mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	* Fix a ton of warnings * Implement puts git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@5254 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			662 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			662 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- ExternalFunctions.cpp - Implement External Functions --------------===//
 | 
						|
// 
 | 
						|
//  This file contains both code to deal with invoking "external" functions, but
 | 
						|
//  also contains code that implements "exported" external functions.
 | 
						|
//
 | 
						|
//  External functions in LLI are implemented by dlopen'ing the lli executable
 | 
						|
//  and using dlsym to look op the functions that we want to invoke.  If a
 | 
						|
//  function is found, then the arguments are mangled and passed in to the
 | 
						|
//  function call.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "Interpreter.h"
 | 
						|
#include "ExecutionAnnotations.h"
 | 
						|
#include "llvm/Module.h"
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/SymbolTable.h"
 | 
						|
#include "llvm/Target/TargetData.h"
 | 
						|
#include <map>
 | 
						|
#include <dlfcn.h>
 | 
						|
#include <link.h>
 | 
						|
#include <math.h>
 | 
						|
#include <stdio.h>
 | 
						|
using std::vector;
 | 
						|
using std::cout;
 | 
						|
 | 
						|
typedef GenericValue (*ExFunc)(FunctionType *, const vector<GenericValue> &);
 | 
						|
static std::map<const Function *, ExFunc> Functions;
 | 
						|
static std::map<std::string, ExFunc> FuncNames;
 | 
						|
 | 
						|
static Interpreter *TheInterpreter;
 | 
						|
 | 
						|
// getCurrentExecutablePath() - Return the directory that the lli executable
 | 
						|
// lives in.
 | 
						|
//
 | 
						|
std::string Interpreter::getCurrentExecutablePath() const {
 | 
						|
  Dl_info Info;
 | 
						|
  if (dladdr(&TheInterpreter, &Info) == 0) return "";
 | 
						|
  
 | 
						|
  std::string LinkAddr(Info.dli_fname);
 | 
						|
  unsigned SlashPos = LinkAddr.rfind('/');
 | 
						|
  if (SlashPos != std::string::npos)
 | 
						|
    LinkAddr.resize(SlashPos);    // Trim the executable name off...
 | 
						|
 | 
						|
  return LinkAddr;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static char getTypeID(const Type *Ty) {
 | 
						|
  switch (Ty->getPrimitiveID()) {
 | 
						|
  case Type::VoidTyID:    return 'V';
 | 
						|
  case Type::BoolTyID:    return 'o';
 | 
						|
  case Type::UByteTyID:   return 'B';
 | 
						|
  case Type::SByteTyID:   return 'b';
 | 
						|
  case Type::UShortTyID:  return 'S';
 | 
						|
  case Type::ShortTyID:   return 's';
 | 
						|
  case Type::UIntTyID:    return 'I';
 | 
						|
  case Type::IntTyID:     return 'i';
 | 
						|
  case Type::ULongTyID:   return 'L';
 | 
						|
  case Type::LongTyID:    return 'l';
 | 
						|
  case Type::FloatTyID:   return 'F';
 | 
						|
  case Type::DoubleTyID:  return 'D';
 | 
						|
  case Type::PointerTyID: return 'P';
 | 
						|
  case Type::FunctionTyID:  return 'M';
 | 
						|
  case Type::StructTyID:  return 'T';
 | 
						|
  case Type::ArrayTyID:   return 'A';
 | 
						|
  case Type::OpaqueTyID:  return 'O';
 | 
						|
  default: return 'U';
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static ExFunc lookupFunction(const Function *M) {
 | 
						|
  // Function not found, look it up... start by figuring out what the
 | 
						|
  // composite function name should be.
 | 
						|
  std::string ExtName = "lle_";
 | 
						|
  const FunctionType *MT = M->getFunctionType();
 | 
						|
  for (unsigned i = 0; const Type *Ty = MT->getContainedType(i); ++i)
 | 
						|
    ExtName += getTypeID(Ty);
 | 
						|
  ExtName += "_" + M->getName();
 | 
						|
 | 
						|
  //cout << "Tried: '" << ExtName << "'\n";
 | 
						|
  ExFunc FnPtr = FuncNames[ExtName];
 | 
						|
  if (FnPtr == 0)
 | 
						|
    FnPtr = (ExFunc)dlsym(RTLD_DEFAULT, ExtName.c_str());
 | 
						|
  if (FnPtr == 0)
 | 
						|
    FnPtr = FuncNames["lle_X_"+M->getName()];
 | 
						|
  if (FnPtr == 0)  // Try calling a generic function... if it exists...
 | 
						|
    FnPtr = (ExFunc)dlsym(RTLD_DEFAULT, ("lle_X_"+M->getName()).c_str());
 | 
						|
  if (FnPtr != 0)
 | 
						|
    Functions.insert(std::make_pair(M, FnPtr));  // Cache for later
 | 
						|
  return FnPtr;
 | 
						|
}
 | 
						|
 | 
						|
GenericValue Interpreter::callExternalMethod(Function *M,
 | 
						|
                                         const vector<GenericValue> &ArgVals) {
 | 
						|
  TheInterpreter = this;
 | 
						|
 | 
						|
  // Do a lookup to see if the function is in our cache... this should just be a
 | 
						|
  // defered annotation!
 | 
						|
  std::map<const Function *, ExFunc>::iterator FI = Functions.find(M);
 | 
						|
  ExFunc Fn = (FI == Functions.end()) ? lookupFunction(M) : FI->second;
 | 
						|
  if (Fn == 0) {
 | 
						|
    cout << "Tried to execute an unknown external function: "
 | 
						|
	 << M->getType()->getDescription() << " " << M->getName() << "\n";
 | 
						|
    return GenericValue();
 | 
						|
  }
 | 
						|
 | 
						|
  // TODO: FIXME when types are not const!
 | 
						|
  GenericValue Result = Fn(const_cast<FunctionType*>(M->getFunctionType()),
 | 
						|
                           ArgVals);
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//  Functions "exported" to the running application...
 | 
						|
//
 | 
						|
extern "C" {  // Don't add C++ manglings to llvm mangling :)
 | 
						|
 | 
						|
// Implement void printstr([ubyte {x N}] *)
 | 
						|
GenericValue lle_VP_printstr(FunctionType *M,
 | 
						|
			     const vector<GenericValue> &ArgVal){
 | 
						|
  assert(ArgVal.size() == 1 && "printstr only takes one argument!");
 | 
						|
  cout << (char*)GVTOP(ArgVal[0]);
 | 
						|
  return GenericValue();
 | 
						|
}
 | 
						|
 | 
						|
// Implement 'void print(X)' for every type...
 | 
						|
GenericValue lle_X_print(FunctionType *M, const vector<GenericValue> &ArgVals) {
 | 
						|
  assert(ArgVals.size() == 1 && "generic print only takes one argument!");
 | 
						|
 | 
						|
  Interpreter::print(M->getParamTypes()[0], ArgVals[0]);
 | 
						|
  return GenericValue();
 | 
						|
}
 | 
						|
 | 
						|
// Implement 'void printVal(X)' for every type...
 | 
						|
GenericValue lle_X_printVal(FunctionType *M,
 | 
						|
			    const vector<GenericValue> &ArgVal) {
 | 
						|
  assert(ArgVal.size() == 1 && "generic print only takes one argument!");
 | 
						|
 | 
						|
  // Specialize print([ubyte {x N} ] *) and print(sbyte *)
 | 
						|
  if (const PointerType *PTy = 
 | 
						|
      dyn_cast<PointerType>(M->getParamTypes()[0].get()))
 | 
						|
    if (PTy->getElementType() == Type::SByteTy ||
 | 
						|
        isa<ArrayType>(PTy->getElementType())) {
 | 
						|
      return lle_VP_printstr(M, ArgVal);
 | 
						|
    }
 | 
						|
 | 
						|
  Interpreter::printValue(M->getParamTypes()[0], ArgVal[0]);
 | 
						|
  return GenericValue();
 | 
						|
}
 | 
						|
 | 
						|
// Implement 'void printString(X)'
 | 
						|
// Argument must be [ubyte {x N} ] * or sbyte *
 | 
						|
GenericValue lle_X_printString(FunctionType *M,
 | 
						|
			       const vector<GenericValue> &ArgVal) {
 | 
						|
  assert(ArgVal.size() == 1 && "generic print only takes one argument!");
 | 
						|
  return lle_VP_printstr(M, ArgVal);
 | 
						|
}
 | 
						|
 | 
						|
// Implement 'void print<TYPE>(X)' for each primitive type or pointer type
 | 
						|
#define PRINT_TYPE_FUNC(TYPENAME,TYPEID) \
 | 
						|
  GenericValue lle_X_print##TYPENAME(FunctionType *M,\
 | 
						|
                                     const vector<GenericValue> &ArgVal) {\
 | 
						|
    assert(ArgVal.size() == 1 && "generic print only takes one argument!");\
 | 
						|
    assert(M->getParamTypes()[0].get()->getPrimitiveID() == Type::TYPEID);\
 | 
						|
    Interpreter::printValue(M->getParamTypes()[0], ArgVal[0]);\
 | 
						|
    return GenericValue();\
 | 
						|
  }
 | 
						|
 | 
						|
PRINT_TYPE_FUNC(SByte,   SByteTyID)
 | 
						|
PRINT_TYPE_FUNC(UByte,   UByteTyID)
 | 
						|
PRINT_TYPE_FUNC(Short,   ShortTyID)
 | 
						|
PRINT_TYPE_FUNC(UShort,  UShortTyID)
 | 
						|
PRINT_TYPE_FUNC(Int,     IntTyID)
 | 
						|
PRINT_TYPE_FUNC(UInt,    UIntTyID)
 | 
						|
PRINT_TYPE_FUNC(Long,    LongTyID)
 | 
						|
PRINT_TYPE_FUNC(ULong,   ULongTyID)
 | 
						|
PRINT_TYPE_FUNC(Float,   FloatTyID)
 | 
						|
PRINT_TYPE_FUNC(Double,  DoubleTyID)
 | 
						|
PRINT_TYPE_FUNC(Pointer, PointerTyID)
 | 
						|
 | 
						|
 | 
						|
// void putchar(sbyte)
 | 
						|
GenericValue lle_Vb_putchar(FunctionType *M, const vector<GenericValue> &Args) {
 | 
						|
  cout << Args[0].SByteVal;
 | 
						|
  return GenericValue();
 | 
						|
}
 | 
						|
 | 
						|
// int putchar(int)
 | 
						|
GenericValue lle_ii_putchar(FunctionType *M, const vector<GenericValue> &Args) {
 | 
						|
  cout << ((char)Args[0].IntVal) << std::flush;
 | 
						|
  return Args[0];
 | 
						|
}
 | 
						|
 | 
						|
// void putchar(ubyte)
 | 
						|
GenericValue lle_VB_putchar(FunctionType *M, const vector<GenericValue> &Args) {
 | 
						|
  cout << Args[0].SByteVal << std::flush;
 | 
						|
  return Args[0];
 | 
						|
}
 | 
						|
 | 
						|
// void __main()
 | 
						|
GenericValue lle_V___main(FunctionType *M, const vector<GenericValue> &Args) {
 | 
						|
  return GenericValue();
 | 
						|
}
 | 
						|
 | 
						|
// void exit(int)
 | 
						|
GenericValue lle_X_exit(FunctionType *M, const vector<GenericValue> &Args) {
 | 
						|
  TheInterpreter->exitCalled(Args[0]);
 | 
						|
  return GenericValue();
 | 
						|
}
 | 
						|
 | 
						|
// void abort(void)
 | 
						|
GenericValue lle_X_abort(FunctionType *M, const vector<GenericValue> &Args) {
 | 
						|
  std::cerr << "***PROGRAM ABORTED***!\n";
 | 
						|
  GenericValue GV;
 | 
						|
  GV.IntVal = 1;
 | 
						|
  TheInterpreter->exitCalled(GV);
 | 
						|
  return GenericValue();
 | 
						|
}
 | 
						|
 | 
						|
// void *malloc(uint)
 | 
						|
GenericValue lle_X_malloc(FunctionType *M, const vector<GenericValue> &Args) {
 | 
						|
  assert(Args.size() == 1 && "Malloc expects one argument!");
 | 
						|
  return PTOGV(malloc(Args[0].UIntVal));
 | 
						|
}
 | 
						|
 | 
						|
// void free(void *)
 | 
						|
GenericValue lle_X_free(FunctionType *M, const vector<GenericValue> &Args) {
 | 
						|
  assert(Args.size() == 1);
 | 
						|
  free(GVTOP(Args[0]));
 | 
						|
  return GenericValue();
 | 
						|
}
 | 
						|
 | 
						|
// int atoi(char *)
 | 
						|
GenericValue lle_X_atoi(FunctionType *M, const vector<GenericValue> &Args) {
 | 
						|
  assert(Args.size() == 1);
 | 
						|
  GenericValue GV;
 | 
						|
  GV.IntVal = atoi((char*)GVTOP(Args[0]));
 | 
						|
  return GV;
 | 
						|
}
 | 
						|
 | 
						|
// double pow(double, double)
 | 
						|
GenericValue lle_X_pow(FunctionType *M, const vector<GenericValue> &Args) {
 | 
						|
  assert(Args.size() == 2);
 | 
						|
  GenericValue GV;
 | 
						|
  GV.DoubleVal = pow(Args[0].DoubleVal, Args[1].DoubleVal);
 | 
						|
  return GV;
 | 
						|
}
 | 
						|
 | 
						|
// double exp(double)
 | 
						|
GenericValue lle_X_exp(FunctionType *M, const vector<GenericValue> &Args) {
 | 
						|
  assert(Args.size() == 1);
 | 
						|
  GenericValue GV;
 | 
						|
  GV.DoubleVal = exp(Args[0].DoubleVal);
 | 
						|
  return GV;
 | 
						|
}
 | 
						|
 | 
						|
// double sqrt(double)
 | 
						|
GenericValue lle_X_sqrt(FunctionType *M, const vector<GenericValue> &Args) {
 | 
						|
  assert(Args.size() == 1);
 | 
						|
  GenericValue GV;
 | 
						|
  GV.DoubleVal = sqrt(Args[0].DoubleVal);
 | 
						|
  return GV;
 | 
						|
}
 | 
						|
 | 
						|
// double log(double)
 | 
						|
GenericValue lle_X_log(FunctionType *M, const vector<GenericValue> &Args) {
 | 
						|
  assert(Args.size() == 1);
 | 
						|
  GenericValue GV;
 | 
						|
  GV.DoubleVal = log(Args[0].DoubleVal);
 | 
						|
  return GV;
 | 
						|
}
 | 
						|
 | 
						|
// int isnan(double value);
 | 
						|
GenericValue lle_X_isnan(FunctionType *F, const vector<GenericValue> &Args) {
 | 
						|
  assert(Args.size() == 1);
 | 
						|
  GenericValue GV;
 | 
						|
  GV.IntVal = isnan(Args[0].DoubleVal);
 | 
						|
  return GV;
 | 
						|
}
 | 
						|
 | 
						|
// double floor(double)
 | 
						|
GenericValue lle_X_floor(FunctionType *M, const vector<GenericValue> &Args) {
 | 
						|
  assert(Args.size() == 1);
 | 
						|
  GenericValue GV;
 | 
						|
  GV.DoubleVal = floor(Args[0].DoubleVal);
 | 
						|
  return GV;
 | 
						|
}
 | 
						|
 | 
						|
// double drand48()
 | 
						|
GenericValue lle_X_drand48(FunctionType *M, const vector<GenericValue> &Args) {
 | 
						|
  assert(Args.size() == 0);
 | 
						|
  GenericValue GV;
 | 
						|
  GV.DoubleVal = drand48();
 | 
						|
  return GV;
 | 
						|
}
 | 
						|
 | 
						|
// long lrand48()
 | 
						|
GenericValue lle_X_lrand48(FunctionType *M, const vector<GenericValue> &Args) {
 | 
						|
  assert(Args.size() == 0);
 | 
						|
  GenericValue GV;
 | 
						|
  GV.IntVal = lrand48();
 | 
						|
  return GV;
 | 
						|
}
 | 
						|
 | 
						|
// void srand48(long)
 | 
						|
GenericValue lle_X_srand48(FunctionType *M, const vector<GenericValue> &Args) {
 | 
						|
  assert(Args.size() == 1);
 | 
						|
  srand48(Args[0].IntVal);
 | 
						|
  return GenericValue();
 | 
						|
}
 | 
						|
 | 
						|
// void srand(uint)
 | 
						|
GenericValue lle_X_srand(FunctionType *M, const vector<GenericValue> &Args) {
 | 
						|
  assert(Args.size() == 1);
 | 
						|
  srand(Args[0].UIntVal);
 | 
						|
  return GenericValue();
 | 
						|
}
 | 
						|
 | 
						|
// int puts(const char*)
 | 
						|
GenericValue lle_X_puts(FunctionType *M, const vector<GenericValue> &Args) {
 | 
						|
  assert(Args.size() == 1);
 | 
						|
  GenericValue GV;
 | 
						|
  GV.IntVal = puts((char*)GVTOP(Args[0]));
 | 
						|
  return GV;
 | 
						|
}
 | 
						|
 | 
						|
// int sprintf(sbyte *, sbyte *, ...) - a very rough implementation to make
 | 
						|
// output useful.
 | 
						|
GenericValue lle_X_sprintf(FunctionType *M, const vector<GenericValue> &Args) {
 | 
						|
  char *OutputBuffer = (char *)GVTOP(Args[0]);
 | 
						|
  const char *FmtStr = (const char *)GVTOP(Args[1]);
 | 
						|
  unsigned ArgNo = 2;
 | 
						|
 | 
						|
  // printf should return # chars printed.  This is completely incorrect, but
 | 
						|
  // close enough for now.
 | 
						|
  GenericValue GV; GV.IntVal = strlen(FmtStr);
 | 
						|
  while (1) {
 | 
						|
    switch (*FmtStr) {
 | 
						|
    case 0: return GV;             // Null terminator...
 | 
						|
    default:                       // Normal nonspecial character
 | 
						|
      sprintf(OutputBuffer++, "%c", *FmtStr++);
 | 
						|
      break;
 | 
						|
    case '\\': {                   // Handle escape codes
 | 
						|
      sprintf(OutputBuffer, "%c%c", *FmtStr, *(FmtStr+1));
 | 
						|
      FmtStr += 2; OutputBuffer += 2;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case '%': {                    // Handle format specifiers
 | 
						|
      char FmtBuf[100] = "", Buffer[1000] = "";
 | 
						|
      char *FB = FmtBuf;
 | 
						|
      *FB++ = *FmtStr++;
 | 
						|
      char Last = *FB++ = *FmtStr++;
 | 
						|
      unsigned HowLong = 0;
 | 
						|
      while (Last != 'c' && Last != 'd' && Last != 'i' && Last != 'u' &&
 | 
						|
             Last != 'o' && Last != 'x' && Last != 'X' && Last != 'e' &&
 | 
						|
             Last != 'E' && Last != 'g' && Last != 'G' && Last != 'f' &&
 | 
						|
             Last != 'p' && Last != 's' && Last != '%') {
 | 
						|
        if (Last == 'l' || Last == 'L') HowLong++;  // Keep track of l's
 | 
						|
        Last = *FB++ = *FmtStr++;
 | 
						|
      }
 | 
						|
      *FB = 0;
 | 
						|
      
 | 
						|
      switch (Last) {
 | 
						|
      case '%':
 | 
						|
        sprintf(Buffer, FmtBuf); break;
 | 
						|
      case 'c':
 | 
						|
        sprintf(Buffer, FmtBuf, Args[ArgNo++].IntVal); break;
 | 
						|
      case 'd': case 'i':
 | 
						|
      case 'u': case 'o':
 | 
						|
      case 'x': case 'X':
 | 
						|
        if (HowLong >= 1) {
 | 
						|
          if (HowLong == 1) {
 | 
						|
            // Make sure we use %lld with a 64 bit argument because we might be
 | 
						|
            // compiling LLI on a 32 bit compiler.
 | 
						|
            unsigned Size = strlen(FmtBuf);
 | 
						|
            FmtBuf[Size] = FmtBuf[Size-1];
 | 
						|
            FmtBuf[Size+1] = 0;
 | 
						|
            FmtBuf[Size-1] = 'l';
 | 
						|
          }
 | 
						|
          sprintf(Buffer, FmtBuf, Args[ArgNo++].ULongVal);
 | 
						|
        } else
 | 
						|
          sprintf(Buffer, FmtBuf, Args[ArgNo++].IntVal); break;
 | 
						|
      case 'e': case 'E': case 'g': case 'G': case 'f':
 | 
						|
        sprintf(Buffer, FmtBuf, Args[ArgNo++].DoubleVal); break;
 | 
						|
      case 'p':
 | 
						|
        sprintf(Buffer, FmtBuf, (void*)GVTOP(Args[ArgNo++])); break;
 | 
						|
      case 's': 
 | 
						|
        sprintf(Buffer, FmtBuf, (char*)GVTOP(Args[ArgNo++])); break;
 | 
						|
      default:  cout << "<unknown printf code '" << *FmtStr << "'!>";
 | 
						|
        ArgNo++; break;
 | 
						|
      }
 | 
						|
      strcpy(OutputBuffer, Buffer);
 | 
						|
      OutputBuffer += strlen(Buffer);
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// int printf(sbyte *, ...) - a very rough implementation to make output useful.
 | 
						|
GenericValue lle_X_printf(FunctionType *M, const vector<GenericValue> &Args) {
 | 
						|
  char Buffer[10000];
 | 
						|
  vector<GenericValue> NewArgs;
 | 
						|
  NewArgs.push_back(PTOGV(Buffer));
 | 
						|
  NewArgs.insert(NewArgs.end(), Args.begin(), Args.end());
 | 
						|
  GenericValue GV = lle_X_sprintf(M, NewArgs);
 | 
						|
  cout << Buffer;
 | 
						|
  return GV;
 | 
						|
}
 | 
						|
 | 
						|
// int sscanf(const char *format, ...);
 | 
						|
GenericValue lle_X_sscanf(FunctionType *M, const vector<GenericValue> &args) {
 | 
						|
  assert(args.size() < 10 && "Only handle up to 10 args to sscanf right now!");
 | 
						|
 | 
						|
  const char *Args[10];
 | 
						|
  for (unsigned i = 0; i < args.size(); ++i)
 | 
						|
    Args[i] = (const char*)GVTOP(args[i]);
 | 
						|
 | 
						|
  GenericValue GV;
 | 
						|
  GV.IntVal = sscanf(Args[0], Args[1], Args[2], Args[3], Args[4],
 | 
						|
                     Args[5], Args[6], Args[7], Args[8], Args[9]);
 | 
						|
  return GV;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// int clock(void) - Profiling implementation
 | 
						|
GenericValue lle_i_clock(FunctionType *M, const vector<GenericValue> &Args) {
 | 
						|
  extern int clock(void);
 | 
						|
  GenericValue GV; GV.IntVal = clock();
 | 
						|
  return GV;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// IO Functions...
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
// getFILE - Turn a pointer in the host address space into a legit pointer in
 | 
						|
// the interpreter address space.  For the most part, this is an identity
 | 
						|
// transformation, but if the program refers to stdio, stderr, stdin then they
 | 
						|
// have pointers that are relative to the __iob array.  If this is the case,
 | 
						|
// change the FILE into the REAL stdio stream.
 | 
						|
// 
 | 
						|
static FILE *getFILE(void *Ptr) {
 | 
						|
  static Module *LastMod = 0;
 | 
						|
  static PointerTy IOBBase = 0;
 | 
						|
  static unsigned FILESize;
 | 
						|
 | 
						|
  if (LastMod != &TheInterpreter->getModule()) { // Module change or initialize?
 | 
						|
    Module *M = LastMod = &TheInterpreter->getModule();
 | 
						|
 | 
						|
    // Check to see if the currently loaded module contains an __iob symbol...
 | 
						|
    GlobalVariable *IOB = 0;
 | 
						|
    SymbolTable &ST = M->getSymbolTable();
 | 
						|
    for (SymbolTable::iterator I = ST.begin(), E = ST.end(); I != E; ++I) {
 | 
						|
      SymbolTable::VarMap &M = I->second;
 | 
						|
      for (SymbolTable::VarMap::iterator J = M.begin(), E = M.end();
 | 
						|
           J != E; ++J)
 | 
						|
        if (J->first == "__iob")
 | 
						|
          if ((IOB = dyn_cast<GlobalVariable>(J->second)))
 | 
						|
            break;
 | 
						|
      if (IOB) break;
 | 
						|
    }
 | 
						|
 | 
						|
#if 0   /// FIXME!  __iob support for LLI
 | 
						|
    // If we found an __iob symbol now, find out what the actual address it's
 | 
						|
    // held in is...
 | 
						|
    if (IOB) {
 | 
						|
      // Get the address the array lives in...
 | 
						|
      GlobalAddress *Address = 
 | 
						|
        (GlobalAddress*)IOB->getOrCreateAnnotation(GlobalAddressAID);
 | 
						|
      IOBBase = (PointerTy)(GenericValue*)Address->Ptr;
 | 
						|
 | 
						|
      // Figure out how big each element of the array is...
 | 
						|
      const ArrayType *AT =
 | 
						|
        dyn_cast<ArrayType>(IOB->getType()->getElementType());
 | 
						|
      if (AT)
 | 
						|
        FILESize = TD.getTypeSize(AT->getElementType());
 | 
						|
      else
 | 
						|
        FILESize = 16*8;  // Default size
 | 
						|
    }
 | 
						|
#endif
 | 
						|
  }
 | 
						|
 | 
						|
  // Check to see if this is a reference to __iob...
 | 
						|
  if (IOBBase) {
 | 
						|
    unsigned FDNum = ((unsigned long)Ptr-IOBBase)/FILESize;
 | 
						|
    if (FDNum == 0)
 | 
						|
      return stdin;
 | 
						|
    else if (FDNum == 1)
 | 
						|
      return stdout;
 | 
						|
    else if (FDNum == 2)
 | 
						|
      return stderr;
 | 
						|
  }
 | 
						|
 | 
						|
  return (FILE*)Ptr;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// FILE *fopen(const char *filename, const char *mode);
 | 
						|
GenericValue lle_X_fopen(FunctionType *M, const vector<GenericValue> &Args) {
 | 
						|
  assert(Args.size() == 2);
 | 
						|
  return PTOGV(fopen((const char *)GVTOP(Args[0]),
 | 
						|
		     (const char *)GVTOP(Args[1])));
 | 
						|
}
 | 
						|
 | 
						|
// int fclose(FILE *F);
 | 
						|
GenericValue lle_X_fclose(FunctionType *M, const vector<GenericValue> &Args) {
 | 
						|
  assert(Args.size() == 1);
 | 
						|
  GenericValue GV;
 | 
						|
  GV.IntVal = fclose(getFILE(GVTOP(Args[0])));
 | 
						|
  return GV;
 | 
						|
}
 | 
						|
 | 
						|
// int feof(FILE *stream);
 | 
						|
GenericValue lle_X_feof(FunctionType *M, const vector<GenericValue> &Args) {
 | 
						|
  assert(Args.size() == 1);
 | 
						|
  GenericValue GV;
 | 
						|
 | 
						|
  GV.IntVal = feof(getFILE(GVTOP(Args[0])));
 | 
						|
  return GV;
 | 
						|
}
 | 
						|
 | 
						|
// size_t fread(void *ptr, size_t size, size_t nitems, FILE *stream);
 | 
						|
GenericValue lle_X_fread(FunctionType *M, const vector<GenericValue> &Args) {
 | 
						|
  assert(Args.size() == 4);
 | 
						|
  GenericValue GV;
 | 
						|
 | 
						|
  GV.UIntVal = fread((void*)GVTOP(Args[0]), Args[1].UIntVal,
 | 
						|
                     Args[2].UIntVal, getFILE(GVTOP(Args[3])));
 | 
						|
  return GV;
 | 
						|
}
 | 
						|
 | 
						|
// size_t fwrite(const void *ptr, size_t size, size_t nitems, FILE *stream);
 | 
						|
GenericValue lle_X_fwrite(FunctionType *M, const vector<GenericValue> &Args) {
 | 
						|
  assert(Args.size() == 4);
 | 
						|
  GenericValue GV;
 | 
						|
 | 
						|
  GV.UIntVal = fwrite((void*)GVTOP(Args[0]), Args[1].UIntVal,
 | 
						|
                      Args[2].UIntVal, getFILE(GVTOP(Args[3])));
 | 
						|
  return GV;
 | 
						|
}
 | 
						|
 | 
						|
// char *fgets(char *s, int n, FILE *stream);
 | 
						|
GenericValue lle_X_fgets(FunctionType *M, const vector<GenericValue> &Args) {
 | 
						|
  assert(Args.size() == 3);
 | 
						|
  return GVTOP(fgets((char*)GVTOP(Args[0]), Args[1].IntVal,
 | 
						|
		     getFILE(GVTOP(Args[2]))));
 | 
						|
}
 | 
						|
 | 
						|
// FILE *freopen(const char *path, const char *mode, FILE *stream);
 | 
						|
GenericValue lle_X_freopen(FunctionType *M, const vector<GenericValue> &Args) {
 | 
						|
  assert(Args.size() == 3);
 | 
						|
  return PTOGV(freopen((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1]),
 | 
						|
		       getFILE(GVTOP(Args[2]))));
 | 
						|
}
 | 
						|
 | 
						|
// int fflush(FILE *stream);
 | 
						|
GenericValue lle_X_fflush(FunctionType *M, const vector<GenericValue> &Args) {
 | 
						|
  assert(Args.size() == 1);
 | 
						|
  GenericValue GV;
 | 
						|
  GV.IntVal = fflush(getFILE(GVTOP(Args[0])));
 | 
						|
  return GV;
 | 
						|
}
 | 
						|
 | 
						|
// int getc(FILE *stream);
 | 
						|
GenericValue lle_X_getc(FunctionType *M, const vector<GenericValue> &Args) {
 | 
						|
  assert(Args.size() == 1);
 | 
						|
  GenericValue GV;
 | 
						|
  GV.IntVal = getc(getFILE(GVTOP(Args[0])));
 | 
						|
  return GV;
 | 
						|
}
 | 
						|
 | 
						|
// int fputc(int C, FILE *stream);
 | 
						|
GenericValue lle_X_fputc(FunctionType *M, const vector<GenericValue> &Args) {
 | 
						|
  assert(Args.size() == 2);
 | 
						|
  GenericValue GV;
 | 
						|
  GV.IntVal = fputc(Args[0].IntVal, getFILE(GVTOP(Args[1])));
 | 
						|
  return GV;
 | 
						|
}
 | 
						|
 | 
						|
// int ungetc(int C, FILE *stream);
 | 
						|
GenericValue lle_X_ungetc(FunctionType *M, const vector<GenericValue> &Args) {
 | 
						|
  assert(Args.size() == 2);
 | 
						|
  GenericValue GV;
 | 
						|
  GV.IntVal = ungetc(Args[0].IntVal, getFILE(GVTOP(Args[1])));
 | 
						|
  return GV;
 | 
						|
}
 | 
						|
 | 
						|
// int fprintf(FILE *,sbyte *, ...) - a very rough implementation to make output
 | 
						|
// useful.
 | 
						|
GenericValue lle_X_fprintf(FunctionType *M, const vector<GenericValue> &Args) {
 | 
						|
  assert(Args.size() > 2);
 | 
						|
  char Buffer[10000];
 | 
						|
  vector<GenericValue> NewArgs;
 | 
						|
  NewArgs.push_back(PTOGV(Buffer));
 | 
						|
  NewArgs.insert(NewArgs.end(), Args.begin()+1, Args.end());
 | 
						|
  GenericValue GV = lle_X_sprintf(M, NewArgs);
 | 
						|
 | 
						|
  fputs(Buffer, getFILE(GVTOP(Args[0])));
 | 
						|
  return GV;
 | 
						|
}
 | 
						|
 | 
						|
} // End extern "C"
 | 
						|
 | 
						|
 | 
						|
void Interpreter::initializeExternalMethods() {
 | 
						|
  FuncNames["lle_VP_printstr"] = lle_VP_printstr;
 | 
						|
  FuncNames["lle_X_print"] = lle_X_print;
 | 
						|
  FuncNames["lle_X_printVal"] = lle_X_printVal;
 | 
						|
  FuncNames["lle_X_printString"] = lle_X_printString;
 | 
						|
  FuncNames["lle_X_printUByte"] = lle_X_printUByte;
 | 
						|
  FuncNames["lle_X_printSByte"] = lle_X_printSByte;
 | 
						|
  FuncNames["lle_X_printUShort"] = lle_X_printUShort;
 | 
						|
  FuncNames["lle_X_printShort"] = lle_X_printShort;
 | 
						|
  FuncNames["lle_X_printInt"] = lle_X_printInt;
 | 
						|
  FuncNames["lle_X_printUInt"] = lle_X_printUInt;
 | 
						|
  FuncNames["lle_X_printLong"] = lle_X_printLong;
 | 
						|
  FuncNames["lle_X_printULong"] = lle_X_printULong;
 | 
						|
  FuncNames["lle_X_printFloat"] = lle_X_printFloat;
 | 
						|
  FuncNames["lle_X_printDouble"] = lle_X_printDouble;
 | 
						|
  FuncNames["lle_X_printPointer"] = lle_X_printPointer;
 | 
						|
  FuncNames["lle_Vb_putchar"]     = lle_Vb_putchar;
 | 
						|
  FuncNames["lle_ii_putchar"]     = lle_ii_putchar;
 | 
						|
  FuncNames["lle_VB_putchar"]     = lle_VB_putchar;
 | 
						|
  FuncNames["lle_V___main"]       = lle_V___main;
 | 
						|
  FuncNames["lle_X_exit"]         = lle_X_exit;
 | 
						|
  FuncNames["lle_X_abort"]        = lle_X_abort;
 | 
						|
  FuncNames["lle_X_malloc"]       = lle_X_malloc;
 | 
						|
  FuncNames["lle_X_free"]         = lle_X_free;
 | 
						|
  FuncNames["lle_X_atoi"]         = lle_X_atoi;
 | 
						|
  FuncNames["lle_X_pow"]          = lle_X_pow;
 | 
						|
  FuncNames["lle_X_exp"]          = lle_X_exp;
 | 
						|
  FuncNames["lle_X_log"]          = lle_X_log;
 | 
						|
  FuncNames["lle_X_isnan"]        = lle_X_isnan;
 | 
						|
  FuncNames["lle_X_floor"]        = lle_X_floor;
 | 
						|
  FuncNames["lle_X_srand"]        = lle_X_srand;
 | 
						|
  FuncNames["lle_X_drand48"]      = lle_X_drand48;
 | 
						|
  FuncNames["lle_X_srand48"]      = lle_X_srand48;
 | 
						|
  FuncNames["lle_X_lrand48"]      = lle_X_lrand48;
 | 
						|
  FuncNames["lle_X_sqrt"]         = lle_X_sqrt;
 | 
						|
  FuncNames["lle_X_puts"]         = lle_X_puts;
 | 
						|
  FuncNames["lle_X_printf"]       = lle_X_printf;
 | 
						|
  FuncNames["lle_X_sprintf"]      = lle_X_sprintf;
 | 
						|
  FuncNames["lle_X_sscanf"]       = lle_X_sscanf;
 | 
						|
  FuncNames["lle_i_clock"]        = lle_i_clock;
 | 
						|
  FuncNames["lle_X_fopen"]        = lle_X_fopen;
 | 
						|
  FuncNames["lle_X_fclose"]       = lle_X_fclose;
 | 
						|
  FuncNames["lle_X_feof"]         = lle_X_feof;
 | 
						|
  FuncNames["lle_X_fread"]        = lle_X_fread;
 | 
						|
  FuncNames["lle_X_fwrite"]       = lle_X_fwrite;
 | 
						|
  FuncNames["lle_X_fgets"]        = lle_X_fgets;
 | 
						|
  FuncNames["lle_X_fflush"]       = lle_X_fflush;
 | 
						|
  FuncNames["lle_X_fgetc"]        = lle_X_getc;
 | 
						|
  FuncNames["lle_X_getc"]         = lle_X_getc;
 | 
						|
  FuncNames["lle_X_fputc"]        = lle_X_fputc;
 | 
						|
  FuncNames["lle_X_ungetc"]       = lle_X_ungetc;
 | 
						|
  FuncNames["lle_X_fprintf"]      = lle_X_fprintf;
 | 
						|
  FuncNames["lle_X_freopen"]      = lle_X_freopen;
 | 
						|
}
 |