mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-10 02:36:06 +00:00
d21cd809b6
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@11228 91177308-0d34-0410-b5e6-96231b3b80d8
1464 lines
49 KiB
C++
1464 lines
49 KiB
C++
//===-- Writer.cpp - Library for converting LLVM code to C ----------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by the LLVM research group and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This library converts LLVM code to C code, compilable by GCC.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Assembly/CWriter.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/SymbolTable.h"
|
|
#include "llvm/Intrinsics.h"
|
|
#include "llvm/Analysis/FindUsedTypes.h"
|
|
#include "llvm/Analysis/ConstantsScanner.h"
|
|
#include "llvm/Support/CallSite.h"
|
|
#include "llvm/Support/GetElementPtrTypeIterator.h"
|
|
#include "llvm/Support/InstVisitor.h"
|
|
#include "llvm/Support/InstIterator.h"
|
|
#include "llvm/Support/Mangler.h"
|
|
#include "Support/StringExtras.h"
|
|
#include "Support/STLExtras.h"
|
|
#include "Config/config.h"
|
|
#include <algorithm>
|
|
#include <sstream>
|
|
|
|
namespace llvm {
|
|
|
|
namespace {
|
|
class CWriter : public Pass, public InstVisitor<CWriter> {
|
|
std::ostream &Out;
|
|
Mangler *Mang;
|
|
const Module *TheModule;
|
|
FindUsedTypes *FUT;
|
|
|
|
std::map<const Type *, std::string> TypeNames;
|
|
std::set<const Value*> MangledGlobals;
|
|
bool needsMalloc, emittedInvoke;
|
|
|
|
std::map<const ConstantFP *, unsigned> FPConstantMap;
|
|
public:
|
|
CWriter(std::ostream &o) : Out(o) {}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesAll();
|
|
AU.addRequired<FindUsedTypes>();
|
|
}
|
|
|
|
virtual bool run(Module &M) {
|
|
// Initialize
|
|
TheModule = &M;
|
|
FUT = &getAnalysis<FindUsedTypes>();
|
|
|
|
// Ensure that all structure types have names...
|
|
bool Changed = nameAllUsedStructureTypes(M);
|
|
Mang = new Mangler(M);
|
|
|
|
// Run...
|
|
printModule(&M);
|
|
|
|
// Free memory...
|
|
delete Mang;
|
|
TypeNames.clear();
|
|
MangledGlobals.clear();
|
|
return false;
|
|
}
|
|
|
|
std::ostream &printType(std::ostream &Out, const Type *Ty,
|
|
const std::string &VariableName = "",
|
|
bool IgnoreName = false);
|
|
|
|
void writeOperand(Value *Operand);
|
|
void writeOperandInternal(Value *Operand);
|
|
|
|
private :
|
|
bool nameAllUsedStructureTypes(Module &M);
|
|
void printModule(Module *M);
|
|
void printFloatingPointConstants(Module &M);
|
|
void printSymbolTable(const SymbolTable &ST);
|
|
void printContainedStructs(const Type *Ty, std::set<const StructType *> &);
|
|
void printFunctionSignature(const Function *F, bool Prototype);
|
|
|
|
void printFunction(Function *);
|
|
|
|
void printConstant(Constant *CPV);
|
|
void printConstantArray(ConstantArray *CPA);
|
|
|
|
// isInlinableInst - Attempt to inline instructions into their uses to build
|
|
// trees as much as possible. To do this, we have to consistently decide
|
|
// what is acceptable to inline, so that variable declarations don't get
|
|
// printed and an extra copy of the expr is not emitted.
|
|
//
|
|
static bool isInlinableInst(const Instruction &I) {
|
|
// Must be an expression, must be used exactly once. If it is dead, we
|
|
// emit it inline where it would go.
|
|
if (I.getType() == Type::VoidTy || !I.hasOneUse() ||
|
|
isa<TerminatorInst>(I) || isa<CallInst>(I) || isa<PHINode>(I) ||
|
|
isa<LoadInst>(I) || isa<VAArgInst>(I) || isa<VANextInst>(I))
|
|
// Don't inline a load across a store or other bad things!
|
|
return false;
|
|
|
|
// Only inline instruction it it's use is in the same BB as the inst.
|
|
return I.getParent() == cast<Instruction>(I.use_back())->getParent();
|
|
}
|
|
|
|
// isDirectAlloca - Define fixed sized allocas in the entry block as direct
|
|
// variables which are accessed with the & operator. This causes GCC to
|
|
// generate significantly better code than to emit alloca calls directly.
|
|
//
|
|
static const AllocaInst *isDirectAlloca(const Value *V) {
|
|
const AllocaInst *AI = dyn_cast<AllocaInst>(V);
|
|
if (!AI) return false;
|
|
if (AI->isArrayAllocation())
|
|
return 0; // FIXME: we can also inline fixed size array allocas!
|
|
if (AI->getParent() != &AI->getParent()->getParent()->getEntryBlock())
|
|
return 0;
|
|
return AI;
|
|
}
|
|
|
|
// Instruction visitation functions
|
|
friend class InstVisitor<CWriter>;
|
|
|
|
void visitReturnInst(ReturnInst &I);
|
|
void visitBranchInst(BranchInst &I);
|
|
void visitSwitchInst(SwitchInst &I);
|
|
void visitInvokeInst(InvokeInst &I);
|
|
void visitUnwindInst(UnwindInst &I);
|
|
|
|
void visitPHINode(PHINode &I);
|
|
void visitBinaryOperator(Instruction &I);
|
|
|
|
void visitCastInst (CastInst &I);
|
|
void visitCallInst (CallInst &I);
|
|
void visitCallSite (CallSite CS);
|
|
void visitShiftInst(ShiftInst &I) { visitBinaryOperator(I); }
|
|
|
|
void visitMallocInst(MallocInst &I);
|
|
void visitAllocaInst(AllocaInst &I);
|
|
void visitFreeInst (FreeInst &I);
|
|
void visitLoadInst (LoadInst &I);
|
|
void visitStoreInst (StoreInst &I);
|
|
void visitGetElementPtrInst(GetElementPtrInst &I);
|
|
void visitVANextInst(VANextInst &I);
|
|
void visitVAArgInst (VAArgInst &I);
|
|
|
|
void visitInstruction(Instruction &I) {
|
|
std::cerr << "C Writer does not know about " << I;
|
|
abort();
|
|
}
|
|
|
|
void outputLValue(Instruction *I) {
|
|
Out << " " << Mang->getValueName(I) << " = ";
|
|
}
|
|
void printBranchToBlock(BasicBlock *CurBlock, BasicBlock *SuccBlock,
|
|
unsigned Indent);
|
|
void printIndexingExpression(Value *Ptr, gep_type_iterator I,
|
|
gep_type_iterator E);
|
|
};
|
|
|
|
// Pass the Type* and the variable name and this prints out the variable
|
|
// declaration.
|
|
//
|
|
std::ostream &CWriter::printType(std::ostream &Out, const Type *Ty,
|
|
const std::string &NameSoFar,
|
|
bool IgnoreName) {
|
|
if (Ty->isPrimitiveType())
|
|
switch (Ty->getPrimitiveID()) {
|
|
case Type::VoidTyID: return Out << "void " << NameSoFar;
|
|
case Type::BoolTyID: return Out << "bool " << NameSoFar;
|
|
case Type::UByteTyID: return Out << "unsigned char " << NameSoFar;
|
|
case Type::SByteTyID: return Out << "signed char " << NameSoFar;
|
|
case Type::UShortTyID: return Out << "unsigned short " << NameSoFar;
|
|
case Type::ShortTyID: return Out << "short " << NameSoFar;
|
|
case Type::UIntTyID: return Out << "unsigned " << NameSoFar;
|
|
case Type::IntTyID: return Out << "int " << NameSoFar;
|
|
case Type::ULongTyID: return Out << "unsigned long long " << NameSoFar;
|
|
case Type::LongTyID: return Out << "signed long long " << NameSoFar;
|
|
case Type::FloatTyID: return Out << "float " << NameSoFar;
|
|
case Type::DoubleTyID: return Out << "double " << NameSoFar;
|
|
default :
|
|
std::cerr << "Unknown primitive type: " << Ty << "\n";
|
|
abort();
|
|
}
|
|
|
|
// Check to see if the type is named.
|
|
if (!IgnoreName || isa<OpaqueType>(Ty)) {
|
|
std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
|
|
if (I != TypeNames.end()) return Out << I->second << " " << NameSoFar;
|
|
}
|
|
|
|
switch (Ty->getPrimitiveID()) {
|
|
case Type::FunctionTyID: {
|
|
const FunctionType *MTy = cast<FunctionType>(Ty);
|
|
std::stringstream FunctionInnards;
|
|
FunctionInnards << " (" << NameSoFar << ") (";
|
|
for (FunctionType::param_iterator I = MTy->param_begin(),
|
|
E = MTy->param_end(); I != E; ++I) {
|
|
if (I != MTy->param_begin())
|
|
FunctionInnards << ", ";
|
|
printType(FunctionInnards, *I, "");
|
|
}
|
|
if (MTy->isVarArg()) {
|
|
if (MTy->getNumParams())
|
|
FunctionInnards << ", ...";
|
|
} else if (!MTy->getNumParams()) {
|
|
FunctionInnards << "void";
|
|
}
|
|
FunctionInnards << ")";
|
|
std::string tstr = FunctionInnards.str();
|
|
printType(Out, MTy->getReturnType(), tstr);
|
|
return Out;
|
|
}
|
|
case Type::StructTyID: {
|
|
const StructType *STy = cast<StructType>(Ty);
|
|
Out << NameSoFar + " {\n";
|
|
unsigned Idx = 0;
|
|
for (StructType::element_iterator I = STy->element_begin(),
|
|
E = STy->element_end(); I != E; ++I) {
|
|
Out << " ";
|
|
printType(Out, *I, "field" + utostr(Idx++));
|
|
Out << ";\n";
|
|
}
|
|
return Out << "}";
|
|
}
|
|
|
|
case Type::PointerTyID: {
|
|
const PointerType *PTy = cast<PointerType>(Ty);
|
|
std::string ptrName = "*" + NameSoFar;
|
|
|
|
if (isa<ArrayType>(PTy->getElementType()))
|
|
ptrName = "(" + ptrName + ")";
|
|
|
|
return printType(Out, PTy->getElementType(), ptrName);
|
|
}
|
|
|
|
case Type::ArrayTyID: {
|
|
const ArrayType *ATy = cast<ArrayType>(Ty);
|
|
unsigned NumElements = ATy->getNumElements();
|
|
return printType(Out, ATy->getElementType(),
|
|
NameSoFar + "[" + utostr(NumElements) + "]");
|
|
}
|
|
|
|
case Type::OpaqueTyID: {
|
|
static int Count = 0;
|
|
std::string TyName = "struct opaque_" + itostr(Count++);
|
|
assert(TypeNames.find(Ty) == TypeNames.end());
|
|
TypeNames[Ty] = TyName;
|
|
return Out << TyName << " " << NameSoFar;
|
|
}
|
|
default:
|
|
assert(0 && "Unhandled case in getTypeProps!");
|
|
abort();
|
|
}
|
|
|
|
return Out;
|
|
}
|
|
|
|
void CWriter::printConstantArray(ConstantArray *CPA) {
|
|
|
|
// As a special case, print the array as a string if it is an array of
|
|
// ubytes or an array of sbytes with positive values.
|
|
//
|
|
const Type *ETy = CPA->getType()->getElementType();
|
|
bool isString = (ETy == Type::SByteTy || ETy == Type::UByteTy);
|
|
|
|
// Make sure the last character is a null char, as automatically added by C
|
|
if (isString && (CPA->getNumOperands() == 0 ||
|
|
!cast<Constant>(*(CPA->op_end()-1))->isNullValue()))
|
|
isString = false;
|
|
|
|
if (isString) {
|
|
Out << "\"";
|
|
// Keep track of whether the last number was a hexadecimal escape
|
|
bool LastWasHex = false;
|
|
|
|
// Do not include the last character, which we know is null
|
|
for (unsigned i = 0, e = CPA->getNumOperands()-1; i != e; ++i) {
|
|
unsigned char C = cast<ConstantInt>(CPA->getOperand(i))->getRawValue();
|
|
|
|
// Print it out literally if it is a printable character. The only thing
|
|
// to be careful about is when the last letter output was a hex escape
|
|
// code, in which case we have to be careful not to print out hex digits
|
|
// explicitly (the C compiler thinks it is a continuation of the previous
|
|
// character, sheesh...)
|
|
//
|
|
if (isprint(C) && (!LastWasHex || !isxdigit(C))) {
|
|
LastWasHex = false;
|
|
if (C == '"' || C == '\\')
|
|
Out << "\\" << C;
|
|
else
|
|
Out << C;
|
|
} else {
|
|
LastWasHex = false;
|
|
switch (C) {
|
|
case '\n': Out << "\\n"; break;
|
|
case '\t': Out << "\\t"; break;
|
|
case '\r': Out << "\\r"; break;
|
|
case '\v': Out << "\\v"; break;
|
|
case '\a': Out << "\\a"; break;
|
|
case '\"': Out << "\\\""; break;
|
|
case '\'': Out << "\\\'"; break;
|
|
default:
|
|
Out << "\\x";
|
|
Out << (char)(( C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A'));
|
|
Out << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
|
|
LastWasHex = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
Out << "\"";
|
|
} else {
|
|
Out << "{";
|
|
if (CPA->getNumOperands()) {
|
|
Out << " ";
|
|
printConstant(cast<Constant>(CPA->getOperand(0)));
|
|
for (unsigned i = 1, e = CPA->getNumOperands(); i != e; ++i) {
|
|
Out << ", ";
|
|
printConstant(cast<Constant>(CPA->getOperand(i)));
|
|
}
|
|
}
|
|
Out << " }";
|
|
}
|
|
}
|
|
|
|
// isFPCSafeToPrint - Returns true if we may assume that CFP may be written out
|
|
// textually as a double (rather than as a reference to a stack-allocated
|
|
// variable). We decide this by converting CFP to a string and back into a
|
|
// double, and then checking whether the conversion results in a bit-equal
|
|
// double to the original value of CFP. This depends on us and the target C
|
|
// compiler agreeing on the conversion process (which is pretty likely since we
|
|
// only deal in IEEE FP).
|
|
//
|
|
bool isFPCSafeToPrint(const ConstantFP *CFP) {
|
|
#if HAVE_PRINTF_A
|
|
char Buffer[100];
|
|
sprintf(Buffer, "%a", CFP->getValue());
|
|
|
|
if (!strncmp(Buffer, "0x", 2) ||
|
|
!strncmp(Buffer, "-0x", 3) ||
|
|
!strncmp(Buffer, "+0x", 3))
|
|
return atof(Buffer) == CFP->getValue();
|
|
return false;
|
|
#else
|
|
std::string StrVal = ftostr(CFP->getValue());
|
|
|
|
while (StrVal[0] == ' ')
|
|
StrVal.erase(StrVal.begin());
|
|
|
|
// Check to make sure that the stringized number is not some string like "Inf"
|
|
// or NaN. Check that the string matches the "[-+]?[0-9]" regex.
|
|
if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
|
|
((StrVal[0] == '-' || StrVal[0] == '+') &&
|
|
(StrVal[1] >= '0' && StrVal[1] <= '9')))
|
|
// Reparse stringized version!
|
|
return atof(StrVal.c_str()) == CFP->getValue();
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
// printConstant - The LLVM Constant to C Constant converter.
|
|
void CWriter::printConstant(Constant *CPV) {
|
|
if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
|
|
switch (CE->getOpcode()) {
|
|
case Instruction::Cast:
|
|
Out << "((";
|
|
printType(Out, CPV->getType());
|
|
Out << ")";
|
|
printConstant(CE->getOperand(0));
|
|
Out << ")";
|
|
return;
|
|
|
|
case Instruction::GetElementPtr:
|
|
Out << "(&(";
|
|
printIndexingExpression(CE->getOperand(0), gep_type_begin(CPV),
|
|
gep_type_end(CPV));
|
|
Out << "))";
|
|
return;
|
|
case Instruction::Add:
|
|
case Instruction::Sub:
|
|
case Instruction::Mul:
|
|
case Instruction::Div:
|
|
case Instruction::Rem:
|
|
case Instruction::SetEQ:
|
|
case Instruction::SetNE:
|
|
case Instruction::SetLT:
|
|
case Instruction::SetLE:
|
|
case Instruction::SetGT:
|
|
case Instruction::SetGE:
|
|
case Instruction::Shl:
|
|
case Instruction::Shr:
|
|
Out << "(";
|
|
printConstant(CE->getOperand(0));
|
|
switch (CE->getOpcode()) {
|
|
case Instruction::Add: Out << " + "; break;
|
|
case Instruction::Sub: Out << " - "; break;
|
|
case Instruction::Mul: Out << " * "; break;
|
|
case Instruction::Div: Out << " / "; break;
|
|
case Instruction::Rem: Out << " % "; break;
|
|
case Instruction::SetEQ: Out << " == "; break;
|
|
case Instruction::SetNE: Out << " != "; break;
|
|
case Instruction::SetLT: Out << " < "; break;
|
|
case Instruction::SetLE: Out << " <= "; break;
|
|
case Instruction::SetGT: Out << " > "; break;
|
|
case Instruction::SetGE: Out << " >= "; break;
|
|
case Instruction::Shl: Out << " << "; break;
|
|
case Instruction::Shr: Out << " >> "; break;
|
|
default: assert(0 && "Illegal opcode here!");
|
|
}
|
|
printConstant(CE->getOperand(1));
|
|
Out << ")";
|
|
return;
|
|
|
|
default:
|
|
std::cerr << "CWriter Error: Unhandled constant expression: "
|
|
<< CE << "\n";
|
|
abort();
|
|
}
|
|
}
|
|
|
|
switch (CPV->getType()->getPrimitiveID()) {
|
|
case Type::BoolTyID:
|
|
Out << (CPV == ConstantBool::False ? "0" : "1"); break;
|
|
case Type::SByteTyID:
|
|
case Type::ShortTyID:
|
|
Out << cast<ConstantSInt>(CPV)->getValue(); break;
|
|
case Type::IntTyID:
|
|
if ((int)cast<ConstantSInt>(CPV)->getValue() == (int)0x80000000)
|
|
Out << "((int)0x80000000)"; // Handle MININT specially to avoid warning
|
|
else
|
|
Out << cast<ConstantSInt>(CPV)->getValue();
|
|
break;
|
|
|
|
case Type::LongTyID:
|
|
Out << cast<ConstantSInt>(CPV)->getValue() << "ll"; break;
|
|
|
|
case Type::UByteTyID:
|
|
case Type::UShortTyID:
|
|
Out << cast<ConstantUInt>(CPV)->getValue(); break;
|
|
case Type::UIntTyID:
|
|
Out << cast<ConstantUInt>(CPV)->getValue() << "u"; break;
|
|
case Type::ULongTyID:
|
|
Out << cast<ConstantUInt>(CPV)->getValue() << "ull"; break;
|
|
|
|
case Type::FloatTyID:
|
|
case Type::DoubleTyID: {
|
|
ConstantFP *FPC = cast<ConstantFP>(CPV);
|
|
std::map<const ConstantFP*, unsigned>::iterator I = FPConstantMap.find(FPC);
|
|
if (I != FPConstantMap.end()) {
|
|
// Because of FP precision problems we must load from a stack allocated
|
|
// value that holds the value in hex.
|
|
Out << "(*(" << (FPC->getType() == Type::FloatTy ? "float" : "double")
|
|
<< "*)&FPConstant" << I->second << ")";
|
|
} else {
|
|
#if HAVE_PRINTF_A
|
|
// Print out the constant as a floating point number.
|
|
char Buffer[100];
|
|
sprintf(Buffer, "%a", FPC->getValue());
|
|
Out << Buffer << " /*" << FPC->getValue() << "*/ ";
|
|
#else
|
|
Out << ftostr(FPC->getValue());
|
|
#endif
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Type::ArrayTyID:
|
|
printConstantArray(cast<ConstantArray>(CPV));
|
|
break;
|
|
|
|
case Type::StructTyID: {
|
|
Out << "{";
|
|
if (CPV->getNumOperands()) {
|
|
Out << " ";
|
|
printConstant(cast<Constant>(CPV->getOperand(0)));
|
|
for (unsigned i = 1, e = CPV->getNumOperands(); i != e; ++i) {
|
|
Out << ", ";
|
|
printConstant(cast<Constant>(CPV->getOperand(i)));
|
|
}
|
|
}
|
|
Out << " }";
|
|
break;
|
|
}
|
|
|
|
case Type::PointerTyID:
|
|
if (isa<ConstantPointerNull>(CPV)) {
|
|
Out << "((";
|
|
printType(Out, CPV->getType());
|
|
Out << ")/*NULL*/0)";
|
|
break;
|
|
} else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(CPV)) {
|
|
writeOperand(CPR->getValue());
|
|
break;
|
|
}
|
|
// FALL THROUGH
|
|
default:
|
|
std::cerr << "Unknown constant type: " << CPV << "\n";
|
|
abort();
|
|
}
|
|
}
|
|
|
|
void CWriter::writeOperandInternal(Value *Operand) {
|
|
if (Instruction *I = dyn_cast<Instruction>(Operand))
|
|
if (isInlinableInst(*I) && !isDirectAlloca(I)) {
|
|
// Should we inline this instruction to build a tree?
|
|
Out << "(";
|
|
visit(*I);
|
|
Out << ")";
|
|
return;
|
|
}
|
|
|
|
if (Constant *CPV = dyn_cast<Constant>(Operand)) {
|
|
printConstant(CPV);
|
|
} else {
|
|
Out << Mang->getValueName(Operand);
|
|
}
|
|
}
|
|
|
|
void CWriter::writeOperand(Value *Operand) {
|
|
if (isa<GlobalVariable>(Operand) || isDirectAlloca(Operand))
|
|
Out << "(&"; // Global variables are references as their addresses by llvm
|
|
|
|
writeOperandInternal(Operand);
|
|
|
|
if (isa<GlobalVariable>(Operand) || isDirectAlloca(Operand))
|
|
Out << ")";
|
|
}
|
|
|
|
// nameAllUsedStructureTypes - If there are structure types in the module that
|
|
// are used but do not have names assigned to them in the symbol table yet then
|
|
// we assign them names now.
|
|
//
|
|
bool CWriter::nameAllUsedStructureTypes(Module &M) {
|
|
// Get a set of types that are used by the program...
|
|
std::set<const Type *> UT = FUT->getTypes();
|
|
|
|
// Loop over the module symbol table, removing types from UT that are already
|
|
// named.
|
|
//
|
|
SymbolTable &MST = M.getSymbolTable();
|
|
if (MST.find(Type::TypeTy) != MST.end())
|
|
for (SymbolTable::type_iterator I = MST.type_begin(Type::TypeTy),
|
|
E = MST.type_end(Type::TypeTy); I != E; ++I)
|
|
UT.erase(cast<Type>(I->second));
|
|
|
|
// UT now contains types that are not named. Loop over it, naming structure
|
|
// types.
|
|
//
|
|
bool Changed = false;
|
|
for (std::set<const Type *>::const_iterator I = UT.begin(), E = UT.end();
|
|
I != E; ++I)
|
|
if (const StructType *ST = dyn_cast<StructType>(*I)) {
|
|
((Value*)ST)->setName("unnamed", &MST);
|
|
Changed = true;
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
// generateCompilerSpecificCode - This is where we add conditional compilation
|
|
// directives to cater to specific compilers as need be.
|
|
//
|
|
static void generateCompilerSpecificCode(std::ostream& Out) {
|
|
// Alloca is hard to get, and we don't want to include stdlib.h here...
|
|
Out << "/* get a declaration for alloca */\n"
|
|
<< "#ifdef sun\n"
|
|
<< "extern void *__builtin_alloca(unsigned long);\n"
|
|
<< "#define alloca(x) __builtin_alloca(x)\n"
|
|
<< "#else\n"
|
|
<< "#ifndef __FreeBSD__\n"
|
|
<< "#include <alloca.h>\n"
|
|
<< "#endif\n"
|
|
<< "#endif\n\n";
|
|
|
|
// We output GCC specific attributes to preserve 'linkonce'ness on globals.
|
|
// If we aren't being compiled with GCC, just drop these attributes.
|
|
Out << "#ifndef __GNUC__ /* Can only support \"linkonce\" vars with GCC */\n"
|
|
<< "#define __attribute__(X)\n"
|
|
<< "#endif\n\n";
|
|
|
|
#if 0
|
|
// At some point, we should support "external weak" vs. "weak" linkages.
|
|
// On Mac OS X, "external weak" is spelled "__attribute__((weak_import))".
|
|
Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
|
|
<< "#define __EXTERNAL_WEAK__ __attribute__((weak_import))\n"
|
|
<< "#elif defined(__GNUC__)\n"
|
|
<< "#define __EXTERNAL_WEAK__ __attribute__((weak))\n"
|
|
<< "#else\n"
|
|
<< "#define __EXTERNAL_WEAK__\n"
|
|
<< "#endif\n\n";
|
|
#endif
|
|
|
|
// For now, turn off the weak linkage attribute on Mac OS X. (See above.)
|
|
Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
|
|
<< "#define __ATTRIBUTE_WEAK__\n"
|
|
<< "#elif defined(__GNUC__)\n"
|
|
<< "#define __ATTRIBUTE_WEAK__ __attribute__((weak))\n"
|
|
<< "#else\n"
|
|
<< "#define __ATTRIBUTE_WEAK__\n"
|
|
<< "#endif\n\n";
|
|
}
|
|
|
|
// generateProcessorSpecificCode - This is where we add conditional compilation
|
|
// directives to cater to specific processors as need be.
|
|
//
|
|
static void generateProcessorSpecificCode(std::ostream& Out) {
|
|
// According to ANSI C, longjmp'ing to a setjmp could invalidate any
|
|
// non-volatile variable in the scope of the setjmp. For now, we are not
|
|
// doing analysis to determine which variables need to be marked volatile, so
|
|
// we just mark them all.
|
|
//
|
|
// HOWEVER, many targets implement setjmp by saving and restoring the register
|
|
// file, so they DON'T need variables to be marked volatile, and this is a
|
|
// HUGE pessimization for them. For this reason, on known-good processors, we
|
|
// do not emit volatile qualifiers.
|
|
Out << "#if defined(__386__) || defined(__i386__) || \\\n"
|
|
<< " defined(i386) || defined(WIN32)\n"
|
|
<< "/* setjmp does not require variables to be marked volatile */"
|
|
<< "#define VOLATILE_FOR_SETJMP\n"
|
|
<< "#else\n"
|
|
<< "#define VOLATILE_FOR_SETJMP volatile\n"
|
|
<< "#endif\n\n";
|
|
}
|
|
|
|
|
|
void CWriter::printModule(Module *M) {
|
|
// Calculate which global values have names that will collide when we throw
|
|
// away type information.
|
|
{ // Scope to delete the FoundNames set when we are done with it...
|
|
std::set<std::string> FoundNames;
|
|
for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I)
|
|
if (I->hasName()) // If the global has a name...
|
|
if (FoundNames.count(I->getName())) // And the name is already used
|
|
MangledGlobals.insert(I); // Mangle the name
|
|
else
|
|
FoundNames.insert(I->getName()); // Otherwise, keep track of name
|
|
|
|
for (Module::giterator I = M->gbegin(), E = M->gend(); I != E; ++I)
|
|
if (I->hasName()) // If the global has a name...
|
|
if (FoundNames.count(I->getName())) // And the name is already used
|
|
MangledGlobals.insert(I); // Mangle the name
|
|
else
|
|
FoundNames.insert(I->getName()); // Otherwise, keep track of name
|
|
}
|
|
|
|
// get declaration for alloca
|
|
Out << "/* Provide Declarations */\n";
|
|
Out << "#include <stdarg.h>\n"; // Varargs support
|
|
Out << "#include <setjmp.h>\n"; // Unwind support
|
|
generateCompilerSpecificCode(Out);
|
|
generateProcessorSpecificCode(Out);
|
|
|
|
// Provide a definition for `bool' if not compiling with a C++ compiler.
|
|
Out << "\n"
|
|
<< "#ifndef __cplusplus\ntypedef unsigned char bool;\n#endif\n"
|
|
|
|
<< "\n\n/* Support for floating point constants */\n"
|
|
<< "typedef unsigned long long ConstantDoubleTy;\n"
|
|
<< "typedef unsigned int ConstantFloatTy;\n"
|
|
|
|
<< "\n\n/* Support for the invoke instruction */\n"
|
|
<< "extern struct __llvm_jmpbuf_list_t {\n"
|
|
<< " jmp_buf buf; struct __llvm_jmpbuf_list_t *next;\n"
|
|
<< "} *__llvm_jmpbuf_list;\n"
|
|
|
|
<< "\n\n/* Global Declarations */\n";
|
|
|
|
// First output all the declarations for the program, because C requires
|
|
// Functions & globals to be declared before they are used.
|
|
//
|
|
|
|
// Loop over the symbol table, emitting all named constants...
|
|
printSymbolTable(M->getSymbolTable());
|
|
|
|
// Global variable declarations...
|
|
if (!M->gempty()) {
|
|
Out << "\n/* External Global Variable Declarations */\n";
|
|
for (Module::giterator I = M->gbegin(), E = M->gend(); I != E; ++I) {
|
|
if (I->hasExternalLinkage()) {
|
|
Out << "extern ";
|
|
printType(Out, I->getType()->getElementType(), Mang->getValueName(I));
|
|
Out << ";\n";
|
|
}
|
|
}
|
|
}
|
|
|
|
// Function declarations
|
|
if (!M->empty()) {
|
|
Out << "\n/* Function Declarations */\n";
|
|
needsMalloc = true;
|
|
for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I) {
|
|
// If the function is external and the name collides don't print it.
|
|
// Sometimes the bytecode likes to have multiple "declarations" for
|
|
// external functions
|
|
if ((I->hasInternalLinkage() || !MangledGlobals.count(I)) &&
|
|
!I->getIntrinsicID()) {
|
|
printFunctionSignature(I, true);
|
|
if (I->hasWeakLinkage()) Out << " __ATTRIBUTE_WEAK__";
|
|
Out << ";\n";
|
|
}
|
|
}
|
|
}
|
|
|
|
// Print Malloc prototype if needed
|
|
if (needsMalloc) {
|
|
Out << "\n/* Malloc to make sun happy */\n";
|
|
Out << "extern void * malloc();\n\n";
|
|
}
|
|
|
|
// Output the global variable declarations
|
|
if (!M->gempty()) {
|
|
Out << "\n\n/* Global Variable Declarations */\n";
|
|
for (Module::giterator I = M->gbegin(), E = M->gend(); I != E; ++I)
|
|
if (!I->isExternal()) {
|
|
Out << "extern ";
|
|
printType(Out, I->getType()->getElementType(), Mang->getValueName(I));
|
|
|
|
if (I->hasLinkOnceLinkage())
|
|
Out << " __attribute__((common))";
|
|
else if (I->hasWeakLinkage())
|
|
Out << " __ATTRIBUTE_WEAK__";
|
|
Out << ";\n";
|
|
}
|
|
}
|
|
|
|
// Output the global variable definitions and contents...
|
|
if (!M->gempty()) {
|
|
Out << "\n\n/* Global Variable Definitions and Initialization */\n";
|
|
for (Module::giterator I = M->gbegin(), E = M->gend(); I != E; ++I)
|
|
if (!I->isExternal()) {
|
|
if (I->hasInternalLinkage())
|
|
Out << "static ";
|
|
printType(Out, I->getType()->getElementType(), Mang->getValueName(I));
|
|
if (I->hasLinkOnceLinkage())
|
|
Out << " __attribute__((common))";
|
|
else if (I->hasWeakLinkage())
|
|
Out << " __ATTRIBUTE_WEAK__";
|
|
|
|
// If the initializer is not null, emit the initializer. If it is null,
|
|
// we try to avoid emitting large amounts of zeros. The problem with
|
|
// this, however, occurs when the variable has weak linkage. In this
|
|
// case, the assembler will complain about the variable being both weak
|
|
// and common, so we disable this optimization.
|
|
if (!I->getInitializer()->isNullValue() ||
|
|
I->hasWeakLinkage()) {
|
|
Out << " = " ;
|
|
writeOperand(I->getInitializer());
|
|
}
|
|
Out << ";\n";
|
|
}
|
|
}
|
|
|
|
// Output all floating point constants that cannot be printed accurately...
|
|
printFloatingPointConstants(*M);
|
|
|
|
// Output all of the functions...
|
|
emittedInvoke = false;
|
|
if (!M->empty()) {
|
|
Out << "\n\n/* Function Bodies */\n";
|
|
for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I)
|
|
printFunction(I);
|
|
}
|
|
|
|
// If the program included an invoke instruction, we need to output the
|
|
// support code for it here!
|
|
if (emittedInvoke) {
|
|
Out << "\n/* More support for the invoke instruction */\n"
|
|
<< "struct __llvm_jmpbuf_list_t *__llvm_jmpbuf_list "
|
|
<< "__attribute__((common)) = 0;\n";
|
|
}
|
|
|
|
// Done with global FP constants
|
|
FPConstantMap.clear();
|
|
}
|
|
|
|
/// Output all floating point constants that cannot be printed accurately...
|
|
void CWriter::printFloatingPointConstants(Module &M) {
|
|
union {
|
|
double D;
|
|
unsigned long long U;
|
|
} DBLUnion;
|
|
|
|
union {
|
|
float F;
|
|
unsigned U;
|
|
} FLTUnion;
|
|
|
|
// Scan the module for floating point constants. If any FP constant is used
|
|
// in the function, we want to redirect it here so that we do not depend on
|
|
// the precision of the printed form, unless the printed form preserves
|
|
// precision.
|
|
//
|
|
unsigned FPCounter = 0;
|
|
for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
|
|
for (constant_iterator I = constant_begin(F), E = constant_end(F);
|
|
I != E; ++I)
|
|
if (const ConstantFP *FPC = dyn_cast<ConstantFP>(*I))
|
|
if (!isFPCSafeToPrint(FPC) && // Do not put in FPConstantMap if safe.
|
|
!FPConstantMap.count(FPC)) {
|
|
double Val = FPC->getValue();
|
|
|
|
FPConstantMap[FPC] = FPCounter; // Number the FP constants
|
|
|
|
if (FPC->getType() == Type::DoubleTy) {
|
|
DBLUnion.D = Val;
|
|
Out << "const ConstantDoubleTy FPConstant" << FPCounter++
|
|
<< " = 0x" << std::hex << DBLUnion.U << std::dec
|
|
<< "ULL; /* " << Val << " */\n";
|
|
} else if (FPC->getType() == Type::FloatTy) {
|
|
FLTUnion.F = Val;
|
|
Out << "const ConstantFloatTy FPConstant" << FPCounter++
|
|
<< " = 0x" << std::hex << FLTUnion.U << std::dec
|
|
<< "U; /* " << Val << " */\n";
|
|
} else
|
|
assert(0 && "Unknown float type!");
|
|
}
|
|
|
|
Out << "\n";
|
|
}
|
|
|
|
|
|
/// printSymbolTable - Run through symbol table looking for type names. If a
|
|
/// type name is found, emit it's declaration...
|
|
///
|
|
void CWriter::printSymbolTable(const SymbolTable &ST) {
|
|
// If there are no type names, exit early.
|
|
if (ST.find(Type::TypeTy) == ST.end())
|
|
return;
|
|
|
|
// We are only interested in the type plane of the symbol table...
|
|
SymbolTable::type_const_iterator I = ST.type_begin(Type::TypeTy);
|
|
SymbolTable::type_const_iterator End = ST.type_end(Type::TypeTy);
|
|
|
|
// Print out forward declarations for structure types before anything else!
|
|
Out << "/* Structure forward decls */\n";
|
|
for (; I != End; ++I)
|
|
if (const Type *STy = dyn_cast<StructType>(I->second))
|
|
// Only print out used types!
|
|
if (FUT->getTypes().count(STy)) {
|
|
std::string Name = "struct l_" + Mangler::makeNameProper(I->first);
|
|
Out << Name << ";\n";
|
|
TypeNames.insert(std::make_pair(STy, Name));
|
|
}
|
|
|
|
Out << "\n";
|
|
|
|
// Now we can print out typedefs...
|
|
Out << "/* Typedefs */\n";
|
|
for (I = ST.type_begin(Type::TypeTy); I != End; ++I)
|
|
// Only print out used types!
|
|
if (FUT->getTypes().count(cast<Type>(I->second))) {
|
|
const Type *Ty = cast<Type>(I->second);
|
|
std::string Name = "l_" + Mangler::makeNameProper(I->first);
|
|
Out << "typedef ";
|
|
printType(Out, Ty, Name);
|
|
Out << ";\n";
|
|
}
|
|
|
|
Out << "\n";
|
|
|
|
// Keep track of which structures have been printed so far...
|
|
std::set<const StructType *> StructPrinted;
|
|
|
|
// Loop over all structures then push them into the stack so they are
|
|
// printed in the correct order.
|
|
//
|
|
Out << "/* Structure contents */\n";
|
|
for (I = ST.type_begin(Type::TypeTy); I != End; ++I)
|
|
if (const StructType *STy = dyn_cast<StructType>(I->second))
|
|
// Only print out used types!
|
|
if (FUT->getTypes().count(STy))
|
|
printContainedStructs(STy, StructPrinted);
|
|
}
|
|
|
|
// Push the struct onto the stack and recursively push all structs
|
|
// this one depends on.
|
|
void CWriter::printContainedStructs(const Type *Ty,
|
|
std::set<const StructType*> &StructPrinted){
|
|
if (const StructType *STy = dyn_cast<StructType>(Ty)) {
|
|
//Check to see if we have already printed this struct
|
|
if (StructPrinted.count(STy) == 0) {
|
|
// Print all contained types first...
|
|
for (StructType::element_iterator I = STy->element_begin(),
|
|
E = STy->element_end(); I != E; ++I) {
|
|
const Type *Ty1 = I->get();
|
|
if (isa<StructType>(Ty1) || isa<ArrayType>(Ty1))
|
|
printContainedStructs(*I, StructPrinted);
|
|
}
|
|
|
|
//Print structure type out..
|
|
StructPrinted.insert(STy);
|
|
std::string Name = TypeNames[STy];
|
|
printType(Out, STy, Name, true);
|
|
Out << ";\n\n";
|
|
}
|
|
|
|
// If it is an array, check contained types and continue
|
|
} else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)){
|
|
const Type *Ty1 = ATy->getElementType();
|
|
if (isa<StructType>(Ty1) || isa<ArrayType>(Ty1))
|
|
printContainedStructs(Ty1, StructPrinted);
|
|
}
|
|
}
|
|
|
|
|
|
void CWriter::printFunctionSignature(const Function *F, bool Prototype) {
|
|
// If the program provides its own malloc prototype we don't need
|
|
// to include the general one.
|
|
if (Mang->getValueName(F) == "malloc")
|
|
needsMalloc = false;
|
|
|
|
if (F->hasInternalLinkage()) Out << "static ";
|
|
if (F->hasLinkOnceLinkage()) Out << "inline ";
|
|
|
|
// Loop over the arguments, printing them...
|
|
const FunctionType *FT = cast<FunctionType>(F->getFunctionType());
|
|
|
|
std::stringstream FunctionInnards;
|
|
|
|
// Print out the name...
|
|
FunctionInnards << Mang->getValueName(F) << "(";
|
|
|
|
if (!F->isExternal()) {
|
|
if (!F->aempty()) {
|
|
std::string ArgName;
|
|
if (F->abegin()->hasName() || !Prototype)
|
|
ArgName = Mang->getValueName(F->abegin());
|
|
printType(FunctionInnards, F->afront().getType(), ArgName);
|
|
for (Function::const_aiterator I = ++F->abegin(), E = F->aend();
|
|
I != E; ++I) {
|
|
FunctionInnards << ", ";
|
|
if (I->hasName() || !Prototype)
|
|
ArgName = Mang->getValueName(I);
|
|
else
|
|
ArgName = "";
|
|
printType(FunctionInnards, I->getType(), ArgName);
|
|
}
|
|
}
|
|
} else {
|
|
// Loop over the arguments, printing them...
|
|
for (FunctionType::param_iterator I = FT->param_begin(),
|
|
E = FT->param_end(); I != E; ++I) {
|
|
if (I != FT->param_begin()) FunctionInnards << ", ";
|
|
printType(FunctionInnards, *I);
|
|
}
|
|
}
|
|
|
|
// Finish printing arguments... if this is a vararg function, print the ...,
|
|
// unless there are no known types, in which case, we just emit ().
|
|
//
|
|
if (FT->isVarArg() && FT->getNumParams()) {
|
|
if (FT->getNumParams()) FunctionInnards << ", ";
|
|
FunctionInnards << "..."; // Output varargs portion of signature!
|
|
} else if (!FT->isVarArg() && FT->getNumParams() == 0) {
|
|
FunctionInnards << "void"; // ret() -> ret(void) in C.
|
|
}
|
|
FunctionInnards << ")";
|
|
// Print out the return type and the entire signature for that matter
|
|
printType(Out, F->getReturnType(), FunctionInnards.str());
|
|
}
|
|
|
|
void CWriter::printFunction(Function *F) {
|
|
if (F->isExternal()) return;
|
|
|
|
printFunctionSignature(F, false);
|
|
Out << " {\n";
|
|
|
|
// Determine whether or not the function contains any invoke instructions.
|
|
bool HasInvoke = false;
|
|
for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I)
|
|
if (isa<InvokeInst>(I->getTerminator())) {
|
|
HasInvoke = true;
|
|
break;
|
|
}
|
|
|
|
// print local variable information for the function
|
|
for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
|
|
if (const AllocaInst *AI = isDirectAlloca(*I)) {
|
|
Out << " ";
|
|
if (HasInvoke) Out << "VOLATILE_FOR_SETJMP ";
|
|
printType(Out, AI->getAllocatedType(), Mang->getValueName(AI));
|
|
Out << "; /* Address exposed local */\n";
|
|
} else if ((*I)->getType() != Type::VoidTy && !isInlinableInst(**I)) {
|
|
Out << " ";
|
|
if (HasInvoke) Out << "VOLATILE_FOR_SETJMP ";
|
|
printType(Out, (*I)->getType(), Mang->getValueName(*I));
|
|
Out << ";\n";
|
|
|
|
if (isa<PHINode>(*I)) { // Print out PHI node temporaries as well...
|
|
Out << " ";
|
|
if (HasInvoke) Out << "VOLATILE_FOR_SETJMP ";
|
|
printType(Out, (*I)->getType(),
|
|
Mang->getValueName(*I)+"__PHI_TEMPORARY");
|
|
Out << ";\n";
|
|
}
|
|
}
|
|
|
|
Out << "\n";
|
|
|
|
// print the basic blocks
|
|
for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
|
|
BasicBlock *Prev = BB->getPrev();
|
|
|
|
// Don't print the label for the basic block if there are no uses, or if the
|
|
// only terminator use is the predecessor basic block's terminator. We have
|
|
// to scan the use list because PHI nodes use basic blocks too but do not
|
|
// require a label to be generated.
|
|
//
|
|
bool NeedsLabel = false;
|
|
for (Value::use_iterator UI = BB->use_begin(), UE = BB->use_end();
|
|
UI != UE; ++UI)
|
|
if (TerminatorInst *TI = dyn_cast<TerminatorInst>(*UI))
|
|
if (TI != Prev->getTerminator() ||
|
|
isa<SwitchInst>(Prev->getTerminator()) ||
|
|
isa<InvokeInst>(Prev->getTerminator())) {
|
|
NeedsLabel = true;
|
|
break;
|
|
}
|
|
|
|
if (NeedsLabel) Out << Mang->getValueName(BB) << ":\n";
|
|
|
|
// Output all of the instructions in the basic block...
|
|
for (BasicBlock::iterator II = BB->begin(), E = --BB->end(); II != E; ++II){
|
|
if (!isInlinableInst(*II) && !isDirectAlloca(II)) {
|
|
if (II->getType() != Type::VoidTy)
|
|
outputLValue(II);
|
|
else
|
|
Out << " ";
|
|
visit(*II);
|
|
Out << ";\n";
|
|
}
|
|
}
|
|
|
|
// Don't emit prefix or suffix for the terminator...
|
|
visit(*BB->getTerminator());
|
|
}
|
|
|
|
Out << "}\n\n";
|
|
}
|
|
|
|
// Specific Instruction type classes... note that all of the casts are
|
|
// necessary because we use the instruction classes as opaque types...
|
|
//
|
|
void CWriter::visitReturnInst(ReturnInst &I) {
|
|
// Don't output a void return if this is the last basic block in the function
|
|
if (I.getNumOperands() == 0 &&
|
|
&*--I.getParent()->getParent()->end() == I.getParent() &&
|
|
!I.getParent()->size() == 1) {
|
|
return;
|
|
}
|
|
|
|
Out << " return";
|
|
if (I.getNumOperands()) {
|
|
Out << " ";
|
|
writeOperand(I.getOperand(0));
|
|
}
|
|
Out << ";\n";
|
|
}
|
|
|
|
void CWriter::visitSwitchInst(SwitchInst &SI) {
|
|
Out << " switch (";
|
|
writeOperand(SI.getOperand(0));
|
|
Out << ") {\n default:\n";
|
|
printBranchToBlock(SI.getParent(), SI.getDefaultDest(), 2);
|
|
Out << ";\n";
|
|
for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2) {
|
|
Out << " case ";
|
|
writeOperand(SI.getOperand(i));
|
|
Out << ":\n";
|
|
BasicBlock *Succ = cast<BasicBlock>(SI.getOperand(i+1));
|
|
printBranchToBlock(SI.getParent(), Succ, 2);
|
|
if (Succ == SI.getParent()->getNext())
|
|
Out << " break;\n";
|
|
}
|
|
Out << " }\n";
|
|
}
|
|
|
|
void CWriter::visitInvokeInst(InvokeInst &II) {
|
|
Out << " {\n"
|
|
<< " struct __llvm_jmpbuf_list_t Entry;\n"
|
|
<< " Entry.next = __llvm_jmpbuf_list;\n"
|
|
<< " if (setjmp(Entry.buf)) {\n"
|
|
<< " __llvm_jmpbuf_list = Entry.next;\n";
|
|
printBranchToBlock(II.getParent(), II.getUnwindDest(), 4);
|
|
Out << " }\n"
|
|
<< " __llvm_jmpbuf_list = &Entry;\n"
|
|
<< " ";
|
|
|
|
if (II.getType() != Type::VoidTy) outputLValue(&II);
|
|
visitCallSite(&II);
|
|
Out << ";\n"
|
|
<< " __llvm_jmpbuf_list = Entry.next;\n"
|
|
<< " }\n";
|
|
printBranchToBlock(II.getParent(), II.getNormalDest(), 0);
|
|
emittedInvoke = true;
|
|
}
|
|
|
|
|
|
void CWriter::visitUnwindInst(UnwindInst &I) {
|
|
// The unwind instructions causes a control flow transfer out of the current
|
|
// function, unwinding the stack until a caller who used the invoke
|
|
// instruction is found. In this context, we code generated the invoke
|
|
// instruction to add an entry to the top of the jmpbuf_list. Thus, here we
|
|
// just have to longjmp to the specified handler.
|
|
Out << " if (__llvm_jmpbuf_list == 0) { /* unwind */\n"
|
|
<< "#ifdef _LP64\n"
|
|
<< " extern signed long long write();\n"
|
|
<< "#else\n"
|
|
<< " extern write();\n"
|
|
<< "#endif\n"
|
|
<< " ((void (*)(int, void*, unsigned))write)(2,\n"
|
|
<< " \"throw found with no handler!\\n\", 31); abort();\n"
|
|
<< " }\n"
|
|
<< " longjmp(__llvm_jmpbuf_list->buf, 1);\n";
|
|
emittedInvoke = true;
|
|
}
|
|
|
|
bool isGotoCodeNecessary(BasicBlock *From, BasicBlock *To) {
|
|
// If PHI nodes need copies, we need the copy code...
|
|
if (isa<PHINode>(To->front()) ||
|
|
From->getNext() != To) // Not directly successor, need goto
|
|
return true;
|
|
|
|
// Otherwise we don't need the code.
|
|
return false;
|
|
}
|
|
|
|
void CWriter::printBranchToBlock(BasicBlock *CurBB, BasicBlock *Succ,
|
|
unsigned Indent) {
|
|
for (BasicBlock::iterator I = Succ->begin();
|
|
PHINode *PN = dyn_cast<PHINode>(I); ++I) {
|
|
// now we have to do the printing
|
|
Out << std::string(Indent, ' ');
|
|
Out << " " << Mang->getValueName(I) << "__PHI_TEMPORARY = ";
|
|
writeOperand(PN->getIncomingValue(PN->getBasicBlockIndex(CurBB)));
|
|
Out << "; /* for PHI node */\n";
|
|
}
|
|
|
|
if (CurBB->getNext() != Succ ||
|
|
isa<InvokeInst>(CurBB->getTerminator()) ||
|
|
isa<SwitchInst>(CurBB->getTerminator())) {
|
|
Out << std::string(Indent, ' ') << " goto ";
|
|
writeOperand(Succ);
|
|
Out << ";\n";
|
|
}
|
|
}
|
|
|
|
// Branch instruction printing - Avoid printing out a branch to a basic block
|
|
// that immediately succeeds the current one.
|
|
//
|
|
void CWriter::visitBranchInst(BranchInst &I) {
|
|
if (I.isConditional()) {
|
|
if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(0))) {
|
|
Out << " if (";
|
|
writeOperand(I.getCondition());
|
|
Out << ") {\n";
|
|
|
|
printBranchToBlock(I.getParent(), I.getSuccessor(0), 2);
|
|
|
|
if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(1))) {
|
|
Out << " } else {\n";
|
|
printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
|
|
}
|
|
} else {
|
|
// First goto not necessary, assume second one is...
|
|
Out << " if (!";
|
|
writeOperand(I.getCondition());
|
|
Out << ") {\n";
|
|
|
|
printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
|
|
}
|
|
|
|
Out << " }\n";
|
|
} else {
|
|
printBranchToBlock(I.getParent(), I.getSuccessor(0), 0);
|
|
}
|
|
Out << "\n";
|
|
}
|
|
|
|
// PHI nodes get copied into temporary values at the end of predecessor basic
|
|
// blocks. We now need to copy these temporary values into the REAL value for
|
|
// the PHI.
|
|
void CWriter::visitPHINode(PHINode &I) {
|
|
writeOperand(&I);
|
|
Out << "__PHI_TEMPORARY";
|
|
}
|
|
|
|
|
|
void CWriter::visitBinaryOperator(Instruction &I) {
|
|
// binary instructions, shift instructions, setCond instructions.
|
|
assert(!isa<PointerType>(I.getType()));
|
|
|
|
// We must cast the results of binary operations which might be promoted.
|
|
bool needsCast = false;
|
|
if ((I.getType() == Type::UByteTy) || (I.getType() == Type::SByteTy)
|
|
|| (I.getType() == Type::UShortTy) || (I.getType() == Type::ShortTy)
|
|
|| (I.getType() == Type::FloatTy)) {
|
|
needsCast = true;
|
|
Out << "((";
|
|
printType(Out, I.getType());
|
|
Out << ")(";
|
|
}
|
|
|
|
writeOperand(I.getOperand(0));
|
|
|
|
switch (I.getOpcode()) {
|
|
case Instruction::Add: Out << " + "; break;
|
|
case Instruction::Sub: Out << " - "; break;
|
|
case Instruction::Mul: Out << "*"; break;
|
|
case Instruction::Div: Out << "/"; break;
|
|
case Instruction::Rem: Out << "%"; break;
|
|
case Instruction::And: Out << " & "; break;
|
|
case Instruction::Or: Out << " | "; break;
|
|
case Instruction::Xor: Out << " ^ "; break;
|
|
case Instruction::SetEQ: Out << " == "; break;
|
|
case Instruction::SetNE: Out << " != "; break;
|
|
case Instruction::SetLE: Out << " <= "; break;
|
|
case Instruction::SetGE: Out << " >= "; break;
|
|
case Instruction::SetLT: Out << " < "; break;
|
|
case Instruction::SetGT: Out << " > "; break;
|
|
case Instruction::Shl : Out << " << "; break;
|
|
case Instruction::Shr : Out << " >> "; break;
|
|
default: std::cerr << "Invalid operator type!" << I; abort();
|
|
}
|
|
|
|
writeOperand(I.getOperand(1));
|
|
|
|
if (needsCast) {
|
|
Out << "))";
|
|
}
|
|
}
|
|
|
|
void CWriter::visitCastInst(CastInst &I) {
|
|
if (I.getType() == Type::BoolTy) {
|
|
Out << "(";
|
|
writeOperand(I.getOperand(0));
|
|
Out << " != 0)";
|
|
return;
|
|
}
|
|
Out << "(";
|
|
printType(Out, I.getType());
|
|
Out << ")";
|
|
if (isa<PointerType>(I.getType())&&I.getOperand(0)->getType()->isIntegral() ||
|
|
isa<PointerType>(I.getOperand(0)->getType())&&I.getType()->isIntegral()) {
|
|
// Avoid "cast to pointer from integer of different size" warnings
|
|
Out << "(long)";
|
|
}
|
|
|
|
writeOperand(I.getOperand(0));
|
|
}
|
|
|
|
void CWriter::visitCallInst(CallInst &I) {
|
|
// Handle intrinsic function calls first...
|
|
if (Function *F = I.getCalledFunction())
|
|
if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
|
|
switch (ID) {
|
|
default: assert(0 && "Unknown LLVM intrinsic!");
|
|
case Intrinsic::va_start:
|
|
Out << "0; ";
|
|
|
|
Out << "va_start(*(va_list*)&" << Mang->getValueName(&I) << ", ";
|
|
// Output the last argument to the enclosing function...
|
|
if (I.getParent()->getParent()->aempty()) {
|
|
std::cerr << "The C backend does not currently support zero "
|
|
<< "argument varargs functions, such as '"
|
|
<< I.getParent()->getParent()->getName() << "'!\n";
|
|
abort();
|
|
}
|
|
writeOperand(&I.getParent()->getParent()->aback());
|
|
Out << ")";
|
|
return;
|
|
case Intrinsic::va_end:
|
|
Out << "va_end(*(va_list*)&";
|
|
writeOperand(I.getOperand(1));
|
|
Out << ")";
|
|
return;
|
|
case Intrinsic::va_copy:
|
|
Out << "0;";
|
|
Out << "va_copy(*(va_list*)&" << Mang->getValueName(&I) << ", ";
|
|
Out << "*(va_list*)&";
|
|
writeOperand(I.getOperand(1));
|
|
Out << ")";
|
|
return;
|
|
case Intrinsic::setjmp:
|
|
case Intrinsic::sigsetjmp:
|
|
// This intrinsic should never exist in the program, but until we get
|
|
// setjmp/longjmp transformations going on, we should codegen it to
|
|
// something reasonable. This will allow code that never calls longjmp
|
|
// to work.
|
|
Out << "0";
|
|
return;
|
|
case Intrinsic::longjmp:
|
|
case Intrinsic::siglongjmp:
|
|
// Longjmp is not implemented, and never will be. It would cause an
|
|
// exception throw.
|
|
Out << "abort()";
|
|
return;
|
|
}
|
|
}
|
|
visitCallSite(&I);
|
|
}
|
|
|
|
void CWriter::visitCallSite(CallSite CS) {
|
|
const PointerType *PTy = cast<PointerType>(CS.getCalledValue()->getType());
|
|
const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
|
|
const Type *RetTy = FTy->getReturnType();
|
|
|
|
writeOperand(CS.getCalledValue());
|
|
Out << "(";
|
|
|
|
if (CS.arg_begin() != CS.arg_end()) {
|
|
CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
|
|
writeOperand(*AI);
|
|
|
|
for (++AI; AI != AE; ++AI) {
|
|
Out << ", ";
|
|
writeOperand(*AI);
|
|
}
|
|
}
|
|
Out << ")";
|
|
}
|
|
|
|
void CWriter::visitMallocInst(MallocInst &I) {
|
|
Out << "(";
|
|
printType(Out, I.getType());
|
|
Out << ")malloc(sizeof(";
|
|
printType(Out, I.getType()->getElementType());
|
|
Out << ")";
|
|
|
|
if (I.isArrayAllocation()) {
|
|
Out << " * " ;
|
|
writeOperand(I.getOperand(0));
|
|
}
|
|
Out << ")";
|
|
}
|
|
|
|
void CWriter::visitAllocaInst(AllocaInst &I) {
|
|
Out << "(";
|
|
printType(Out, I.getType());
|
|
Out << ") alloca(sizeof(";
|
|
printType(Out, I.getType()->getElementType());
|
|
Out << ")";
|
|
if (I.isArrayAllocation()) {
|
|
Out << " * " ;
|
|
writeOperand(I.getOperand(0));
|
|
}
|
|
Out << ")";
|
|
}
|
|
|
|
void CWriter::visitFreeInst(FreeInst &I) {
|
|
Out << "free((char*)";
|
|
writeOperand(I.getOperand(0));
|
|
Out << ")";
|
|
}
|
|
|
|
void CWriter::printIndexingExpression(Value *Ptr, gep_type_iterator I,
|
|
gep_type_iterator E) {
|
|
bool HasImplicitAddress = false;
|
|
// If accessing a global value with no indexing, avoid *(&GV) syndrome
|
|
if (GlobalValue *V = dyn_cast<GlobalValue>(Ptr)) {
|
|
HasImplicitAddress = true;
|
|
} else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(Ptr)) {
|
|
HasImplicitAddress = true;
|
|
Ptr = CPR->getValue(); // Get to the global...
|
|
} else if (isDirectAlloca(Ptr)) {
|
|
HasImplicitAddress = true;
|
|
}
|
|
|
|
if (I == E) {
|
|
if (!HasImplicitAddress)
|
|
Out << "*"; // Implicit zero first argument: '*x' is equivalent to 'x[0]'
|
|
|
|
writeOperandInternal(Ptr);
|
|
return;
|
|
}
|
|
|
|
const Constant *CI = dyn_cast<Constant>(I.getOperand());
|
|
if (HasImplicitAddress && (!CI || !CI->isNullValue()))
|
|
Out << "(&";
|
|
|
|
writeOperandInternal(Ptr);
|
|
|
|
if (HasImplicitAddress && (!CI || !CI->isNullValue())) {
|
|
Out << ")";
|
|
HasImplicitAddress = false; // HIA is only true if we haven't addressed yet
|
|
}
|
|
|
|
assert(!HasImplicitAddress || (CI && CI->isNullValue()) &&
|
|
"Can only have implicit address with direct accessing");
|
|
|
|
if (HasImplicitAddress) {
|
|
++I;
|
|
} else if (CI && CI->isNullValue()) {
|
|
gep_type_iterator TmpI = I; ++TmpI;
|
|
|
|
// Print out the -> operator if possible...
|
|
if (TmpI != E && isa<StructType>(*TmpI)) {
|
|
Out << (HasImplicitAddress ? "." : "->");
|
|
Out << "field" << cast<ConstantUInt>(TmpI.getOperand())->getValue();
|
|
I = ++TmpI;
|
|
}
|
|
}
|
|
|
|
for (; I != E; ++I)
|
|
if (isa<StructType>(*I)) {
|
|
Out << ".field" << cast<ConstantUInt>(I.getOperand())->getValue();
|
|
} else {
|
|
Out << "[";
|
|
writeOperand(I.getOperand());
|
|
Out << "]";
|
|
}
|
|
}
|
|
|
|
void CWriter::visitLoadInst(LoadInst &I) {
|
|
Out << "*";
|
|
writeOperand(I.getOperand(0));
|
|
}
|
|
|
|
void CWriter::visitStoreInst(StoreInst &I) {
|
|
Out << "*";
|
|
writeOperand(I.getPointerOperand());
|
|
Out << " = ";
|
|
writeOperand(I.getOperand(0));
|
|
}
|
|
|
|
void CWriter::visitGetElementPtrInst(GetElementPtrInst &I) {
|
|
Out << "&";
|
|
printIndexingExpression(I.getPointerOperand(), gep_type_begin(I),
|
|
gep_type_end(I));
|
|
}
|
|
|
|
void CWriter::visitVANextInst(VANextInst &I) {
|
|
Out << Mang->getValueName(I.getOperand(0));
|
|
Out << "; va_arg(*(va_list*)&" << Mang->getValueName(&I) << ", ";
|
|
printType(Out, I.getArgType());
|
|
Out << ")";
|
|
}
|
|
|
|
void CWriter::visitVAArgInst(VAArgInst &I) {
|
|
Out << "0;\n";
|
|
Out << "{ va_list Tmp; va_copy(Tmp, *(va_list*)&";
|
|
writeOperand(I.getOperand(0));
|
|
Out << ");\n " << Mang->getValueName(&I) << " = va_arg(Tmp, ";
|
|
printType(Out, I.getType());
|
|
Out << ");\n va_end(Tmp); }";
|
|
}
|
|
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// External Interface declaration
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
Pass *createWriteToCPass(std::ostream &o) { return new CWriter(o); }
|
|
|
|
} // End llvm namespace
|