 
						|
  // Get the sign bit from the highest order bit
 | 
						|
  bool isNeg = T.I >> 63;
 | 
						|
 | 
						|
  // Get the 11-bit exponent and adjust for the 1023 bit bias
 | 
						|
  int64_t exp = ((T.I >> 52) & 0x7ff) - 1023;
 | 
						|
 | 
						|
  // If the exponent is negative, the value is < 0 so just return 0.
 | 
						|
  if (exp < 0)
 | 
						|
    return APInt(width, 0u);
 | 
						|
 | 
						|
  // Extract the mantissa by clearing the top 12 bits (sign + exponent).
 | 
						|
  uint64_t mantissa = (T.I & (~0ULL >> 12)) | 1ULL << 52;
 | 
						|
 | 
						|
  // If the exponent doesn't shift all bits out of the mantissa
 | 
						|
  if (exp < 52)
 | 
						|
    return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
 | 
						|
                    APInt(width, mantissa >> (52 - exp));
 | 
						|
 | 
						|
  // If the client didn't provide enough bits for us to shift the mantissa into
 | 
						|
  // then the result is undefined, just return 0
 | 
						|
  if (width <= exp - 52)
 | 
						|
    return APInt(width, 0);
 | 
						|
 | 
						|
  // Otherwise, we have to shift the mantissa bits up to the right location
 | 
						|
  APInt Tmp(width, mantissa);
 | 
						|
  Tmp = Tmp.shl((unsigned)exp - 52);
 | 
						|
  return isNeg ? -Tmp : Tmp;
 | 
						|
}
 | 
						|
 | 
						|
/// RoundToDouble - This function converts this APInt to a double.
 | 
						|
/// The layout for double is as following (IEEE Standard 754):
 | 
						|
///  --------------------------------------
 | 
						|
/// |  Sign    Exponent    Fraction    Bias |
 | 
						|
/// |-------------------------------------- |
 | 
						|
/// |  1[63]   11[62-52]   52[51-00]   1023 |
 | 
						|
///  --------------------------------------
 | 
						|
double APInt::roundToDouble(bool isSigned) const {
 | 
						|
 | 
						|
  // Handle the simple case where the value is contained in one uint64_t.
 | 
						|
  // It is wrong to optimize getWord(0) to VAL; there might be more than one word.
 | 
						|
  if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
 | 
						|
    if (isSigned) {
 | 
						|
      int64_t sext = (int64_t(getWord(0)) << (64-BitWidth)) >> (64-BitWidth);
 | 
						|
      return double(sext);
 | 
						|
    } else
 | 
						|
      return double(getWord(0));
 | 
						|
  }
 | 
						|
 | 
						|
  // Determine if the value is negative.
 | 
						|
  bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
 | 
						|
 | 
						|
  // Construct the absolute value if we're negative.
 | 
						|
  APInt Tmp(isNeg ? -(*this) : (*this));
 | 
						|
 | 
						|
  // Figure out how many bits we're using.
 | 
						|
  unsigned n = Tmp.getActiveBits();
 | 
						|
 | 
						|
  // The exponent (without bias normalization) is just the number of bits
 | 
						|
  // we are using. Note that the sign bit is gone since we constructed the
 | 
						|
  // absolute value.
 | 
						|
  uint64_t exp = n;
 | 
						|
 | 
						|
  // Return infinity for exponent overflow
 | 
						|
  if (exp > 1023) {
 | 
						|
    if (!isSigned || !isNeg)
 | 
						|
      return std::numeric_limits<double>::infinity();
 | 
						|
    else
 | 
						|
      return -std::numeric_limits<double>::infinity();
 | 
						|
  }
 | 
						|
  exp += 1023; // Increment for 1023 bias
 | 
						|
 | 
						|
  // Number of bits in mantissa is 52. To obtain the mantissa value, we must
 | 
						|
  // extract the high 52 bits from the correct words in pVal.
 | 
						|
  uint64_t mantissa;
 | 
						|
  unsigned hiWord = whichWord(n-1);
 | 
						|
  if (hiWord == 0) {
 | 
						|
    mantissa = Tmp.pVal[0];
 | 
						|
    if (n > 52)
 | 
						|
      mantissa >>= n - 52; // shift down, we want the top 52 bits.
 | 
						|
  } else {
 | 
						|
    assert(hiWord > 0 && "huh?");
 | 
						|
    uint64_t hibits = Tmp.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
 | 
						|
    uint64_t lobits = Tmp.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
 | 
						|
    mantissa = hibits | lobits;
 | 
						|
  }
 | 
						|
 | 
						|
  // The leading bit of mantissa is implicit, so get rid of it.
 | 
						|
  uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
 | 
						|
  union {
 | 
						|
    double D;
 | 
						|
    uint64_t I;
 | 
						|
  } T;
 | 
						|
  T.I = sign | (exp << 52) | mantissa;
 | 
						|
  return T.D;
 | 
						|
}
 | 
						|
 | 
						|
// Truncate to new width.
 | 
						|
APInt APInt::trunc(unsigned width) const {
 | 
						|
  assert(width < BitWidth && "Invalid APInt Truncate request");
 | 
						|
  assert(width && "Can't truncate to 0 bits");
 | 
						|
 | 
						|
  if (width <= APINT_BITS_PER_WORD)
 | 
						|
    return APInt(width, getRawData()[0]);
 | 
						|
 | 
						|
  APInt Result(getMemory(getNumWords(width)), width);
 | 
						|
 | 
						|
  // Copy full words.
 | 
						|
  unsigned i;
 | 
						|
  for (i = 0; i != width / APINT_BITS_PER_WORD; i++)
 | 
						|
    Result.pVal[i] = pVal[i];
 | 
						|
 | 
						|
  // Truncate and copy any partial word.
 | 
						|
  unsigned bits = (0 - width) % APINT_BITS_PER_WORD;
 | 
						|
  if (bits != 0)
 | 
						|
    Result.pVal[i] = pVal[i] << bits >> bits;
 | 
						|
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
// Sign extend to a new width.
 | 
						|
APInt APInt::sext(unsigned width) const {
 | 
						|
  assert(width > BitWidth && "Invalid APInt SignExtend request");
 | 
						|
 | 
						|
  if (width <= APINT_BITS_PER_WORD) {
 | 
						|
    uint64_t val = VAL << (APINT_BITS_PER_WORD - BitWidth);
 | 
						|
    val = (int64_t)val >> (width - BitWidth);
 | 
						|
    return APInt(width, val >> (APINT_BITS_PER_WORD - width));
 | 
						|
  }
 | 
						|
 | 
						|
  APInt Result(getMemory(getNumWords(width)), width);
 | 
						|
 | 
						|
  // Copy full words.
 | 
						|
  unsigned i;
 | 
						|
  uint64_t word = 0;
 | 
						|
  for (i = 0; i != BitWidth / APINT_BITS_PER_WORD; i++) {
 | 
						|
    word = getRawData()[i];
 | 
						|
    Result.pVal[i] = word;
 | 
						|
  }
 | 
						|
 | 
						|
  // Read and sign-extend any partial word.
 | 
						|
  unsigned bits = (0 - BitWidth) % APINT_BITS_PER_WORD;
 | 
						|
  if (bits != 0)
 | 
						|
    word = (int64_t)getRawData()[i] << bits >> bits;
 | 
						|
  else
 | 
						|
    word = (int64_t)word >> (APINT_BITS_PER_WORD - 1);
 | 
						|
 | 
						|
  // Write remaining full words.
 | 
						|
  for (; i != width / APINT_BITS_PER_WORD; i++) {
 | 
						|
    Result.pVal[i] = word;
 | 
						|
    word = (int64_t)word >> (APINT_BITS_PER_WORD - 1);
 | 
						|
  }
 | 
						|
 | 
						|
  // Write any partial word.
 | 
						|
  bits = (0 - width) % APINT_BITS_PER_WORD;
 | 
						|
  if (bits != 0)
 | 
						|
    Result.pVal[i] = word << bits >> bits;
 | 
						|
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
//  Zero extend to a new width.
 | 
						|
APInt APInt::zext(unsigned width) const {
 | 
						|
  assert(width > BitWidth && "Invalid APInt ZeroExtend request");
 | 
						|
 | 
						|
  if (width <= APINT_BITS_PER_WORD)
 | 
						|
    return APInt(width, VAL);
 | 
						|
 | 
						|
  APInt Result(getMemory(getNumWords(width)), width);
 | 
						|
 | 
						|
  // Copy words.
 | 
						|
  unsigned i;
 | 
						|
  for (i = 0; i != getNumWords(); i++)
 | 
						|
    Result.pVal[i] = getRawData()[i];
 | 
						|
 | 
						|
  // Zero remaining words.
 | 
						|
  memset(&Result.pVal[i], 0, (Result.getNumWords() - i) * APINT_WORD_SIZE);
 | 
						|
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
APInt APInt::zextOrTrunc(unsigned width) const {
 | 
						|
  if (BitWidth < width)
 | 
						|
    return zext(width);
 | 
						|
  if (BitWidth > width)
 | 
						|
    return trunc(width);
 | 
						|
  return *this;
 | 
						|
}
 | 
						|
 | 
						|
APInt APInt::sextOrTrunc(unsigned width) const {
 | 
						|
  if (BitWidth < width)
 | 
						|
    return sext(width);
 | 
						|
  if (BitWidth > width)
 | 
						|
    return trunc(width);
 | 
						|
  return *this;
 | 
						|
}
 | 
						|
 | 
						|
APInt APInt::zextOrSelf(unsigned width) const {
 | 
						|
  if (BitWidth < width)
 | 
						|
    return zext(width);
 | 
						|
  return *this;
 | 
						|
}
 | 
						|
 | 
						|
APInt APInt::sextOrSelf(unsigned width) const {
 | 
						|
  if (BitWidth < width)
 | 
						|
    return sext(width);
 | 
						|
  return *this;
 | 
						|
}
 | 
						|
 | 
						|
/// Arithmetic right-shift this APInt by shiftAmt.
 | 
						|
/// @brief Arithmetic right-shift function.
 | 
						|
APInt APInt::ashr(const APInt &shiftAmt) const {
 | 
						|
  return ashr((unsigned)shiftAmt.getLimitedValue(BitWidth));
 | 
						|
}
 | 
						|
 | 
						|
/// Arithmetic right-shift this APInt by shiftAmt.
 | 
						|
/// @brief Arithmetic right-shift function.
 | 
						|
APInt APInt::ashr(unsigned shiftAmt) const {
 | 
						|
  assert(shiftAmt <= BitWidth && "Invalid shift amount");
 | 
						|
  // Handle a degenerate case
 | 
						|
  if (shiftAmt == 0)
 | 
						|
    return *this;
 | 
						|
 | 
						|
  // Handle single word shifts with built-in ashr
 | 
						|
  if (isSingleWord()) {
 | 
						|
    if (shiftAmt == BitWidth)
 | 
						|
      return APInt(BitWidth, 0); // undefined
 | 
						|
    else {
 | 
						|
      unsigned SignBit = APINT_BITS_PER_WORD - BitWidth;
 | 
						|
      return APInt(BitWidth,
 | 
						|
        (((int64_t(VAL) << SignBit) >> SignBit) >> shiftAmt));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If all the bits were shifted out, the result is, technically, undefined.
 | 
						|
  // We return -1 if it was negative, 0 otherwise. We check this early to avoid
 | 
						|
  // issues in the algorithm below.
 | 
						|
  if (shiftAmt == BitWidth) {
 | 
						|
    if (isNegative())
 | 
						|
      return APInt(BitWidth, -1ULL, true);
 | 
						|
    else
 | 
						|
      return APInt(BitWidth, 0);
 | 
						|
  }
 | 
						|
 | 
						|
  // Create some space for the result.
 | 
						|
  uint64_t * val = new uint64_t[getNumWords()];
 | 
						|
 | 
						|
  // Compute some values needed by the following shift algorithms
 | 
						|
  unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; // bits to shift per word
 | 
						|
  unsigned offset = shiftAmt / APINT_BITS_PER_WORD; // word offset for shift
 | 
						|
  unsigned breakWord = getNumWords() - 1 - offset; // last word affected
 | 
						|
  unsigned bitsInWord = whichBit(BitWidth); // how many bits in last word?
 | 
						|
  if (bitsInWord == 0)
 | 
						|
    bitsInWord = APINT_BITS_PER_WORD;
 | 
						|
 | 
						|
  // If we are shifting whole words, just move whole words
 | 
						|
  if (wordShift == 0) {
 | 
						|
    // Move the words containing significant bits
 | 
						|
    for (unsigned i = 0; i <= breakWord; ++i)
 | 
						|
      val[i] = pVal[i+offset]; // move whole word
 | 
						|
 | 
						|
    // Adjust the top significant word for sign bit fill, if negative
 | 
						|
    if (isNegative())
 | 
						|
      if (bitsInWord < APINT_BITS_PER_WORD)
 | 
						|
        val[breakWord] |= ~0ULL << bitsInWord; // set high bits
 | 
						|
  } else {
 | 
						|
    // Shift the low order words
 | 
						|
    for (unsigned i = 0; i < breakWord; ++i) {
 | 
						|
      // This combines the shifted corresponding word with the low bits from
 | 
						|
      // the next word (shifted into this word's high bits).
 | 
						|
      val[i] = (pVal[i+offset] >> wordShift) |
 | 
						|
               (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
 | 
						|
    }
 | 
						|
 | 
						|
    // Shift the break word. In this case there are no bits from the next word
 | 
						|
    // to include in this word.
 | 
						|
    val[breakWord] = pVal[breakWord+offset] >> wordShift;
 | 
						|
 | 
						|
    // Deal with sign extension in the break word, and possibly the word before
 | 
						|
    // it.
 | 
						|
    if (isNegative()) {
 | 
						|
      if (wordShift > bitsInWord) {
 | 
						|
        if (breakWord > 0)
 | 
						|
          val[breakWord-1] |=
 | 
						|
            ~0ULL << (APINT_BITS_PER_WORD - (wordShift - bitsInWord));
 | 
						|
        val[breakWord] |= ~0ULL;
 | 
						|
      } else
 | 
						|
        val[breakWord] |= (~0ULL << (bitsInWord - wordShift));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Remaining words are 0 or -1, just assign them.
 | 
						|
  uint64_t fillValue = (isNegative() ? -1ULL : 0);
 | 
						|
  for (unsigned i = breakWord+1; i < getNumWords(); ++i)
 | 
						|
    val[i] = fillValue;
 | 
						|
  APInt Result(val, BitWidth);
 | 
						|
  Result.clearUnusedBits();
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
/// Logical right-shift this APInt by shiftAmt.
 | 
						|
/// @brief Logical right-shift function.
 | 
						|
APInt APInt::lshr(const APInt &shiftAmt) const {
 | 
						|
  return lshr((unsigned)shiftAmt.getLimitedValue(BitWidth));
 | 
						|
}
 | 
						|
 | 
						|
/// Logical right-shift this APInt by shiftAmt.
 | 
						|
/// @brief Logical right-shift function.
 | 
						|
APInt APInt::lshr(unsigned shiftAmt) const {
 | 
						|
  if (isSingleWord()) {
 | 
						|
    if (shiftAmt >= BitWidth)
 | 
						|
      return APInt(BitWidth, 0);
 | 
						|
    else
 | 
						|
      return APInt(BitWidth, this->VAL >> shiftAmt);
 | 
						|
  }
 | 
						|
 | 
						|
  // If all the bits were shifted out, the result is 0. This avoids issues
 | 
						|
  // with shifting by the size of the integer type, which produces undefined
 | 
						|
  // results. We define these "undefined results" to always be 0.
 | 
						|
  if (shiftAmt >= BitWidth)
 | 
						|
    return APInt(BitWidth, 0);
 | 
						|
 | 
						|
  // If none of the bits are shifted out, the result is *this. This avoids
 | 
						|
  // issues with shifting by the size of the integer type, which produces
 | 
						|
  // undefined results in the code below. This is also an optimization.
 | 
						|
  if (shiftAmt == 0)
 | 
						|
    return *this;
 | 
						|
 | 
						|
  // Create some space for the result.
 | 
						|
  uint64_t * val = new uint64_t[getNumWords()];
 | 
						|
 | 
						|
  // If we are shifting less than a word, compute the shift with a simple carry
 | 
						|
  if (shiftAmt < APINT_BITS_PER_WORD) {
 | 
						|
    lshrNear(val, pVal, getNumWords(), shiftAmt);
 | 
						|
    APInt Result(val, BitWidth);
 | 
						|
    Result.clearUnusedBits();
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
 | 
						|
  // Compute some values needed by the remaining shift algorithms
 | 
						|
  unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD;
 | 
						|
  unsigned offset = shiftAmt / APINT_BITS_PER_WORD;
 | 
						|
 | 
						|
  // If we are shifting whole words, just move whole words
 | 
						|
  if (wordShift == 0) {
 | 
						|
    for (unsigned i = 0; i < getNumWords() - offset; ++i)
 | 
						|
      val[i] = pVal[i+offset];
 | 
						|
    for (unsigned i = getNumWords()-offset; i < getNumWords(); i++)
 | 
						|
      val[i] = 0;
 | 
						|
    APInt Result(val, BitWidth);
 | 
						|
    Result.clearUnusedBits();
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
 | 
						|
  // Shift the low order words
 | 
						|
  unsigned breakWord = getNumWords() - offset -1;
 | 
						|
  for (unsigned i = 0; i < breakWord; ++i)
 | 
						|
    val[i] = (pVal[i+offset] >> wordShift) |
 | 
						|
             (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
 | 
						|
  // Shift the break word.
 | 
						|
  val[breakWord] = pVal[breakWord+offset] >> wordShift;
 | 
						|
 | 
						|
  // Remaining words are 0
 | 
						|
  for (unsigned i = breakWord+1; i < getNumWords(); ++i)
 | 
						|
    val[i] = 0;
 | 
						|
  APInt Result(val, BitWidth);
 | 
						|
  Result.clearUnusedBits();
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
/// Left-shift this APInt by shiftAmt.
 | 
						|
/// @brief Left-shift function.
 | 
						|
APInt APInt::shl(const APInt &shiftAmt) const {
 | 
						|
  // It's undefined behavior in C to shift by BitWidth or greater.
 | 
						|
  return shl((unsigned)shiftAmt.getLimitedValue(BitWidth));
 | 
						|
}
 | 
						|
 | 
						|
APInt APInt::shlSlowCase(unsigned shiftAmt) const {
 | 
						|
  // If all the bits were shifted out, the result is 0. This avoids issues
 | 
						|
  // with shifting by the size of the integer type, which produces undefined
 | 
						|
  // results. We define these "undefined results" to always be 0.
 | 
						|
  if (shiftAmt == BitWidth)
 | 
						|
    return APInt(BitWidth, 0);
 | 
						|
 | 
						|
  // If none of the bits are shifted out, the result is *this. This avoids a
 | 
						|
  // lshr by the words size in the loop below which can produce incorrect
 | 
						|
  // results. It also avoids the expensive computation below for a common case.
 | 
						|
  if (shiftAmt == 0)
 | 
						|
    return *this;
 | 
						|
 | 
						|
  // Create some space for the result.
 | 
						|
  uint64_t * val = new uint64_t[getNumWords()];
 | 
						|
 | 
						|
  // If we are shifting less than a word, do it the easy way
 | 
						|
  if (shiftAmt < APINT_BITS_PER_WORD) {
 | 
						|
    uint64_t carry = 0;
 | 
						|
    for (unsigned i = 0; i < getNumWords(); i++) {
 | 
						|
      val[i] = pVal[i] << shiftAmt | carry;
 | 
						|
      carry = pVal[i] >> (APINT_BITS_PER_WORD - shiftAmt);
 | 
						|
    }
 | 
						|
    APInt Result(val, BitWidth);
 | 
						|
    Result.clearUnusedBits();
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
 | 
						|
  // Compute some values needed by the remaining shift algorithms
 | 
						|
  unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD;
 | 
						|
  unsigned offset = shiftAmt / APINT_BITS_PER_WORD;
 | 
						|
 | 
						|
  // If we are shifting whole words, just move whole words
 | 
						|
  if (wordShift == 0) {
 | 
						|
    for (unsigned i = 0; i < offset; i++)
 | 
						|
      val[i] = 0;
 | 
						|
    for (unsigned i = offset; i < getNumWords(); i++)
 | 
						|
      val[i] = pVal[i-offset];
 | 
						|
    APInt Result(val, BitWidth);
 | 
						|
    Result.clearUnusedBits();
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
 | 
						|
  // Copy whole words from this to Result.
 | 
						|
  unsigned i = getNumWords() - 1;
 | 
						|
  for (; i > offset; --i)
 | 
						|
    val[i] = pVal[i-offset] << wordShift |
 | 
						|
             pVal[i-offset-1] >> (APINT_BITS_PER_WORD - wordShift);
 | 
						|
  val[offset] = pVal[0] << wordShift;
 | 
						|
  for (i = 0; i < offset; ++i)
 | 
						|
    val[i] = 0;
 | 
						|
  APInt Result(val, BitWidth);
 | 
						|
  Result.clearUnusedBits();
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
APInt APInt::rotl(const APInt &rotateAmt) const {
 | 
						|
  return rotl((unsigned)rotateAmt.getLimitedValue(BitWidth));
 | 
						|
}
 | 
						|
 | 
						|
APInt APInt::rotl(unsigned rotateAmt) const {
 | 
						|
  rotateAmt %= BitWidth;
 | 
						|
  if (rotateAmt == 0)
 | 
						|
    return *this;
 | 
						|
  return shl(rotateAmt) | lshr(BitWidth - rotateAmt);
 | 
						|
}
 | 
						|
 | 
						|
APInt APInt::rotr(const APInt &rotateAmt) const {
 | 
						|
  return rotr((unsigned)rotateAmt.getLimitedValue(BitWidth));
 | 
						|
}
 | 
						|
 | 
						|
APInt APInt::rotr(unsigned rotateAmt) const {
 | 
						|
  rotateAmt %= BitWidth;
 | 
						|
  if (rotateAmt == 0)
 | 
						|
    return *this;
 | 
						|
  return lshr(rotateAmt) | shl(BitWidth - rotateAmt);
 | 
						|
}
 | 
						|
 | 
						|
// Square Root - this method computes and returns the square root of "this".
 | 
						|
// Three mechanisms are used for computation. For small values (<= 5 bits),
 | 
						|
// a table lookup is done. This gets some performance for common cases. For
 | 
						|
// values using less than 52 bits, the value is converted to double and then
 | 
						|
// the libc sqrt function is called. The result is rounded and then converted
 | 
						|
// back to a uint64_t which is then used to construct the result. Finally,
 | 
						|
// the Babylonian method for computing square roots is used.
 | 
						|
APInt APInt::sqrt() const {
 | 
						|
 | 
						|
  // Determine the magnitude of the value.
 | 
						|
  unsigned magnitude = getActiveBits();
 | 
						|
 | 
						|
  // Use a fast table for some small values. This also gets rid of some
 | 
						|
  // rounding errors in libc sqrt for small values.
 | 
						|
  if (magnitude <= 5) {
 | 
						|
    static const uint8_t results[32] = {
 | 
						|
      /*     0 */ 0,
 | 
						|
      /*  1- 2 */ 1, 1,
 | 
						|
      /*  3- 6 */ 2, 2, 2, 2,
 | 
						|
      /*  7-12 */ 3, 3, 3, 3, 3, 3,
 | 
						|
      /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
 | 
						|
      /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
 | 
						|
      /*    31 */ 6
 | 
						|
    };
 | 
						|
    return APInt(BitWidth, results[ (isSingleWord() ? VAL : pVal[0]) ]);
 | 
						|
  }
 | 
						|
 | 
						|
  // If the magnitude of the value fits in less than 52 bits (the precision of
 | 
						|
  // an IEEE double precision floating point value), then we can use the
 | 
						|
  // libc sqrt function which will probably use a hardware sqrt computation.
 | 
						|
  // This should be faster than the algorithm below.
 | 
						|
  if (magnitude < 52) {
 | 
						|
#if HAVE_ROUND
 | 
						|
    return APInt(BitWidth,
 | 
						|
                 uint64_t(::round(::sqrt(double(isSingleWord()?VAL:pVal[0])))));
 | 
						|
#else
 | 
						|
    return APInt(BitWidth,
 | 
						|
                 uint64_t(::sqrt(double(isSingleWord()?VAL:pVal[0])) + 0.5));
 | 
						|
#endif
 | 
						|
  }
 | 
						|
 | 
						|
  // Okay, all the short cuts are exhausted. We must compute it. The following
 | 
						|
  // is a classical Babylonian method for computing the square root. This code
 | 
						|
  // was adapted to APInt from a wikipedia article on such computations.
 | 
						|
  // See http://www.wikipedia.org/ and go to the page named
 | 
						|
  // Calculate_an_integer_square_root.
 | 
						|
  unsigned nbits = BitWidth, i = 4;
 | 
						|
  APInt testy(BitWidth, 16);
 | 
						|
  APInt x_old(BitWidth, 1);
 | 
						|
  APInt x_new(BitWidth, 0);
 | 
						|
  APInt two(BitWidth, 2);
 | 
						|
 | 
						|
  // Select a good starting value using binary logarithms.
 | 
						|
  for (;; i += 2, testy = testy.shl(2))
 | 
						|
    if (i >= nbits || this->ule(testy)) {
 | 
						|
      x_old = x_old.shl(i / 2);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
  // Use the Babylonian method to arrive at the integer square root:
 | 
						|
  for (;;) {
 | 
						|
    x_new = (this->udiv(x_old) + x_old).udiv(two);
 | 
						|
    if (x_old.ule(x_new))
 | 
						|
      break;
 | 
						|
    x_old = x_new;
 | 
						|
  }
 | 
						|
 | 
						|
  // Make sure we return the closest approximation
 | 
						|
  // NOTE: The rounding calculation below is correct. It will produce an
 | 
						|
  // off-by-one discrepancy with results from pari/gp. That discrepancy has been
 | 
						|
  // determined to be a rounding issue with pari/gp as it begins to use a
 | 
						|
  // floating point representation after 192 bits. There are no discrepancies
 | 
						|
  // between this algorithm and pari/gp for bit widths < 192 bits.
 | 
						|
  APInt square(x_old * x_old);
 | 
						|
  APInt nextSquare((x_old + 1) * (x_old +1));
 | 
						|
  if (this->ult(square))
 | 
						|
    return x_old;
 | 
						|
  assert(this->ule(nextSquare) && "Error in APInt::sqrt computation");
 | 
						|
  APInt midpoint((nextSquare - square).udiv(two));
 | 
						|
  APInt offset(*this - square);
 | 
						|
  if (offset.ult(midpoint))
 | 
						|
    return x_old;
 | 
						|
  return x_old + 1;
 | 
						|
}
 | 
						|
 | 
						|
/// Computes the multiplicative inverse of this APInt for a given modulo. The
 | 
						|
/// iterative extended Euclidean algorithm is used to solve for this value,
 | 
						|
/// however we simplify it to speed up calculating only the inverse, and take
 | 
						|
/// advantage of div+rem calculations. We also use some tricks to avoid copying
 | 
						|
/// (potentially large) APInts around.
 | 
						|
APInt APInt::multiplicativeInverse(const APInt& modulo) const {
 | 
						|
  assert(ult(modulo) && "This APInt must be smaller than the modulo");
 | 
						|
 | 
						|
  // Using the properties listed at the following web page (accessed 06/21/08):
 | 
						|
  //   http://www.numbertheory.org/php/euclid.html
 | 
						|
  // (especially the properties numbered 3, 4 and 9) it can be proved that
 | 
						|
  // BitWidth bits suffice for all the computations in the algorithm implemented
 | 
						|
  // below. More precisely, this number of bits suffice if the multiplicative
 | 
						|
  // inverse exists, but may not suffice for the general extended Euclidean
 | 
						|
  // algorithm.
 | 
						|
 | 
						|
  APInt r[2] = { modulo, *this };
 | 
						|
  APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) };
 | 
						|
  APInt q(BitWidth, 0);
 | 
						|
 | 
						|
  unsigned i;
 | 
						|
  for (i = 0; r[i^1] != 0; i ^= 1) {
 | 
						|
    // An overview of the math without the confusing bit-flipping:
 | 
						|
    // q = r[i-2] / r[i-1]
 | 
						|
    // r[i] = r[i-2] % r[i-1]
 | 
						|
    // t[i] = t[i-2] - t[i-1] * q
 | 
						|
    udivrem(r[i], r[i^1], q, r[i]);
 | 
						|
    t[i] -= t[i^1] * q;
 | 
						|
  }
 | 
						|
 | 
						|
  // If this APInt and the modulo are not coprime, there is no multiplicative
 | 
						|
  // inverse, so return 0. We check this by looking at the next-to-last
 | 
						|
  // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean
 | 
						|
  // algorithm.
 | 
						|
  if (r[i] != 1)
 | 
						|
    return APInt(BitWidth, 0);
 | 
						|
 | 
						|
  // The next-to-last t is the multiplicative inverse.  However, we are
 | 
						|
  // interested in a positive inverse. Calcuate a positive one from a negative
 | 
						|
  // one if necessary. A simple addition of the modulo suffices because
 | 
						|
  // abs(t[i]) is known to be less than *this/2 (see the link above).
 | 
						|
  return t[i].isNegative() ? t[i] + modulo : t[i];
 | 
						|
}
 | 
						|
 | 
						|
/// Calculate the magic numbers required to implement a signed integer division
 | 
						|
/// by a constant as a sequence of multiplies, adds and shifts.  Requires that
 | 
						|
/// the divisor not be 0, 1, or -1.  Taken from "Hacker's Delight", Henry S.
 | 
						|
/// Warren, Jr., chapter 10.
 | 
						|
APInt::ms APInt::magic() const {
 | 
						|
  const APInt& d = *this;
 | 
						|
  unsigned p;
 | 
						|
  APInt ad, anc, delta, q1, r1, q2, r2, t;
 | 
						|
  APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
 | 
						|
  struct ms mag;
 | 
						|
 | 
						|
  ad = d.abs();
 | 
						|
  t = signedMin + (d.lshr(d.getBitWidth() - 1));
 | 
						|
  anc = t - 1 - t.urem(ad);   // absolute value of nc
 | 
						|
  p = d.getBitWidth() - 1;    // initialize p
 | 
						|
  q1 = signedMin.udiv(anc);   // initialize q1 = 2p/abs(nc)
 | 
						|
  r1 = signedMin - q1*anc;    // initialize r1 = rem(2p,abs(nc))
 | 
						|
  q2 = signedMin.udiv(ad);    // initialize q2 = 2p/abs(d)
 | 
						|
  r2 = signedMin - q2*ad;     // initialize r2 = rem(2p,abs(d))
 | 
						|
  do {
 | 
						|
    p = p + 1;
 | 
						|
    q1 = q1<<1;          // update q1 = 2p/abs(nc)
 | 
						|
    r1 = r1<<1;          // update r1 = rem(2p/abs(nc))
 | 
						|
    if (r1.uge(anc)) {  // must be unsigned comparison
 | 
						|
      q1 = q1 + 1;
 | 
						|
      r1 = r1 - anc;
 | 
						|
    }
 | 
						|
    q2 = q2<<1;          // update q2 = 2p/abs(d)
 | 
						|
    r2 = r2<<1;          // update r2 = rem(2p/abs(d))
 | 
						|
    if (r2.uge(ad)) {   // must be unsigned comparison
 | 
						|
      q2 = q2 + 1;
 | 
						|
      r2 = r2 - ad;
 | 
						|
    }
 | 
						|
    delta = ad - r2;
 | 
						|
  } while (q1.ult(delta) || (q1 == delta && r1 == 0));
 | 
						|
 | 
						|
  mag.m = q2 + 1;
 | 
						|
  if (d.isNegative()) mag.m = -mag.m;   // resulting magic number
 | 
						|
  mag.s = p - d.getBitWidth();          // resulting shift
 | 
						|
  return mag;
 | 
						|
}
 | 
						|
 | 
						|
/// Calculate the magic numbers required to implement an unsigned integer
 | 
						|
/// division by a constant as a sequence of multiplies, adds and shifts.
 | 
						|
/// Requires that the divisor not be 0.  Taken from "Hacker's Delight", Henry
 | 
						|
/// S. Warren, Jr., chapter 10.
 | 
						|
/// LeadingZeros can be used to simplify the calculation if the upper bits
 | 
						|
/// of the divided value are known zero.
 | 
						|
APInt::mu APInt::magicu(unsigned LeadingZeros) const {
 | 
						|
  const APInt& d = *this;
 | 
						|
  unsigned p;
 | 
						|
  APInt nc, delta, q1, r1, q2, r2;
 | 
						|
  struct mu magu;
 | 
						|
  magu.a = 0;               // initialize "add" indicator
 | 
						|
  APInt allOnes = APInt::getAllOnesValue(d.getBitWidth()).lshr(LeadingZeros);
 | 
						|
  APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
 | 
						|
  APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth());
 | 
						|
 | 
						|
  nc = allOnes - (allOnes - d).urem(d);
 | 
						|
  p = d.getBitWidth() - 1;  // initialize p
 | 
						|
  q1 = signedMin.udiv(nc);  // initialize q1 = 2p/nc
 | 
						|
  r1 = signedMin - q1*nc;   // initialize r1 = rem(2p,nc)
 | 
						|
  q2 = signedMax.udiv(d);   // initialize q2 = (2p-1)/d
 | 
						|
  r2 = signedMax - q2*d;    // initialize r2 = rem((2p-1),d)
 | 
						|
  do {
 | 
						|
    p = p + 1;
 | 
						|
    if (r1.uge(nc - r1)) {
 | 
						|
      q1 = q1 + q1 + 1;  // update q1
 | 
						|
      r1 = r1 + r1 - nc; // update r1
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      q1 = q1+q1; // update q1
 | 
						|
      r1 = r1+r1; // update r1
 | 
						|
    }
 | 
						|
    if ((r2 + 1).uge(d - r2)) {
 | 
						|
      if (q2.uge(signedMax)) magu.a = 1;
 | 
						|
      q2 = q2+q2 + 1;     // update q2
 | 
						|
      r2 = r2+r2 + 1 - d; // update r2
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      if (q2.uge(signedMin)) magu.a = 1;
 | 
						|
      q2 = q2+q2;     // update q2
 | 
						|
      r2 = r2+r2 + 1; // update r2
 | 
						|
    }
 | 
						|
    delta = d - 1 - r2;
 | 
						|
  } while (p < d.getBitWidth()*2 &&
 | 
						|
           (q1.ult(delta) || (q1 == delta && r1 == 0)));
 | 
						|
  magu.m = q2 + 1; // resulting magic number
 | 
						|
  magu.s = p - d.getBitWidth();  // resulting shift
 | 
						|
  return magu;
 | 
						|
}
 | 
						|
 | 
						|
/// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
 | 
						|
/// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
 | 
						|
/// variables here have the same names as in the algorithm. Comments explain
 | 
						|
/// the algorithm and any deviation from it.
 | 
						|
static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r,
 | 
						|
                     unsigned m, unsigned n) {
 | 
						|
  assert(u && "Must provide dividend");
 | 
						|
  assert(v && "Must provide divisor");
 | 
						|
  assert(q && "Must provide quotient");
 | 
						|
  assert(u != v && u != q && v != q && "Must us different memory");
 | 
						|
  assert(n>1 && "n must be > 1");
 | 
						|
 | 
						|
  // Knuth uses the value b as the base of the number system. In our case b
 | 
						|
  // is 2^31 so we just set it to -1u.
 | 
						|
  uint64_t b = uint64_t(1) << 32;
 | 
						|
 | 
						|
#if 0
 | 
						|
  DEBUG(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n');
 | 
						|
  DEBUG(dbgs() << "KnuthDiv: original:");
 | 
						|
  DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
 | 
						|
  DEBUG(dbgs() << " by");
 | 
						|
  DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]);
 | 
						|
  DEBUG(dbgs() << '\n');
 | 
						|
#endif
 | 
						|
  // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
 | 
						|
  // u and v by d. Note that we have taken Knuth's advice here to use a power
 | 
						|
  // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
 | 
						|
  // 2 allows us to shift instead of multiply and it is easy to determine the
 | 
						|
  // shift amount from the leading zeros.  We are basically normalizing the u
 | 
						|
  // and v so that its high bits are shifted to the top of v's range without
 | 
						|
  // overflow. Note that this can require an extra word in u so that u must
 | 
						|
  // be of length m+n+1.
 | 
						|
  unsigned shift = countLeadingZeros(v[n-1]);
 | 
						|
  unsigned v_carry = 0;
 | 
						|
  unsigned u_carry = 0;
 | 
						|
  if (shift) {
 | 
						|
    for (unsigned i = 0; i < m+n; ++i) {
 | 
						|
      unsigned u_tmp = u[i] >> (32 - shift);
 | 
						|
      u[i] = (u[i] << shift) | u_carry;
 | 
						|
      u_carry = u_tmp;
 | 
						|
    }
 | 
						|
    for (unsigned i = 0; i < n; ++i) {
 | 
						|
      unsigned v_tmp = v[i] >> (32 - shift);
 | 
						|
      v[i] = (v[i] << shift) | v_carry;
 | 
						|
      v_carry = v_tmp;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  u[m+n] = u_carry;
 | 
						|
#if 0
 | 
						|
  DEBUG(dbgs() << "KnuthDiv:   normal:");
 | 
						|
  DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
 | 
						|
  DEBUG(dbgs() << " by");
 | 
						|
  DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]);
 | 
						|
  DEBUG(dbgs() << '\n');
 | 
						|
#endif
 | 
						|
 | 
						|
  // D2. [Initialize j.]  Set j to m. This is the loop counter over the places.
 | 
						|
  int j = m;
 | 
						|
  do {
 | 
						|
    DEBUG(dbgs() << "KnuthDiv: quotient digit #" << j << '\n');
 | 
						|
    // D3. [Calculate q'.].
 | 
						|
    //     Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
 | 
						|
    //     Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
 | 
						|
    // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
 | 
						|
    // qp by 1, inrease rp by v[n-1], and repeat this test if rp < b. The test
 | 
						|
    // on v[n-2] determines at high speed most of the cases in which the trial
 | 
						|
    // value qp is one too large, and it eliminates all cases where qp is two
 | 
						|
    // too large.
 | 
						|
    uint64_t dividend = ((uint64_t(u[j+n]) << 32) + u[j+n-1]);
 | 
						|
    DEBUG(dbgs() << "KnuthDiv: dividend == " << dividend << '\n');
 | 
						|
    uint64_t qp = dividend / v[n-1];
 | 
						|
    uint64_t rp = dividend % v[n-1];
 | 
						|
    if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
 | 
						|
      qp--;
 | 
						|
      rp += v[n-1];
 | 
						|
      if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
 | 
						|
        qp--;
 | 
						|
    }
 | 
						|
    DEBUG(dbgs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
 | 
						|
 | 
						|
    // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
 | 
						|
    // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
 | 
						|
    // consists of a simple multiplication by a one-place number, combined with
 | 
						|
    // a subtraction.
 | 
						|
    bool isNeg = false;
 | 
						|
    for (unsigned i = 0; i < n; ++i) {
 | 
						|
      uint64_t u_tmp = uint64_t(u[j+i]) | (uint64_t(u[j+i+1]) << 32);
 | 
						|
      uint64_t subtrahend = uint64_t(qp) * uint64_t(v[i]);
 | 
						|
      bool borrow = subtrahend > u_tmp;
 | 
						|
      DEBUG(dbgs() << "KnuthDiv: u_tmp == " << u_tmp
 | 
						|
                   << ", subtrahend == " << subtrahend
 | 
						|
                   << ", borrow = " << borrow << '\n');
 | 
						|
 | 
						|
      uint64_t result = u_tmp - subtrahend;
 | 
						|
      unsigned k = j + i;
 | 
						|
      u[k++] = (unsigned)(result & (b-1)); // subtract low word
 | 
						|
      u[k++] = (unsigned)(result >> 32);   // subtract high word
 | 
						|
      while (borrow && k <= m+n) { // deal with borrow to the left
 | 
						|
        borrow = u[k] == 0;
 | 
						|
        u[k]--;
 | 
						|
        k++;
 | 
						|
      }
 | 
						|
      isNeg |= borrow;
 | 
						|
      DEBUG(dbgs() << "KnuthDiv: u[j+i] == " << u[j+i] << ",  u[j+i+1] == " <<
 | 
						|
                    u[j+i+1] << '\n');
 | 
						|
    }
 | 
						|
    DEBUG(dbgs() << "KnuthDiv: after subtraction:");
 | 
						|
    DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
 | 
						|
    DEBUG(dbgs() << '\n');
 | 
						|
    // The digits (u[j+n]...u[j]) should be kept positive; if the result of
 | 
						|
    // this step is actually negative, (u[j+n]...u[j]) should be left as the
 | 
						|
    // true value plus b**(n+1), namely as the b's complement of
 | 
						|
    // the true value, and a "borrow" to the left should be remembered.
 | 
						|
    //
 | 
						|
    if (isNeg) {
 | 
						|
      bool carry = true;  // true because b's complement is "complement + 1"
 | 
						|
      for (unsigned i = 0; i <= m+n; ++i) {
 | 
						|
        u[i] = ~u[i] + carry; // b's complement
 | 
						|
        carry = carry && u[i] == 0;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    DEBUG(dbgs() << "KnuthDiv: after complement:");
 | 
						|
    DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
 | 
						|
    DEBUG(dbgs() << '\n');
 | 
						|
 | 
						|
    // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
 | 
						|
    // negative, go to step D6; otherwise go on to step D7.
 | 
						|
    q[j] = (unsigned)qp;
 | 
						|
    if (isNeg) {
 | 
						|
      // D6. [Add back]. The probability that this step is necessary is very
 | 
						|
      // small, on the order of only 2/b. Make sure that test data accounts for
 | 
						|
      // this possibility. Decrease q[j] by 1
 | 
						|
      q[j]--;
 | 
						|
      // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
 | 
						|
      // A carry will occur to the left of u[j+n], and it should be ignored
 | 
						|
      // since it cancels with the borrow that occurred in D4.
 | 
						|
      bool carry = false;
 | 
						|
      for (unsigned i = 0; i < n; i++) {
 | 
						|
        unsigned limit = std::min(u[j+i],v[i]);
 | 
						|
        u[j+i] += v[i] + carry;
 | 
						|
        carry = u[j+i] < limit || (carry && u[j+i] == limit);
 | 
						|
      }
 | 
						|
      u[j+n] += carry;
 | 
						|
    }
 | 
						|
    DEBUG(dbgs() << "KnuthDiv: after correction:");
 | 
						|
    DEBUG(for (int i = m+n; i >=0; i--) dbgs() <<" " << u[i]);
 | 
						|
    DEBUG(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n');
 | 
						|
 | 
						|
  // D7. [Loop on j.]  Decrease j by one. Now if j >= 0, go back to D3.
 | 
						|
  } while (--j >= 0);
 | 
						|
 | 
						|
  DEBUG(dbgs() << "KnuthDiv: quotient:");
 | 
						|
  DEBUG(for (int i = m; i >=0; i--) dbgs() <<" " << q[i]);
 | 
						|
  DEBUG(dbgs() << '\n');
 | 
						|
 | 
						|
  // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
 | 
						|
  // remainder may be obtained by dividing u[...] by d. If r is non-null we
 | 
						|
  // compute the remainder (urem uses this).
 | 
						|
  if (r) {
 | 
						|
    // The value d is expressed by the "shift" value above since we avoided
 | 
						|
    // multiplication by d by using a shift left. So, all we have to do is
 | 
						|
    // shift right here. In order to mak
 | 
						|
    if (shift) {
 | 
						|
      unsigned carry = 0;
 | 
						|
      DEBUG(dbgs() << "KnuthDiv: remainder:");
 | 
						|
      for (int i = n-1; i >= 0; i--) {
 | 
						|
        r[i] = (u[i] >> shift) | carry;
 | 
						|
        carry = u[i] << (32 - shift);
 | 
						|
        DEBUG(dbgs() << " " << r[i]);
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      for (int i = n-1; i >= 0; i--) {
 | 
						|
        r[i] = u[i];
 | 
						|
        DEBUG(dbgs() << " " << r[i]);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    DEBUG(dbgs() << '\n');
 | 
						|
  }
 | 
						|
#if 0
 | 
						|
  DEBUG(dbgs() << '\n');
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
void APInt::divide(const APInt LHS, unsigned lhsWords,
 | 
						|
                   const APInt &RHS, unsigned rhsWords,
 | 
						|
                   APInt *Quotient, APInt *Remainder)
 | 
						|
{
 | 
						|
  assert(lhsWords >= rhsWords && "Fractional result");
 | 
						|
 | 
						|
  // First, compose the values into an array of 32-bit words instead of
 | 
						|
  // 64-bit words. This is a necessity of both the "short division" algorithm
 | 
						|
  // and the Knuth "classical algorithm" which requires there to be native
 | 
						|
  // operations for +, -, and * on an m bit value with an m*2 bit result. We
 | 
						|
  // can't use 64-bit operands here because we don't have native results of
 | 
						|
  // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't
 | 
						|
  // work on large-endian machines.
 | 
						|
  uint64_t mask = ~0ull >> (sizeof(unsigned)*CHAR_BIT);
 | 
						|
  unsigned n = rhsWords * 2;
 | 
						|
  unsigned m = (lhsWords * 2) - n;
 | 
						|
 | 
						|
  // Allocate space for the temporary values we need either on the stack, if
 | 
						|
  // it will fit, or on the heap if it won't.
 | 
						|
  unsigned SPACE[128];
 | 
						|
  unsigned *U = nullptr;
 | 
						|
  unsigned *V = nullptr;
 | 
						|
  unsigned *Q = nullptr;
 | 
						|
  unsigned *R = nullptr;
 | 
						|
  if ((Remainder?4:3)*n+2*m+1 <= 128) {
 | 
						|
    U = &SPACE[0];
 | 
						|
    V = &SPACE[m+n+1];
 | 
						|
    Q = &SPACE[(m+n+1) + n];
 | 
						|
    if (Remainder)
 | 
						|
      R = &SPACE[(m+n+1) + n + (m+n)];
 | 
						|
  } else {
 | 
						|
    U = new unsigned[m + n + 1];
 | 
						|
    V = new unsigned[n];
 | 
						|
    Q = new unsigned[m+n];
 | 
						|
    if (Remainder)
 | 
						|
      R = new unsigned[n];
 | 
						|
  }
 | 
						|
 | 
						|
  // Initialize the dividend
 | 
						|
  memset(U, 0, (m+n+1)*sizeof(unsigned));
 | 
						|
  for (unsigned i = 0; i < lhsWords; ++i) {
 | 
						|
    uint64_t tmp = (LHS.getNumWords() == 1 ? LHS.VAL : LHS.pVal[i]);
 | 
						|
    U[i * 2] = (unsigned)(tmp & mask);
 | 
						|
    U[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT));
 | 
						|
  }
 | 
						|
  U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
 | 
						|
 | 
						|
  // Initialize the divisor
 | 
						|
  memset(V, 0, (n)*sizeof(unsigned));
 | 
						|
  for (unsigned i = 0; i < rhsWords; ++i) {
 | 
						|
    uint64_t tmp = (RHS.getNumWords() == 1 ? RHS.VAL : RHS.pVal[i]);
 | 
						|
    V[i * 2] = (unsigned)(tmp & mask);
 | 
						|
    V[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT));
 | 
						|
  }
 | 
						|
 | 
						|
  // initialize the quotient and remainder
 | 
						|
  memset(Q, 0, (m+n) * sizeof(unsigned));
 | 
						|
  if (Remainder)
 | 
						|
    memset(R, 0, n * sizeof(unsigned));
 | 
						|
 | 
						|
  // Now, adjust m and n for the Knuth division. n is the number of words in
 | 
						|
  // the divisor. m is the number of words by which the dividend exceeds the
 | 
						|
  // divisor (i.e. m+n is the length of the dividend). These sizes must not
 | 
						|
  // contain any zero words or the Knuth algorithm fails.
 | 
						|
  for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
 | 
						|
    n--;
 | 
						|
    m++;
 | 
						|
  }
 | 
						|
  for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
 | 
						|
    m--;
 | 
						|
 | 
						|
  // If we're left with only a single word for the divisor, Knuth doesn't work
 | 
						|
  // so we implement the short division algorithm here. This is much simpler
 | 
						|
  // and faster because we are certain that we can divide a 64-bit quantity
 | 
						|
  // by a 32-bit quantity at hardware speed and short division is simply a
 | 
						|
  // series of such operations. This is just like doing short division but we
 | 
						|
  // are using base 2^32 instead of base 10.
 | 
						|
  assert(n != 0 && "Divide by zero?");
 | 
						|
  if (n == 1) {
 | 
						|
    unsigned divisor = V[0];
 | 
						|
    unsigned remainder = 0;
 | 
						|
    for (int i = m+n-1; i >= 0; i--) {
 | 
						|
      uint64_t partial_dividend = uint64_t(remainder) << 32 | U[i];
 | 
						|
      if (partial_dividend == 0) {
 | 
						|
        Q[i] = 0;
 | 
						|
        remainder = 0;
 | 
						|
      } else if (partial_dividend < divisor) {
 | 
						|
        Q[i] = 0;
 | 
						|
        remainder = (unsigned)partial_dividend;
 | 
						|
      } else if (partial_dividend == divisor) {
 | 
						|
        Q[i] = 1;
 | 
						|
        remainder = 0;
 | 
						|
      } else {
 | 
						|
        Q[i] = (unsigned)(partial_dividend / divisor);
 | 
						|
        remainder = (unsigned)(partial_dividend - (Q[i] * divisor));
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (R)
 | 
						|
      R[0] = remainder;
 | 
						|
  } else {
 | 
						|
    // Now we're ready to invoke the Knuth classical divide algorithm. In this
 | 
						|
    // case n > 1.
 | 
						|
    KnuthDiv(U, V, Q, R, m, n);
 | 
						|
  }
 | 
						|
 | 
						|
  // If the caller wants the quotient
 | 
						|
  if (Quotient) {
 | 
						|
    // Set up the Quotient value's memory.
 | 
						|
    if (Quotient->BitWidth != LHS.BitWidth) {
 | 
						|
      if (Quotient->isSingleWord())
 | 
						|
        Quotient->VAL = 0;
 | 
						|
      else
 | 
						|
        delete [] Quotient->pVal;
 | 
						|
      Quotient->BitWidth = LHS.BitWidth;
 | 
						|
      if (!Quotient->isSingleWord())
 | 
						|
        Quotient->pVal = getClearedMemory(Quotient->getNumWords());
 | 
						|
    } else
 | 
						|
      Quotient->clearAllBits();
 | 
						|
 | 
						|
    // The quotient is in Q. Reconstitute the quotient into Quotient's low
 | 
						|
    // order words.
 | 
						|
    if (lhsWords == 1) {
 | 
						|
      uint64_t tmp =
 | 
						|
        uint64_t(Q[0]) | (uint64_t(Q[1]) << (APINT_BITS_PER_WORD / 2));
 | 
						|
      if (Quotient->isSingleWord())
 | 
						|
        Quotient->VAL = tmp;
 | 
						|
      else
 | 
						|
        Quotient->pVal[0] = tmp;
 | 
						|
    } else {
 | 
						|
      assert(!Quotient->isSingleWord() && "Quotient APInt not large enough");
 | 
						|
      for (unsigned i = 0; i < lhsWords; ++i)
 | 
						|
        Quotient->pVal[i] =
 | 
						|
          uint64_t(Q[i*2]) | (uint64_t(Q[i*2+1]) << (APINT_BITS_PER_WORD / 2));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If the caller wants the remainder
 | 
						|
  if (Remainder) {
 | 
						|
    // Set up the Remainder value's memory.
 | 
						|
    if (Remainder->BitWidth != RHS.BitWidth) {
 | 
						|
      if (Remainder->isSingleWord())
 | 
						|
        Remainder->VAL = 0;
 | 
						|
      else
 | 
						|
        delete [] Remainder->pVal;
 | 
						|
      Remainder->BitWidth = RHS.BitWidth;
 | 
						|
      if (!Remainder->isSingleWord())
 | 
						|
        Remainder->pVal = getClearedMemory(Remainder->getNumWords());
 | 
						|
    } else
 | 
						|
      Remainder->clearAllBits();
 | 
						|
 | 
						|
    // The remainder is in R. Reconstitute the remainder into Remainder's low
 | 
						|
    // order words.
 | 
						|
    if (rhsWords == 1) {
 | 
						|
      uint64_t tmp =
 | 
						|
        uint64_t(R[0]) | (uint64_t(R[1]) << (APINT_BITS_PER_WORD / 2));
 | 
						|
      if (Remainder->isSingleWord())
 | 
						|
        Remainder->VAL = tmp;
 | 
						|
      else
 | 
						|
        Remainder->pVal[0] = tmp;
 | 
						|
    } else {
 | 
						|
      assert(!Remainder->isSingleWord() && "Remainder APInt not large enough");
 | 
						|
      for (unsigned i = 0; i < rhsWords; ++i)
 | 
						|
        Remainder->pVal[i] =
 | 
						|
          uint64_t(R[i*2]) | (uint64_t(R[i*2+1]) << (APINT_BITS_PER_WORD / 2));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Clean up the memory we allocated.
 | 
						|
  if (U != &SPACE[0]) {
 | 
						|
    delete [] U;
 | 
						|
    delete [] V;
 | 
						|
    delete [] Q;
 | 
						|
    delete [] R;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
APInt APInt::udiv(const APInt& RHS) const {
 | 
						|
  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
 | 
						|
 | 
						|
  // First, deal with the easy case
 | 
						|
  if (isSingleWord()) {
 | 
						|
    assert(RHS.VAL != 0 && "Divide by zero?");
 | 
						|
    return APInt(BitWidth, VAL / RHS.VAL);
 | 
						|
  }
 | 
						|
 | 
						|
  // Get some facts about the LHS and RHS number of bits and words
 | 
						|
  unsigned rhsBits = RHS.getActiveBits();
 | 
						|
  unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
 | 
						|
  assert(rhsWords && "Divided by zero???");
 | 
						|
  unsigned lhsBits = this->getActiveBits();
 | 
						|
  unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
 | 
						|
 | 
						|
  // Deal with some degenerate cases
 | 
						|
  if (!lhsWords)
 | 
						|
    // 0 / X ===> 0
 | 
						|
    return APInt(BitWidth, 0);
 | 
						|
  else if (lhsWords < rhsWords || this->ult(RHS)) {
 | 
						|
    // X / Y ===> 0, iff X < Y
 | 
						|
    return APInt(BitWidth, 0);
 | 
						|
  } else if (*this == RHS) {
 | 
						|
    // X / X ===> 1
 | 
						|
    return APInt(BitWidth, 1);
 | 
						|
  } else if (lhsWords == 1 && rhsWords == 1) {
 | 
						|
    // All high words are zero, just use native divide
 | 
						|
    return APInt(BitWidth, this->pVal[0] / RHS.pVal[0]);
 | 
						|
  }
 | 
						|
 | 
						|
  // We have to compute it the hard way. Invoke the Knuth divide algorithm.
 | 
						|
  APInt Quotient(1,0); // to hold result.
 | 
						|
  divide(*this, lhsWords, RHS, rhsWords, &Quotient, nullptr);
 | 
						|
  return Quotient;
 | 
						|
}
 | 
						|
 | 
						|
APInt APInt::sdiv(const APInt &RHS) const {
 | 
						|
  if (isNegative()) {
 | 
						|
    if (RHS.isNegative())
 | 
						|
      return (-(*this)).udiv(-RHS);
 | 
						|
    return -((-(*this)).udiv(RHS));
 | 
						|
  }
 | 
						|
  if (RHS.isNegative())
 | 
						|
    return -(this->udiv(-RHS));
 | 
						|
  return this->udiv(RHS);
 | 
						|
}
 | 
						|
 | 
						|
APInt APInt::urem(const APInt& RHS) const {
 | 
						|
  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
 | 
						|
  if (isSingleWord()) {
 | 
						|
    assert(RHS.VAL != 0 && "Remainder by zero?");
 | 
						|
    return APInt(BitWidth, VAL % RHS.VAL);
 | 
						|
  }
 | 
						|
 | 
						|
  // Get some facts about the LHS
 | 
						|
  unsigned lhsBits = getActiveBits();
 | 
						|
  unsigned lhsWords = !lhsBits ? 0 : (whichWord(lhsBits - 1) + 1);
 | 
						|
 | 
						|
  // Get some facts about the RHS
 | 
						|
  unsigned rhsBits = RHS.getActiveBits();
 | 
						|
  unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
 | 
						|
  assert(rhsWords && "Performing remainder operation by zero ???");
 | 
						|
 | 
						|
  // Check the degenerate cases
 | 
						|
  if (lhsWords == 0) {
 | 
						|
    // 0 % Y ===> 0
 | 
						|
    return APInt(BitWidth, 0);
 | 
						|
  } else if (lhsWords < rhsWords || this->ult(RHS)) {
 | 
						|
    // X % Y ===> X, iff X < Y
 | 
						|
    return *this;
 | 
						|
  } else if (*this == RHS) {
 | 
						|
    // X % X == 0;
 | 
						|
    return APInt(BitWidth, 0);
 | 
						|
  } else if (lhsWords == 1) {
 | 
						|
    // All high words are zero, just use native remainder
 | 
						|
    return APInt(BitWidth, pVal[0] % RHS.pVal[0]);
 | 
						|
  }
 | 
						|
 | 
						|
  // We have to compute it the hard way. Invoke the Knuth divide algorithm.
 | 
						|
  APInt Remainder(1,0);
 | 
						|
  divide(*this, lhsWords, RHS, rhsWords, nullptr, &Remainder);
 | 
						|
  return Remainder;
 | 
						|
}
 | 
						|
 | 
						|
APInt APInt::srem(const APInt &RHS) const {
 | 
						|
  if (isNegative()) {
 | 
						|
    if (RHS.isNegative())
 | 
						|
      return -((-(*this)).urem(-RHS));
 | 
						|
    return -((-(*this)).urem(RHS));
 | 
						|
  }
 | 
						|
  if (RHS.isNegative())
 | 
						|
    return this->urem(-RHS);
 | 
						|
  return this->urem(RHS);
 | 
						|
}
 | 
						|
 | 
						|
void APInt::udivrem(const APInt &LHS, const APInt &RHS,
 | 
						|
                    APInt &Quotient, APInt &Remainder) {
 | 
						|
  // Get some size facts about the dividend and divisor
 | 
						|
  unsigned lhsBits  = LHS.getActiveBits();
 | 
						|
  unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
 | 
						|
  unsigned rhsBits  = RHS.getActiveBits();
 | 
						|
  unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
 | 
						|
 | 
						|
  // Check the degenerate cases
 | 
						|
  if (lhsWords == 0) {
 | 
						|
    Quotient = 0;                // 0 / Y ===> 0
 | 
						|
    Remainder = 0;               // 0 % Y ===> 0
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (lhsWords < rhsWords || LHS.ult(RHS)) {
 | 
						|
    Remainder = LHS;            // X % Y ===> X, iff X < Y
 | 
						|
    Quotient = 0;               // X / Y ===> 0, iff X < Y
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (LHS == RHS) {
 | 
						|
    Quotient  = 1;              // X / X ===> 1
 | 
						|
    Remainder = 0;              // X % X ===> 0;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (lhsWords == 1 && rhsWords == 1) {
 | 
						|
    // There is only one word to consider so use the native versions.
 | 
						|
    uint64_t lhsValue = LHS.isSingleWord() ? LHS.VAL : LHS.pVal[0];
 | 
						|
    uint64_t rhsValue = RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
 | 
						|
    Quotient = APInt(LHS.getBitWidth(), lhsValue / rhsValue);
 | 
						|
    Remainder = APInt(LHS.getBitWidth(), lhsValue % rhsValue);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Okay, lets do it the long way
 | 
						|
  divide(LHS, lhsWords, RHS, rhsWords, &Quotient, &Remainder);
 | 
						|
}
 | 
						|
 | 
						|
void APInt::sdivrem(const APInt &LHS, const APInt &RHS,
 | 
						|
                    APInt &Quotient, APInt &Remainder) {
 | 
						|
  if (LHS.isNegative()) {
 | 
						|
    if (RHS.isNegative())
 | 
						|
      APInt::udivrem(-LHS, -RHS, Quotient, Remainder);
 | 
						|
    else {
 | 
						|
      APInt::udivrem(-LHS, RHS, Quotient, Remainder);
 | 
						|
      Quotient = -Quotient;
 | 
						|
    }
 | 
						|
    Remainder = -Remainder;
 | 
						|
  } else if (RHS.isNegative()) {
 | 
						|
    APInt::udivrem(LHS, -RHS, Quotient, Remainder);
 | 
						|
    Quotient = -Quotient;
 | 
						|
  } else {
 | 
						|
    APInt::udivrem(LHS, RHS, Quotient, Remainder);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
APInt APInt::sadd_ov(const APInt &RHS, bool &Overflow) const {
 | 
						|
  APInt Res = *this+RHS;
 | 
						|
  Overflow = isNonNegative() == RHS.isNonNegative() &&
 | 
						|
             Res.isNonNegative() != isNonNegative();
 | 
						|
  return Res;
 | 
						|
}
 | 
						|
 | 
						|
APInt APInt::uadd_ov(const APInt &RHS, bool &Overflow) const {
 | 
						|
  APInt Res = *this+RHS;
 | 
						|
  Overflow = Res.ult(RHS);
 | 
						|
  return Res;
 | 
						|
}
 | 
						|
 | 
						|
APInt APInt::ssub_ov(const APInt &RHS, bool &Overflow) const {
 | 
						|
  APInt Res = *this - RHS;
 | 
						|
  Overflow = isNonNegative() != RHS.isNonNegative() &&
 | 
						|
             Res.isNonNegative() != isNonNegative();
 | 
						|
  return Res;
 | 
						|
}
 | 
						|
 | 
						|
APInt APInt::usub_ov(const APInt &RHS, bool &Overflow) const {
 | 
						|
  APInt Res = *this-RHS;
 | 
						|
  Overflow = Res.ugt(*this);
 | 
						|
  return Res;
 | 
						|
}
 | 
						|
 | 
						|
APInt APInt::sdiv_ov(const APInt &RHS, bool &Overflow) const {
 | 
						|
  // MININT/-1  -->  overflow.
 | 
						|
  Overflow = isMinSignedValue() && RHS.isAllOnesValue();
 | 
						|
  return sdiv(RHS);
 | 
						|
}
 | 
						|
 | 
						|
APInt APInt::smul_ov(const APInt &RHS, bool &Overflow) const {
 | 
						|
  APInt Res = *this * RHS;
 | 
						|
  
 | 
						|
  if (*this != 0 && RHS != 0)
 | 
						|
    Overflow = Res.sdiv(RHS) != *this || Res.sdiv(*this) != RHS;
 | 
						|
  else
 | 
						|
    Overflow = false;
 | 
						|
  return Res;
 | 
						|
}
 | 
						|
 | 
						|
APInt APInt::umul_ov(const APInt &RHS, bool &Overflow) const {
 | 
						|
  APInt Res = *this * RHS;
 | 
						|
 | 
						|
  if (*this != 0 && RHS != 0)
 | 
						|
    Overflow = Res.udiv(RHS) != *this || Res.udiv(*this) != RHS;
 | 
						|
  else
 | 
						|
    Overflow = false;
 | 
						|
  return Res;
 | 
						|
}
 | 
						|
 | 
						|
APInt APInt::sshl_ov(const APInt &ShAmt, bool &Overflow) const {
 | 
						|
  Overflow = ShAmt.uge(getBitWidth());
 | 
						|
  if (Overflow)
 | 
						|
    return APInt(BitWidth, 0);
 | 
						|
 | 
						|
  if (isNonNegative()) // Don't allow sign change.
 | 
						|
    Overflow = ShAmt.uge(countLeadingZeros());
 | 
						|
  else
 | 
						|
    Overflow = ShAmt.uge(countLeadingOnes());
 | 
						|
  
 | 
						|
  return *this << ShAmt;
 | 
						|
}
 | 
						|
 | 
						|
APInt APInt::ushl_ov(const APInt &ShAmt, bool &Overflow) const {
 | 
						|
  Overflow = ShAmt.uge(getBitWidth());
 | 
						|
  if (Overflow)
 | 
						|
    return APInt(BitWidth, 0);
 | 
						|
 | 
						|
  Overflow = ShAmt.ugt(countLeadingZeros());
 | 
						|
 | 
						|
  return *this << ShAmt;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
void APInt::fromString(unsigned numbits, StringRef str, uint8_t radix) {
 | 
						|
  // Check our assumptions here
 | 
						|
  assert(!str.empty() && "Invalid string length");
 | 
						|
  assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 || 
 | 
						|
          radix == 36) &&
 | 
						|
         "Radix should be 2, 8, 10, 16, or 36!");
 | 
						|
 | 
						|
  StringRef::iterator p = str.begin();
 | 
						|
  size_t slen = str.size();
 | 
						|
  bool isNeg = *p == '-';
 | 
						|
  if (*p == '-' || *p == '+') {
 | 
						|
    p++;
 | 
						|
    slen--;
 | 
						|
    assert(slen && "String is only a sign, needs a value.");
 | 
						|
  }
 | 
						|
  assert((slen <= numbits || radix != 2) && "Insufficient bit width");
 | 
						|
  assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width");
 | 
						|
  assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width");
 | 
						|
  assert((((slen-1)*64)/22 <= numbits || radix != 10) &&
 | 
						|
         "Insufficient bit width");
 | 
						|
 | 
						|
  // Allocate memory
 | 
						|
  if (!isSingleWord())
 | 
						|
    pVal = getClearedMemory(getNumWords());
 | 
						|
 | 
						|
  // Figure out if we can shift instead of multiply
 | 
						|
  unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
 | 
						|
 | 
						|
  // Set up an APInt for the digit to add outside the loop so we don't
 | 
						|
  // constantly construct/destruct it.
 | 
						|
  APInt apdigit(getBitWidth(), 0);
 | 
						|
  APInt apradix(getBitWidth(), radix);
 | 
						|
 | 
						|
  // Enter digit traversal loop
 | 
						|
  for (StringRef::iterator e = str.end(); p != e; ++p) {
 | 
						|
    unsigned digit = getDigit(*p, radix);
 | 
						|
    assert(digit < radix && "Invalid character in digit string");
 | 
						|
 | 
						|
    // Shift or multiply the value by the radix
 | 
						|
    if (slen > 1) {
 | 
						|
      if (shift)
 | 
						|
        *this <<= shift;
 | 
						|
      else
 | 
						|
        *this *= apradix;
 | 
						|
    }
 | 
						|
 | 
						|
    // Add in the digit we just interpreted
 | 
						|
    if (apdigit.isSingleWord())
 | 
						|
      apdigit.VAL = digit;
 | 
						|
    else
 | 
						|
      apdigit.pVal[0] = digit;
 | 
						|
    *this += apdigit;
 | 
						|
  }
 | 
						|
  // If its negative, put it in two's complement form
 | 
						|
  if (isNeg) {
 | 
						|
    --(*this);
 | 
						|
    this->flipAllBits();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix,
 | 
						|
                     bool Signed, bool formatAsCLiteral) const {
 | 
						|
  assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 || 
 | 
						|
          Radix == 36) &&
 | 
						|
         "Radix should be 2, 8, 10, 16, or 36!");
 | 
						|
 | 
						|
  const char *Prefix = "";
 | 
						|
  if (formatAsCLiteral) {
 | 
						|
    switch (Radix) {
 | 
						|
      case 2:
 | 
						|
        // Binary literals are a non-standard extension added in gcc 4.3:
 | 
						|
        // http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Binary-constants.html
 | 
						|
        Prefix = "0b";
 | 
						|
        break;
 | 
						|
      case 8:
 | 
						|
        Prefix = "0";
 | 
						|
        break;
 | 
						|
      case 10:
 | 
						|
        break; // No prefix
 | 
						|
      case 16:
 | 
						|
        Prefix = "0x";
 | 
						|
        break;
 | 
						|
      default:
 | 
						|
        llvm_unreachable("Invalid radix!");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // First, check for a zero value and just short circuit the logic below.
 | 
						|
  if (*this == 0) {
 | 
						|
    while (*Prefix) {
 | 
						|
      Str.push_back(*Prefix);
 | 
						|
      ++Prefix;
 | 
						|
    };
 | 
						|
    Str.push_back('0');
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  static const char Digits[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
 | 
						|
 | 
						|
  if (isSingleWord()) {
 | 
						|
    char Buffer[65];
 | 
						|
    char *BufPtr = Buffer+65;
 | 
						|
 | 
						|
    uint64_t N;
 | 
						|
    if (!Signed) {
 | 
						|
      N = getZExtValue();
 | 
						|
    } else {
 | 
						|
      int64_t I = getSExtValue();
 | 
						|
      if (I >= 0) {
 | 
						|
        N = I;
 | 
						|
      } else {
 | 
						|
        Str.push_back('-');
 | 
						|
        N = -(uint64_t)I;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    while (*Prefix) {
 | 
						|
      Str.push_back(*Prefix);
 | 
						|
      ++Prefix;
 | 
						|
    };
 | 
						|
 | 
						|
    while (N) {
 | 
						|
      *--BufPtr = Digits[N % Radix];
 | 
						|
      N /= Radix;
 | 
						|
    }
 | 
						|
    Str.append(BufPtr, Buffer+65);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  APInt Tmp(*this);
 | 
						|
 | 
						|
  if (Signed && isNegative()) {
 | 
						|
    // They want to print the signed version and it is a negative value
 | 
						|
    // Flip the bits and add one to turn it into the equivalent positive
 | 
						|
    // value and put a '-' in the result.
 | 
						|
    Tmp.flipAllBits();
 | 
						|
    ++Tmp;
 | 
						|
    Str.push_back('-');
 | 
						|
  }
 | 
						|
 | 
						|
  while (*Prefix) {
 | 
						|
    Str.push_back(*Prefix);
 | 
						|
    ++Prefix;
 | 
						|
  };
 | 
						|
 | 
						|
  // We insert the digits backward, then reverse them to get the right order.
 | 
						|
  unsigned StartDig = Str.size();
 | 
						|
 | 
						|
  // For the 2, 8 and 16 bit cases, we can just shift instead of divide
 | 
						|
  // because the number of bits per digit (1, 3 and 4 respectively) divides
 | 
						|
  // equaly.  We just shift until the value is zero.
 | 
						|
  if (Radix == 2 || Radix == 8 || Radix == 16) {
 | 
						|
    // Just shift tmp right for each digit width until it becomes zero
 | 
						|
    unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1));
 | 
						|
    unsigned MaskAmt = Radix - 1;
 | 
						|
 | 
						|
    while (Tmp != 0) {
 | 
						|
      unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt;
 | 
						|
      Str.push_back(Digits[Digit]);
 | 
						|
      Tmp = Tmp.lshr(ShiftAmt);
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    APInt divisor(Radix == 10? 4 : 8, Radix);
 | 
						|
    while (Tmp != 0) {
 | 
						|
      APInt APdigit(1, 0);
 | 
						|
      APInt tmp2(Tmp.getBitWidth(), 0);
 | 
						|
      divide(Tmp, Tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2,
 | 
						|
             &APdigit);
 | 
						|
      unsigned Digit = (unsigned)APdigit.getZExtValue();
 | 
						|
      assert(Digit < Radix && "divide failed");
 | 
						|
      Str.push_back(Digits[Digit]);
 | 
						|
      Tmp = tmp2;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Reverse the digits before returning.
 | 
						|
  std::reverse(Str.begin()+StartDig, Str.end());
 | 
						|
}
 | 
						|
 | 
						|
/// toString - This returns the APInt as a std::string.  Note that this is an
 | 
						|
/// inefficient method.  It is better to pass in a SmallVector/SmallString
 | 
						|
/// to the methods above.
 | 
						|
std::string APInt::toString(unsigned Radix = 10, bool Signed = true) const {
 | 
						|
  SmallString<40> S;
 | 
						|
  toString(S, Radix, Signed, /* formatAsCLiteral = */false);
 | 
						|
  return S.str();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void APInt::dump() const {
 | 
						|
  SmallString<40> S, U;
 | 
						|
  this->toStringUnsigned(U);
 | 
						|
  this->toStringSigned(S);
 | 
						|
  dbgs() << "APInt(" << BitWidth << "b, "
 | 
						|
         << U.str() << "u " << S.str() << "s)";
 | 
						|
}
 | 
						|
 | 
						|
void APInt::print(raw_ostream &OS, bool isSigned) const {
 | 
						|
  SmallString<40> S;
 | 
						|
  this->toString(S, 10, isSigned, /* formatAsCLiteral = */false);
 | 
						|
  OS << S.str();
 | 
						|
}
 | 
						|
 | 
						|
// This implements a variety of operations on a representation of
 | 
						|
// arbitrary precision, two's-complement, bignum integer values.
 | 
						|
 | 
						|
// Assumed by lowHalf, highHalf, partMSB and partLSB.  A fairly safe
 | 
						|
// and unrestricting assumption.
 | 
						|
static_assert(integerPartWidth % 2 == 0, "Part width must be divisible by 2!");
 | 
						|
 | 
						|
/* Some handy functions local to this file.  */
 | 
						|
namespace {
 | 
						|
 | 
						|
  /* Returns the integer part with the least significant BITS set.
 | 
						|
     BITS cannot be zero.  */
 | 
						|
  static inline integerPart
 | 
						|
  lowBitMask(unsigned int bits)
 | 
						|
  {
 | 
						|
    assert(bits != 0 && bits <= integerPartWidth);
 | 
						|
 | 
						|
    return ~(integerPart) 0 >> (integerPartWidth - bits);
 | 
						|
  }
 | 
						|
 | 
						|
  /* Returns the value of the lower half of PART.  */
 | 
						|
  static inline integerPart
 | 
						|
  lowHalf(integerPart part)
 | 
						|
  {
 | 
						|
    return part & lowBitMask(integerPartWidth / 2);
 | 
						|
  }
 | 
						|
 | 
						|
  /* Returns the value of the upper half of PART.  */
 | 
						|
  static inline integerPart
 | 
						|
  highHalf(integerPart part)
 | 
						|
  {
 | 
						|
    return part >> (integerPartWidth / 2);
 | 
						|
  }
 | 
						|
 | 
						|
  /* Returns the bit number of the most significant set bit of a part.
 | 
						|
     If the input number has no bits set -1U is returned.  */
 | 
						|
  static unsigned int
 | 
						|
  partMSB(integerPart value)
 | 
						|
  {
 | 
						|
    return findLastSet(value, ZB_Max);
 | 
						|
  }
 | 
						|
 | 
						|
  /* Returns the bit number of the least significant set bit of a
 | 
						|
     part.  If the input number has no bits set -1U is returned.  */
 | 
						|
  static unsigned int
 | 
						|
  partLSB(integerPart value)
 | 
						|
  {
 | 
						|
    return findFirstSet(value, ZB_Max);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/* Sets the least significant part of a bignum to the input value, and
 | 
						|
   zeroes out higher parts.  */
 | 
						|
void
 | 
						|
APInt::tcSet(integerPart *dst, integerPart part, unsigned int parts)
 | 
						|
{
 | 
						|
  unsigned int i;
 | 
						|
 | 
						|
  assert(parts > 0);
 | 
						|
 | 
						|
  dst[0] = part;
 | 
						|
  for (i = 1; i < parts; i++)
 | 
						|
    dst[i] = 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Assign one bignum to another.  */
 | 
						|
void
 | 
						|
APInt::tcAssign(integerPart *dst, const integerPart *src, unsigned int parts)
 | 
						|
{
 | 
						|
  unsigned int i;
 | 
						|
 | 
						|
  for (i = 0; i < parts; i++)
 | 
						|
    dst[i] = src[i];
 | 
						|
}
 | 
						|
 | 
						|
/* Returns true if a bignum is zero, false otherwise.  */
 | 
						|
bool
 | 
						|
APInt::tcIsZero(const integerPart *src, unsigned int parts)
 | 
						|
{
 | 
						|
  unsigned int i;
 | 
						|
 | 
						|
  for (i = 0; i < parts; i++)
 | 
						|
    if (src[i])
 | 
						|
      return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/* Extract the given bit of a bignum; returns 0 or 1.  */
 | 
						|
int
 | 
						|
APInt::tcExtractBit(const integerPart *parts, unsigned int bit)
 | 
						|
{
 | 
						|
  return (parts[bit / integerPartWidth] &
 | 
						|
          ((integerPart) 1 << bit % integerPartWidth)) != 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Set the given bit of a bignum. */
 | 
						|
void
 | 
						|
APInt::tcSetBit(integerPart *parts, unsigned int bit)
 | 
						|
{
 | 
						|
  parts[bit / integerPartWidth] |= (integerPart) 1 << (bit % integerPartWidth);
 | 
						|
}
 | 
						|
 | 
						|
/* Clears the given bit of a bignum. */
 | 
						|
void
 | 
						|
APInt::tcClearBit(integerPart *parts, unsigned int bit)
 | 
						|
{
 | 
						|
  parts[bit / integerPartWidth] &=
 | 
						|
    ~((integerPart) 1 << (bit % integerPartWidth));
 | 
						|
}
 | 
						|
 | 
						|
/* Returns the bit number of the least significant set bit of a
 | 
						|
   number.  If the input number has no bits set -1U is returned.  */
 | 
						|
unsigned int
 | 
						|
APInt::tcLSB(const integerPart *parts, unsigned int n)
 | 
						|
{
 | 
						|
  unsigned int i, lsb;
 | 
						|
 | 
						|
  for (i = 0; i < n; i++) {
 | 
						|
      if (parts[i] != 0) {
 | 
						|
          lsb = partLSB(parts[i]);
 | 
						|
 | 
						|
          return lsb + i * integerPartWidth;
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  return -1U;
 | 
						|
}
 | 
						|
 | 
						|
/* Returns the bit number of the most significant set bit of a number.
 | 
						|
   If the input number has no bits set -1U is returned.  */
 | 
						|
unsigned int
 | 
						|
APInt::tcMSB(const integerPart *parts, unsigned int n)
 | 
						|
{
 | 
						|
  unsigned int msb;
 | 
						|
 | 
						|
  do {
 | 
						|
    --n;
 | 
						|
 | 
						|
    if (parts[n] != 0) {
 | 
						|
      msb = partMSB(parts[n]);
 | 
						|
 | 
						|
      return msb + n * integerPartWidth;
 | 
						|
    }
 | 
						|
  } while (n);
 | 
						|
 | 
						|
  return -1U;
 | 
						|
}
 | 
						|
 | 
						|
/* Copy the bit vector of width srcBITS from SRC, starting at bit
 | 
						|
   srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB becomes
 | 
						|
   the least significant bit of DST.  All high bits above srcBITS in
 | 
						|
   DST are zero-filled.  */
 | 
						|
void
 | 
						|
APInt::tcExtract(integerPart *dst, unsigned int dstCount,const integerPart *src,
 | 
						|
                 unsigned int srcBits, unsigned int srcLSB)
 | 
						|
{
 | 
						|
  unsigned int firstSrcPart, dstParts, shift, n;
 | 
						|
 | 
						|
  dstParts = (srcBits + integerPartWidth - 1) / integerPartWidth;
 | 
						|
  assert(dstParts <= dstCount);
 | 
						|
 | 
						|
  firstSrcPart = srcLSB / integerPartWidth;
 | 
						|
  tcAssign (dst, src + firstSrcPart, dstParts);
 | 
						|
 | 
						|
  shift = srcLSB % integerPartWidth;
 | 
						|
  tcShiftRight (dst, dstParts, shift);
 | 
						|
 | 
						|
  /* We now have (dstParts * integerPartWidth - shift) bits from SRC
 | 
						|
     in DST.  If this is less that srcBits, append the rest, else
 | 
						|
     clear the high bits.  */
 | 
						|
  n = dstParts * integerPartWidth - shift;
 | 
						|
  if (n < srcBits) {
 | 
						|
    integerPart mask = lowBitMask (srcBits - n);
 | 
						|
    dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask)
 | 
						|
                          << n % integerPartWidth);
 | 
						|
  } else if (n > srcBits) {
 | 
						|
    if (srcBits % integerPartWidth)
 | 
						|
      dst[dstParts - 1] &= lowBitMask (srcBits % integerPartWidth);
 | 
						|
  }
 | 
						|
 | 
						|
  /* Clear high parts.  */
 | 
						|
  while (dstParts < dstCount)
 | 
						|
    dst[dstParts++] = 0;
 | 
						|
}
 | 
						|
 | 
						|
/* DST += RHS + C where C is zero or one.  Returns the carry flag.  */
 | 
						|
integerPart
 | 
						|
APInt::tcAdd(integerPart *dst, const integerPart *rhs,
 | 
						|
             integerPart c, unsigned int parts)
 | 
						|
{
 | 
						|
  unsigned int i;
 | 
						|
 | 
						|
  assert(c <= 1);
 | 
						|
 | 
						|
  for (i = 0; i < parts; i++) {
 | 
						|
    integerPart l;
 | 
						|
 | 
						|
    l = dst[i];
 | 
						|
    if (c) {
 | 
						|
      dst[i] += rhs[i] + 1;
 | 
						|
      c = (dst[i] <= l);
 | 
						|
    } else {
 | 
						|
      dst[i] += rhs[i];
 | 
						|
      c = (dst[i] < l);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return c;
 | 
						|
}
 | 
						|
 | 
						|
/* DST -= RHS + C where C is zero or one.  Returns the carry flag.  */
 | 
						|
integerPart
 | 
						|
APInt::tcSubtract(integerPart *dst, const integerPart *rhs,
 | 
						|
                  integerPart c, unsigned int parts)
 | 
						|
{
 | 
						|
  unsigned int i;
 | 
						|
 | 
						|
  assert(c <= 1);
 | 
						|
 | 
						|
  for (i = 0; i < parts; i++) {
 | 
						|
    integerPart l;
 | 
						|
 | 
						|
    l = dst[i];
 | 
						|
    if (c) {
 | 
						|
      dst[i] -= rhs[i] + 1;
 | 
						|
      c = (dst[i] >= l);
 | 
						|
    } else {
 | 
						|
      dst[i] -= rhs[i];
 | 
						|
      c = (dst[i] > l);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return c;
 | 
						|
}
 | 
						|
 | 
						|
/* Negate a bignum in-place.  */
 | 
						|
void
 | 
						|
APInt::tcNegate(integerPart *dst, unsigned int parts)
 | 
						|
{
 | 
						|
  tcComplement(dst, parts);
 | 
						|
  tcIncrement(dst, parts);
 | 
						|
}
 | 
						|
 | 
						|
/*  DST += SRC * MULTIPLIER + CARRY   if add is true
 | 
						|
    DST  = SRC * MULTIPLIER + CARRY   if add is false
 | 
						|
 | 
						|
    Requires 0 <= DSTPARTS <= SRCPARTS + 1.  If DST overlaps SRC
 | 
						|
    they must start at the same point, i.e. DST == SRC.
 | 
						|
 | 
						|
    If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is
 | 
						|
    returned.  Otherwise DST is filled with the least significant
 | 
						|
    DSTPARTS parts of the result, and if all of the omitted higher
 | 
						|
    parts were zero return zero, otherwise overflow occurred and
 | 
						|
    return one.  */
 | 
						|
int
 | 
						|
APInt::tcMultiplyPart(integerPart *dst, const integerPart *src,
 | 
						|
                      integerPart multiplier, integerPart carry,
 | 
						|
                      unsigned int srcParts, unsigned int dstParts,
 | 
						|
                      bool add)
 | 
						|
{
 | 
						|
  unsigned int i, n;
 | 
						|
 | 
						|
  /* Otherwise our writes of DST kill our later reads of SRC.  */
 | 
						|
  assert(dst <= src || dst >= src + srcParts);
 | 
						|
  assert(dstParts <= srcParts + 1);
 | 
						|
 | 
						|
  /* N loops; minimum of dstParts and srcParts.  */
 | 
						|
  n = dstParts < srcParts ? dstParts: srcParts;
 | 
						|
 | 
						|
  for (i = 0; i < n; i++) {
 | 
						|
    integerPart low, mid, high, srcPart;
 | 
						|
 | 
						|
      /* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY.
 | 
						|
 | 
						|
         This cannot overflow, because
 | 
						|
 | 
						|
         (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1)
 | 
						|
 | 
						|
         which is less than n^2.  */
 | 
						|
 | 
						|
    srcPart = src[i];
 | 
						|
 | 
						|
    if (multiplier == 0 || srcPart == 0)        {
 | 
						|
      low = carry;
 | 
						|
      high = 0;
 | 
						|
    } else {
 | 
						|
      low = lowHalf(srcPart) * lowHalf(multiplier);
 | 
						|
      high = highHalf(srcPart) * highHalf(multiplier);
 | 
						|
 | 
						|
      mid = lowHalf(srcPart) * highHalf(multiplier);
 | 
						|
      high += highHalf(mid);
 | 
						|
      mid <<= integerPartWidth / 2;
 | 
						|
      if (low + mid < low)
 | 
						|
        high++;
 | 
						|
      low += mid;
 | 
						|
 | 
						|
      mid = highHalf(srcPart) * lowHalf(multiplier);
 | 
						|
      high += highHalf(mid);
 | 
						|
      mid <<= integerPartWidth / 2;
 | 
						|
      if (low + mid < low)
 | 
						|
        high++;
 | 
						|
      low += mid;
 | 
						|
 | 
						|
      /* Now add carry.  */
 | 
						|
      if (low + carry < low)
 | 
						|
        high++;
 | 
						|
      low += carry;
 | 
						|
    }
 | 
						|
 | 
						|
    if (add) {
 | 
						|
      /* And now DST[i], and store the new low part there.  */
 | 
						|
      if (low + dst[i] < low)
 | 
						|
        high++;
 | 
						|
      dst[i] += low;
 | 
						|
    } else
 | 
						|
      dst[i] = low;
 | 
						|
 | 
						|
    carry = high;
 | 
						|
  }
 | 
						|
 | 
						|
  if (i < dstParts) {
 | 
						|
    /* Full multiplication, there is no overflow.  */
 | 
						|
    assert(i + 1 == dstParts);
 | 
						|
    dst[i] = carry;
 | 
						|
    return 0;
 | 
						|
  } else {
 | 
						|
    /* We overflowed if there is carry.  */
 | 
						|
    if (carry)
 | 
						|
      return 1;
 | 
						|
 | 
						|
    /* We would overflow if any significant unwritten parts would be
 | 
						|
       non-zero.  This is true if any remaining src parts are non-zero
 | 
						|
       and the multiplier is non-zero.  */
 | 
						|
    if (multiplier)
 | 
						|
      for (; i < srcParts; i++)
 | 
						|
        if (src[i])
 | 
						|
          return 1;
 | 
						|
 | 
						|
    /* We fitted in the narrow destination.  */
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/* DST = LHS * RHS, where DST has the same width as the operands and
 | 
						|
   is filled with the least significant parts of the result.  Returns
 | 
						|
   one if overflow occurred, otherwise zero.  DST must be disjoint
 | 
						|
   from both operands.  */
 | 
						|
int
 | 
						|
APInt::tcMultiply(integerPart *dst, const integerPart *lhs,
 | 
						|
                  const integerPart *rhs, unsigned int parts)
 | 
						|
{
 | 
						|
  unsigned int i;
 | 
						|
  int overflow;
 | 
						|
 | 
						|
  assert(dst != lhs && dst != rhs);
 | 
						|
 | 
						|
  overflow = 0;
 | 
						|
  tcSet(dst, 0, parts);
 | 
						|
 | 
						|
  for (i = 0; i < parts; i++)
 | 
						|
    overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts,
 | 
						|
                               parts - i, true);
 | 
						|
 | 
						|
  return overflow;
 | 
						|
}
 | 
						|
 | 
						|
/* DST = LHS * RHS, where DST has width the sum of the widths of the
 | 
						|
   operands.  No overflow occurs.  DST must be disjoint from both
 | 
						|
   operands.  Returns the number of parts required to hold the
 | 
						|
   result.  */
 | 
						|
unsigned int
 | 
						|
APInt::tcFullMultiply(integerPart *dst, const integerPart *lhs,
 | 
						|
                      const integerPart *rhs, unsigned int lhsParts,
 | 
						|
                      unsigned int rhsParts)
 | 
						|
{
 | 
						|
  /* Put the narrower number on the LHS for less loops below.  */
 | 
						|
  if (lhsParts > rhsParts) {
 | 
						|
    return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts);
 | 
						|
  } else {
 | 
						|
    unsigned int n;
 | 
						|
 | 
						|
    assert(dst != lhs && dst != rhs);
 | 
						|
 | 
						|
    tcSet(dst, 0, rhsParts);
 | 
						|
 | 
						|
    for (n = 0; n < lhsParts; n++)
 | 
						|
      tcMultiplyPart(&dst[n], rhs, lhs[n], 0, rhsParts, rhsParts + 1, true);
 | 
						|
 | 
						|
    n = lhsParts + rhsParts;
 | 
						|
 | 
						|
    return n - (dst[n - 1] == 0);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/* If RHS is zero LHS and REMAINDER are left unchanged, return one.
 | 
						|
   Otherwise set LHS to LHS / RHS with the fractional part discarded,
 | 
						|
   set REMAINDER to the remainder, return zero.  i.e.
 | 
						|
 | 
						|
   OLD_LHS = RHS * LHS + REMAINDER
 | 
						|
 | 
						|
   SCRATCH is a bignum of the same size as the operands and result for
 | 
						|
   use by the routine; its contents need not be initialized and are
 | 
						|
   destroyed.  LHS, REMAINDER and SCRATCH must be distinct.
 | 
						|
*/
 | 
						|
int
 | 
						|
APInt::tcDivide(integerPart *lhs, const integerPart *rhs,
 | 
						|
                integerPart *remainder, integerPart *srhs,
 | 
						|
                unsigned int parts)
 | 
						|
{
 | 
						|
  unsigned int n, shiftCount;
 | 
						|
  integerPart mask;
 | 
						|
 | 
						|
  assert(lhs != remainder && lhs != srhs && remainder != srhs);
 | 
						|
 | 
						|
  shiftCount = tcMSB(rhs, parts) + 1;
 | 
						|
  if (shiftCount == 0)
 | 
						|
    return true;
 | 
						|
 | 
						|
  shiftCount = parts * integerPartWidth - shiftCount;
 | 
						|
  n = shiftCount / integerPartWidth;
 | 
						|
  mask = (integerPart) 1 << (shiftCount % integerPartWidth);
 | 
						|
 | 
						|
  tcAssign(srhs, rhs, parts);
 | 
						|
  tcShiftLeft(srhs, parts, shiftCount);
 | 
						|
  tcAssign(remainder, lhs, parts);
 | 
						|
  tcSet(lhs, 0, parts);
 | 
						|
 | 
						|
  /* Loop, subtracting SRHS if REMAINDER is greater and adding that to
 | 
						|
     the total.  */
 | 
						|
  for (;;) {
 | 
						|
      int compare;
 | 
						|
 | 
						|
      compare = tcCompare(remainder, srhs, parts);
 | 
						|
      if (compare >= 0) {
 | 
						|
        tcSubtract(remainder, srhs, 0, parts);
 | 
						|
        lhs[n] |= mask;
 | 
						|
      }
 | 
						|
 | 
						|
      if (shiftCount == 0)
 | 
						|
        break;
 | 
						|
      shiftCount--;
 | 
						|
      tcShiftRight(srhs, parts, 1);
 | 
						|
      if ((mask >>= 1) == 0)
 | 
						|
        mask = (integerPart) 1 << (integerPartWidth - 1), n--;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/* Shift a bignum left COUNT bits in-place.  Shifted in bits are zero.
 | 
						|
   There are no restrictions on COUNT.  */
 | 
						|
void
 | 
						|
APInt::tcShiftLeft(integerPart *dst, unsigned int parts, unsigned int count)
 | 
						|
{
 | 
						|
  if (count) {
 | 
						|
    unsigned int jump, shift;
 | 
						|
 | 
						|
    /* Jump is the inter-part jump; shift is is intra-part shift.  */
 | 
						|
    jump = count / integerPartWidth;
 | 
						|
    shift = count % integerPartWidth;
 | 
						|
 | 
						|
    while (parts > jump) {
 | 
						|
      integerPart part;
 | 
						|
 | 
						|
      parts--;
 | 
						|
 | 
						|
      /* dst[i] comes from the two parts src[i - jump] and, if we have
 | 
						|
         an intra-part shift, src[i - jump - 1].  */
 | 
						|
      part = dst[parts - jump];
 | 
						|
      if (shift) {
 | 
						|
        part <<= shift;
 | 
						|
        if (parts >= jump + 1)
 | 
						|
          part |= dst[parts - jump - 1] >> (integerPartWidth - shift);
 | 
						|
      }
 | 
						|
 | 
						|
      dst[parts] = part;
 | 
						|
    }
 | 
						|
 | 
						|
    while (parts > 0)
 | 
						|
      dst[--parts] = 0;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/* Shift a bignum right COUNT bits in-place.  Shifted in bits are
 | 
						|
   zero.  There are no restrictions on COUNT.  */
 | 
						|
void
 | 
						|
APInt::tcShiftRight(integerPart *dst, unsigned int parts, unsigned int count)
 | 
						|
{
 | 
						|
  if (count) {
 | 
						|
    unsigned int i, jump, shift;
 | 
						|
 | 
						|
    /* Jump is the inter-part jump; shift is is intra-part shift.  */
 | 
						|
    jump = count / integerPartWidth;
 | 
						|
    shift = count % integerPartWidth;
 | 
						|
 | 
						|
    /* Perform the shift.  This leaves the most significant COUNT bits
 | 
						|
       of the result at zero.  */
 | 
						|
    for (i = 0; i < parts; i++) {
 | 
						|
      integerPart part;
 | 
						|
 | 
						|
      if (i + jump >= parts) {
 | 
						|
        part = 0;
 | 
						|
      } else {
 | 
						|
        part = dst[i + jump];
 | 
						|
        if (shift) {
 | 
						|
          part >>= shift;
 | 
						|
          if (i + jump + 1 < parts)
 | 
						|
            part |= dst[i + jump + 1] << (integerPartWidth - shift);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      dst[i] = part;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/* Bitwise and of two bignums.  */
 | 
						|
void
 | 
						|
APInt::tcAnd(integerPart *dst, const integerPart *rhs, unsigned int parts)
 | 
						|
{
 | 
						|
  unsigned int i;
 | 
						|
 | 
						|
  for (i = 0; i < parts; i++)
 | 
						|
    dst[i] &= rhs[i];
 | 
						|
}
 | 
						|
 | 
						|
/* Bitwise inclusive or of two bignums.  */
 | 
						|
void
 | 
						|
APInt::tcOr(integerPart *dst, const integerPart *rhs, unsigned int parts)
 | 
						|
{
 | 
						|
  unsigned int i;
 | 
						|
 | 
						|
  for (i = 0; i < parts; i++)
 | 
						|
    dst[i] |= rhs[i];
 | 
						|
}
 | 
						|
 | 
						|
/* Bitwise exclusive or of two bignums.  */
 | 
						|
void
 | 
						|
APInt::tcXor(integerPart *dst, const integerPart *rhs, unsigned int parts)
 | 
						|
{
 | 
						|
  unsigned int i;
 | 
						|
 | 
						|
  for (i = 0; i < parts; i++)
 | 
						|
    dst[i] ^= rhs[i];
 | 
						|
}
 | 
						|
 | 
						|
/* Complement a bignum in-place.  */
 | 
						|
void
 | 
						|
APInt::tcComplement(integerPart *dst, unsigned int parts)
 | 
						|
{
 | 
						|
  unsigned int i;
 | 
						|
 | 
						|
  for (i = 0; i < parts; i++)
 | 
						|
    dst[i] = ~dst[i];
 | 
						|
}
 | 
						|
 | 
						|
/* Comparison (unsigned) of two bignums.  */
 | 
						|
int
 | 
						|
APInt::tcCompare(const integerPart *lhs, const integerPart *rhs,
 | 
						|
                 unsigned int parts)
 | 
						|
{
 | 
						|
  while (parts) {
 | 
						|
      parts--;
 | 
						|
      if (lhs[parts] == rhs[parts])
 | 
						|
        continue;
 | 
						|
 | 
						|
      if (lhs[parts] > rhs[parts])
 | 
						|
        return 1;
 | 
						|
      else
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Increment a bignum in-place, return the carry flag.  */
 | 
						|
integerPart
 | 
						|
APInt::tcIncrement(integerPart *dst, unsigned int parts)
 | 
						|
{
 | 
						|
  unsigned int i;
 | 
						|
 | 
						|
  for (i = 0; i < parts; i++)
 | 
						|
    if (++dst[i] != 0)
 | 
						|
      break;
 | 
						|
 | 
						|
  return i == parts;
 | 
						|
}
 | 
						|
 | 
						|
/* Decrement a bignum in-place, return the borrow flag.  */
 | 
						|
integerPart
 | 
						|
APInt::tcDecrement(integerPart *dst, unsigned int parts) {
 | 
						|
  for (unsigned int i = 0; i < parts; i++) {
 | 
						|
    // If the current word is non-zero, then the decrement has no effect on the
 | 
						|
    // higher-order words of the integer and no borrow can occur. Exit early.
 | 
						|
    if (dst[i]--)
 | 
						|
      return 0;
 | 
						|
  }
 | 
						|
  // If every word was zero, then there is a borrow.
 | 
						|
  return 1;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* Set the least significant BITS bits of a bignum, clear the
 | 
						|
   rest.  */
 | 
						|
void
 | 
						|
APInt::tcSetLeastSignificantBits(integerPart *dst, unsigned int parts,
 | 
						|
                                 unsigned int bits)
 | 
						|
{
 | 
						|
  unsigned int i;
 | 
						|
 | 
						|
  i = 0;
 | 
						|
  while (bits > integerPartWidth) {
 | 
						|
    dst[i++] = ~(integerPart) 0;
 | 
						|
    bits -= integerPartWidth;
 | 
						|
  }
 | 
						|
 | 
						|
  if (bits)
 | 
						|
    dst[i++] = ~(integerPart) 0 >> (integerPartWidth - bits);
 | 
						|
 | 
						|
  while (i < parts)
 | 
						|
    dst[i++] = 0;
 | 
						|
}
 |