mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@77635 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			541 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			541 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- CloneFunction.cpp - Clone a function into another function ---------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the CloneFunctionInto interface, which is used as the
 | 
						|
// low-level function cloner.  This is used by the CloneFunction and function
 | 
						|
// inliner to do the dirty work of copying the body of a function around.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/Utils/Cloning.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/IntrinsicInst.h"
 | 
						|
#include "llvm/GlobalVariable.h"
 | 
						|
#include "llvm/Function.h"
 | 
						|
#include "llvm/LLVMContext.h"
 | 
						|
#include "llvm/Support/CFG.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include "llvm/Transforms/Utils/ValueMapper.h"
 | 
						|
#include "llvm/Analysis/ConstantFolding.h"
 | 
						|
#include "llvm/Analysis/DebugInfo.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include <map>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
// CloneBasicBlock - See comments in Cloning.h
 | 
						|
BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB,
 | 
						|
                                  DenseMap<const Value*, Value*> &ValueMap,
 | 
						|
                                  const char *NameSuffix, Function *F,
 | 
						|
                                  ClonedCodeInfo *CodeInfo) {
 | 
						|
  BasicBlock *NewBB = BasicBlock::Create("", F);
 | 
						|
  if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
 | 
						|
 | 
						|
  bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
 | 
						|
  
 | 
						|
  // Loop over all instructions, and copy them over.
 | 
						|
  for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end();
 | 
						|
       II != IE; ++II) {
 | 
						|
    Instruction *NewInst = II->clone(BB->getContext());
 | 
						|
    if (II->hasName())
 | 
						|
      NewInst->setName(II->getName()+NameSuffix);
 | 
						|
    NewBB->getInstList().push_back(NewInst);
 | 
						|
    ValueMap[II] = NewInst;                // Add instruction map to value.
 | 
						|
    
 | 
						|
    hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
 | 
						|
    if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
 | 
						|
      if (isa<ConstantInt>(AI->getArraySize()))
 | 
						|
        hasStaticAllocas = true;
 | 
						|
      else
 | 
						|
        hasDynamicAllocas = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (CodeInfo) {
 | 
						|
    CodeInfo->ContainsCalls          |= hasCalls;
 | 
						|
    CodeInfo->ContainsUnwinds        |= isa<UnwindInst>(BB->getTerminator());
 | 
						|
    CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
 | 
						|
    CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas && 
 | 
						|
                                        BB != &BB->getParent()->getEntryBlock();
 | 
						|
  }
 | 
						|
  return NewBB;
 | 
						|
}
 | 
						|
 | 
						|
// Clone OldFunc into NewFunc, transforming the old arguments into references to
 | 
						|
// ArgMap values.
 | 
						|
//
 | 
						|
void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
 | 
						|
                             DenseMap<const Value*, Value*> &ValueMap,
 | 
						|
                             std::vector<ReturnInst*> &Returns,
 | 
						|
                             const char *NameSuffix, ClonedCodeInfo *CodeInfo) {
 | 
						|
  assert(NameSuffix && "NameSuffix cannot be null!");
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  for (Function::const_arg_iterator I = OldFunc->arg_begin(), 
 | 
						|
       E = OldFunc->arg_end(); I != E; ++I)
 | 
						|
    assert(ValueMap.count(I) && "No mapping from source argument specified!");
 | 
						|
#endif
 | 
						|
 | 
						|
  // Clone any attributes.
 | 
						|
  if (NewFunc->arg_size() == OldFunc->arg_size())
 | 
						|
    NewFunc->copyAttributesFrom(OldFunc);
 | 
						|
  else {
 | 
						|
    //Some arguments were deleted with the ValueMap. Copy arguments one by one
 | 
						|
    for (Function::const_arg_iterator I = OldFunc->arg_begin(), 
 | 
						|
           E = OldFunc->arg_end(); I != E; ++I)
 | 
						|
      if (Argument* Anew = dyn_cast<Argument>(ValueMap[I]))
 | 
						|
        Anew->addAttr( OldFunc->getAttributes()
 | 
						|
                       .getParamAttributes(I->getArgNo() + 1));
 | 
						|
    NewFunc->setAttributes(NewFunc->getAttributes()
 | 
						|
                           .addAttr(0, OldFunc->getAttributes()
 | 
						|
                                     .getRetAttributes()));
 | 
						|
    NewFunc->setAttributes(NewFunc->getAttributes()
 | 
						|
                           .addAttr(~0, OldFunc->getAttributes()
 | 
						|
                                     .getFnAttributes()));
 | 
						|
 | 
						|
  }
 | 
						|
 | 
						|
  // Loop over all of the basic blocks in the function, cloning them as
 | 
						|
  // appropriate.  Note that we save BE this way in order to handle cloning of
 | 
						|
  // recursive functions into themselves.
 | 
						|
  //
 | 
						|
  for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
 | 
						|
       BI != BE; ++BI) {
 | 
						|
    const BasicBlock &BB = *BI;
 | 
						|
 | 
						|
    // Create a new basic block and copy instructions into it!
 | 
						|
    BasicBlock *CBB = CloneBasicBlock(&BB, ValueMap, NameSuffix, NewFunc,
 | 
						|
                                      CodeInfo);
 | 
						|
    ValueMap[&BB] = CBB;                       // Add basic block mapping.
 | 
						|
 | 
						|
    if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator()))
 | 
						|
      Returns.push_back(RI);
 | 
						|
  }
 | 
						|
 | 
						|
  // Loop over all of the instructions in the function, fixing up operand
 | 
						|
  // references as we go.  This uses ValueMap to do all the hard work.
 | 
						|
  //
 | 
						|
  for (Function::iterator BB = cast<BasicBlock>(ValueMap[OldFunc->begin()]),
 | 
						|
         BE = NewFunc->end(); BB != BE; ++BB)
 | 
						|
    // Loop over all instructions, fixing each one as we find it...
 | 
						|
    for (BasicBlock::iterator II = BB->begin(); II != BB->end(); ++II)
 | 
						|
      RemapInstruction(II, ValueMap);
 | 
						|
}
 | 
						|
 | 
						|
/// CloneFunction - Return a copy of the specified function, but without
 | 
						|
/// embedding the function into another module.  Also, any references specified
 | 
						|
/// in the ValueMap are changed to refer to their mapped value instead of the
 | 
						|
/// original one.  If any of the arguments to the function are in the ValueMap,
 | 
						|
/// the arguments are deleted from the resultant function.  The ValueMap is
 | 
						|
/// updated to include mappings from all of the instructions and basicblocks in
 | 
						|
/// the function from their old to new values.
 | 
						|
///
 | 
						|
Function *llvm::CloneFunction(const Function *F,
 | 
						|
                              DenseMap<const Value*, Value*> &ValueMap,
 | 
						|
                              ClonedCodeInfo *CodeInfo) {
 | 
						|
  std::vector<const Type*> ArgTypes;
 | 
						|
 | 
						|
  // The user might be deleting arguments to the function by specifying them in
 | 
						|
  // the ValueMap.  If so, we need to not add the arguments to the arg ty vector
 | 
						|
  //
 | 
						|
  for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
 | 
						|
       I != E; ++I)
 | 
						|
    if (ValueMap.count(I) == 0)  // Haven't mapped the argument to anything yet?
 | 
						|
      ArgTypes.push_back(I->getType());
 | 
						|
 | 
						|
  // Create a new function type...
 | 
						|
  FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(),
 | 
						|
                                    ArgTypes, F->getFunctionType()->isVarArg());
 | 
						|
 | 
						|
  // Create the new function...
 | 
						|
  Function *NewF = Function::Create(FTy, F->getLinkage(), F->getName());
 | 
						|
 | 
						|
  // Loop over the arguments, copying the names of the mapped arguments over...
 | 
						|
  Function::arg_iterator DestI = NewF->arg_begin();
 | 
						|
  for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
 | 
						|
       I != E; ++I)
 | 
						|
    if (ValueMap.count(I) == 0) {   // Is this argument preserved?
 | 
						|
      DestI->setName(I->getName()); // Copy the name over...
 | 
						|
      ValueMap[I] = DestI++;        // Add mapping to ValueMap
 | 
						|
    }
 | 
						|
 | 
						|
  std::vector<ReturnInst*> Returns;  // Ignore returns cloned...
 | 
						|
  CloneFunctionInto(NewF, F, ValueMap, Returns, "", CodeInfo);
 | 
						|
  return NewF;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
namespace {
 | 
						|
  /// PruningFunctionCloner - This class is a private class used to implement
 | 
						|
  /// the CloneAndPruneFunctionInto method.
 | 
						|
  struct VISIBILITY_HIDDEN PruningFunctionCloner {
 | 
						|
    Function *NewFunc;
 | 
						|
    const Function *OldFunc;
 | 
						|
    DenseMap<const Value*, Value*> &ValueMap;
 | 
						|
    std::vector<ReturnInst*> &Returns;
 | 
						|
    const char *NameSuffix;
 | 
						|
    ClonedCodeInfo *CodeInfo;
 | 
						|
    const TargetData *TD;
 | 
						|
    Value *DbgFnStart;
 | 
						|
  public:
 | 
						|
    PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
 | 
						|
                          DenseMap<const Value*, Value*> &valueMap,
 | 
						|
                          std::vector<ReturnInst*> &returns,
 | 
						|
                          const char *nameSuffix, 
 | 
						|
                          ClonedCodeInfo *codeInfo,
 | 
						|
                          const TargetData *td)
 | 
						|
    : NewFunc(newFunc), OldFunc(oldFunc), ValueMap(valueMap), Returns(returns),
 | 
						|
      NameSuffix(nameSuffix), CodeInfo(codeInfo), TD(td), DbgFnStart(NULL) {
 | 
						|
    }
 | 
						|
 | 
						|
    /// CloneBlock - The specified block is found to be reachable, clone it and
 | 
						|
    /// anything that it can reach.
 | 
						|
    void CloneBlock(const BasicBlock *BB,
 | 
						|
                    std::vector<const BasicBlock*> &ToClone);
 | 
						|
    
 | 
						|
  public:
 | 
						|
    /// ConstantFoldMappedInstruction - Constant fold the specified instruction,
 | 
						|
    /// mapping its operands through ValueMap if they are available.
 | 
						|
    Constant *ConstantFoldMappedInstruction(const Instruction *I);
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
/// CloneBlock - The specified block is found to be reachable, clone it and
 | 
						|
/// anything that it can reach.
 | 
						|
void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
 | 
						|
                                       std::vector<const BasicBlock*> &ToClone){
 | 
						|
  Value *&BBEntry = ValueMap[BB];
 | 
						|
 | 
						|
  // Have we already cloned this block?
 | 
						|
  if (BBEntry) return;
 | 
						|
  
 | 
						|
  // Nope, clone it now.
 | 
						|
  BasicBlock *NewBB;
 | 
						|
  BBEntry = NewBB = BasicBlock::Create();
 | 
						|
  if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
 | 
						|
 | 
						|
  bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
 | 
						|
  
 | 
						|
  // Loop over all instructions, and copy them over, DCE'ing as we go.  This
 | 
						|
  // loop doesn't include the terminator.
 | 
						|
  for (BasicBlock::const_iterator II = BB->begin(), IE = --BB->end();
 | 
						|
       II != IE; ++II) {
 | 
						|
    // If this instruction constant folds, don't bother cloning the instruction,
 | 
						|
    // instead, just add the constant to the value map.
 | 
						|
    if (Constant *C = ConstantFoldMappedInstruction(II)) {
 | 
						|
      ValueMap[II] = C;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Do not clone llvm.dbg.region.end. It will be adjusted by the inliner.
 | 
						|
    if (const DbgFuncStartInst *DFSI = dyn_cast<DbgFuncStartInst>(II)) {
 | 
						|
      if (DbgFnStart == NULL) {
 | 
						|
        DISubprogram SP(cast<GlobalVariable>(DFSI->getSubprogram()));
 | 
						|
        if (SP.describes(BB->getParent()))
 | 
						|
          DbgFnStart = DFSI->getSubprogram();
 | 
						|
      }
 | 
						|
    } 
 | 
						|
    if (const DbgRegionEndInst *DREIS = dyn_cast<DbgRegionEndInst>(II)) {
 | 
						|
      if (DREIS->getContext() == DbgFnStart)
 | 
						|
        continue;
 | 
						|
    }
 | 
						|
      
 | 
						|
    Instruction *NewInst = II->clone(BB->getContext());
 | 
						|
    if (II->hasName())
 | 
						|
      NewInst->setName(II->getName()+NameSuffix);
 | 
						|
    NewBB->getInstList().push_back(NewInst);
 | 
						|
    ValueMap[II] = NewInst;                // Add instruction map to value.
 | 
						|
    
 | 
						|
    hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
 | 
						|
    if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
 | 
						|
      if (isa<ConstantInt>(AI->getArraySize()))
 | 
						|
        hasStaticAllocas = true;
 | 
						|
      else
 | 
						|
        hasDynamicAllocas = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Finally, clone over the terminator.
 | 
						|
  const TerminatorInst *OldTI = BB->getTerminator();
 | 
						|
  bool TerminatorDone = false;
 | 
						|
  if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) {
 | 
						|
    if (BI->isConditional()) {
 | 
						|
      // If the condition was a known constant in the callee...
 | 
						|
      ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
 | 
						|
      // Or is a known constant in the caller...
 | 
						|
      if (Cond == 0)  
 | 
						|
        Cond = dyn_cast_or_null<ConstantInt>(ValueMap[BI->getCondition()]);
 | 
						|
 | 
						|
      // Constant fold to uncond branch!
 | 
						|
      if (Cond) {
 | 
						|
        BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue());
 | 
						|
        ValueMap[OldTI] = BranchInst::Create(Dest, NewBB);
 | 
						|
        ToClone.push_back(Dest);
 | 
						|
        TerminatorDone = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) {
 | 
						|
    // If switching on a value known constant in the caller.
 | 
						|
    ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
 | 
						|
    if (Cond == 0)  // Or known constant after constant prop in the callee...
 | 
						|
      Cond = dyn_cast_or_null<ConstantInt>(ValueMap[SI->getCondition()]);
 | 
						|
    if (Cond) {     // Constant fold to uncond branch!
 | 
						|
      BasicBlock *Dest = SI->getSuccessor(SI->findCaseValue(Cond));
 | 
						|
      ValueMap[OldTI] = BranchInst::Create(Dest, NewBB);
 | 
						|
      ToClone.push_back(Dest);
 | 
						|
      TerminatorDone = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (!TerminatorDone) {
 | 
						|
    Instruction *NewInst = OldTI->clone(BB->getContext());
 | 
						|
    if (OldTI->hasName())
 | 
						|
      NewInst->setName(OldTI->getName()+NameSuffix);
 | 
						|
    NewBB->getInstList().push_back(NewInst);
 | 
						|
    ValueMap[OldTI] = NewInst;             // Add instruction map to value.
 | 
						|
    
 | 
						|
    // Recursively clone any reachable successor blocks.
 | 
						|
    const TerminatorInst *TI = BB->getTerminator();
 | 
						|
    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
 | 
						|
      ToClone.push_back(TI->getSuccessor(i));
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (CodeInfo) {
 | 
						|
    CodeInfo->ContainsCalls          |= hasCalls;
 | 
						|
    CodeInfo->ContainsUnwinds        |= isa<UnwindInst>(OldTI);
 | 
						|
    CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
 | 
						|
    CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas && 
 | 
						|
      BB != &BB->getParent()->front();
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (ReturnInst *RI = dyn_cast<ReturnInst>(NewBB->getTerminator()))
 | 
						|
    Returns.push_back(RI);
 | 
						|
}
 | 
						|
 | 
						|
/// ConstantFoldMappedInstruction - Constant fold the specified instruction,
 | 
						|
/// mapping its operands through ValueMap if they are available.
 | 
						|
Constant *PruningFunctionCloner::
 | 
						|
ConstantFoldMappedInstruction(const Instruction *I) {
 | 
						|
  LLVMContext &Context = I->getContext();
 | 
						|
  
 | 
						|
  SmallVector<Constant*, 8> Ops;
 | 
						|
  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
 | 
						|
    if (Constant *Op = dyn_cast_or_null<Constant>(MapValue(I->getOperand(i),
 | 
						|
                                                           ValueMap,
 | 
						|
                                                           Context)))
 | 
						|
      Ops.push_back(Op);
 | 
						|
    else
 | 
						|
      return 0;  // All operands not constant!
 | 
						|
 | 
						|
  if (const CmpInst *CI = dyn_cast<CmpInst>(I))
 | 
						|
    return ConstantFoldCompareInstOperands(CI->getPredicate(),
 | 
						|
                                           &Ops[0], Ops.size(), 
 | 
						|
                                           Context, TD);
 | 
						|
 | 
						|
  if (const LoadInst *LI = dyn_cast<LoadInst>(I))
 | 
						|
    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0]))
 | 
						|
      if (!LI->isVolatile() && CE->getOpcode() == Instruction::GetElementPtr)
 | 
						|
        if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
 | 
						|
          if (GV->isConstant() && GV->hasDefinitiveInitializer())
 | 
						|
            return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(),
 | 
						|
                                                          CE, Context);
 | 
						|
 | 
						|
  return ConstantFoldInstOperands(I->getOpcode(), I->getType(), &Ops[0],
 | 
						|
                                  Ops.size(), Context, TD);
 | 
						|
}
 | 
						|
 | 
						|
/// CloneAndPruneFunctionInto - This works exactly like CloneFunctionInto,
 | 
						|
/// except that it does some simple constant prop and DCE on the fly.  The
 | 
						|
/// effect of this is to copy significantly less code in cases where (for
 | 
						|
/// example) a function call with constant arguments is inlined, and those
 | 
						|
/// constant arguments cause a significant amount of code in the callee to be
 | 
						|
/// dead.  Since this doesn't produce an exact copy of the input, it can't be
 | 
						|
/// used for things like CloneFunction or CloneModule.
 | 
						|
void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
 | 
						|
                                     DenseMap<const Value*, Value*> &ValueMap,
 | 
						|
                                     std::vector<ReturnInst*> &Returns,
 | 
						|
                                     const char *NameSuffix, 
 | 
						|
                                     ClonedCodeInfo *CodeInfo,
 | 
						|
                                     const TargetData *TD) {
 | 
						|
  assert(NameSuffix && "NameSuffix cannot be null!");
 | 
						|
  LLVMContext &Context = OldFunc->getContext();
 | 
						|
  
 | 
						|
#ifndef NDEBUG
 | 
						|
  for (Function::const_arg_iterator II = OldFunc->arg_begin(), 
 | 
						|
       E = OldFunc->arg_end(); II != E; ++II)
 | 
						|
    assert(ValueMap.count(II) && "No mapping from source argument specified!");
 | 
						|
#endif
 | 
						|
 | 
						|
  PruningFunctionCloner PFC(NewFunc, OldFunc, ValueMap, Returns,
 | 
						|
                            NameSuffix, CodeInfo, TD);
 | 
						|
 | 
						|
  // Clone the entry block, and anything recursively reachable from it.
 | 
						|
  std::vector<const BasicBlock*> CloneWorklist;
 | 
						|
  CloneWorklist.push_back(&OldFunc->getEntryBlock());
 | 
						|
  while (!CloneWorklist.empty()) {
 | 
						|
    const BasicBlock *BB = CloneWorklist.back();
 | 
						|
    CloneWorklist.pop_back();
 | 
						|
    PFC.CloneBlock(BB, CloneWorklist);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Loop over all of the basic blocks in the old function.  If the block was
 | 
						|
  // reachable, we have cloned it and the old block is now in the value map:
 | 
						|
  // insert it into the new function in the right order.  If not, ignore it.
 | 
						|
  //
 | 
						|
  // Defer PHI resolution until rest of function is resolved.
 | 
						|
  std::vector<const PHINode*> PHIToResolve;
 | 
						|
  for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
 | 
						|
       BI != BE; ++BI) {
 | 
						|
    BasicBlock *NewBB = cast_or_null<BasicBlock>(ValueMap[BI]);
 | 
						|
    if (NewBB == 0) continue;  // Dead block.
 | 
						|
 | 
						|
    // Add the new block to the new function.
 | 
						|
    NewFunc->getBasicBlockList().push_back(NewBB);
 | 
						|
    
 | 
						|
    // Loop over all of the instructions in the block, fixing up operand
 | 
						|
    // references as we go.  This uses ValueMap to do all the hard work.
 | 
						|
    //
 | 
						|
    BasicBlock::iterator I = NewBB->begin();
 | 
						|
    
 | 
						|
    // Handle PHI nodes specially, as we have to remove references to dead
 | 
						|
    // blocks.
 | 
						|
    if (PHINode *PN = dyn_cast<PHINode>(I)) {
 | 
						|
      // Skip over all PHI nodes, remembering them for later.
 | 
						|
      BasicBlock::const_iterator OldI = BI->begin();
 | 
						|
      for (; (PN = dyn_cast<PHINode>(I)); ++I, ++OldI)
 | 
						|
        PHIToResolve.push_back(cast<PHINode>(OldI));
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Otherwise, remap the rest of the instructions normally.
 | 
						|
    for (; I != NewBB->end(); ++I)
 | 
						|
      RemapInstruction(I, ValueMap);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Defer PHI resolution until rest of function is resolved, PHI resolution
 | 
						|
  // requires the CFG to be up-to-date.
 | 
						|
  for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) {
 | 
						|
    const PHINode *OPN = PHIToResolve[phino];
 | 
						|
    unsigned NumPreds = OPN->getNumIncomingValues();
 | 
						|
    const BasicBlock *OldBB = OPN->getParent();
 | 
						|
    BasicBlock *NewBB = cast<BasicBlock>(ValueMap[OldBB]);
 | 
						|
 | 
						|
    // Map operands for blocks that are live and remove operands for blocks
 | 
						|
    // that are dead.
 | 
						|
    for (; phino != PHIToResolve.size() &&
 | 
						|
         PHIToResolve[phino]->getParent() == OldBB; ++phino) {
 | 
						|
      OPN = PHIToResolve[phino];
 | 
						|
      PHINode *PN = cast<PHINode>(ValueMap[OPN]);
 | 
						|
      for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
 | 
						|
        if (BasicBlock *MappedBlock = 
 | 
						|
            cast_or_null<BasicBlock>(ValueMap[PN->getIncomingBlock(pred)])) {
 | 
						|
          Value *InVal = MapValue(PN->getIncomingValue(pred),
 | 
						|
                                  ValueMap, Context);
 | 
						|
          assert(InVal && "Unknown input value?");
 | 
						|
          PN->setIncomingValue(pred, InVal);
 | 
						|
          PN->setIncomingBlock(pred, MappedBlock);
 | 
						|
        } else {
 | 
						|
          PN->removeIncomingValue(pred, false);
 | 
						|
          --pred, --e;  // Revisit the next entry.
 | 
						|
        }
 | 
						|
      } 
 | 
						|
    }
 | 
						|
    
 | 
						|
    // The loop above has removed PHI entries for those blocks that are dead
 | 
						|
    // and has updated others.  However, if a block is live (i.e. copied over)
 | 
						|
    // but its terminator has been changed to not go to this block, then our
 | 
						|
    // phi nodes will have invalid entries.  Update the PHI nodes in this
 | 
						|
    // case.
 | 
						|
    PHINode *PN = cast<PHINode>(NewBB->begin());
 | 
						|
    NumPreds = std::distance(pred_begin(NewBB), pred_end(NewBB));
 | 
						|
    if (NumPreds != PN->getNumIncomingValues()) {
 | 
						|
      assert(NumPreds < PN->getNumIncomingValues());
 | 
						|
      // Count how many times each predecessor comes to this block.
 | 
						|
      std::map<BasicBlock*, unsigned> PredCount;
 | 
						|
      for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB);
 | 
						|
           PI != E; ++PI)
 | 
						|
        --PredCount[*PI];
 | 
						|
      
 | 
						|
      // Figure out how many entries to remove from each PHI.
 | 
						|
      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | 
						|
        ++PredCount[PN->getIncomingBlock(i)];
 | 
						|
      
 | 
						|
      // At this point, the excess predecessor entries are positive in the
 | 
						|
      // map.  Loop over all of the PHIs and remove excess predecessor
 | 
						|
      // entries.
 | 
						|
      BasicBlock::iterator I = NewBB->begin();
 | 
						|
      for (; (PN = dyn_cast<PHINode>(I)); ++I) {
 | 
						|
        for (std::map<BasicBlock*, unsigned>::iterator PCI =PredCount.begin(),
 | 
						|
             E = PredCount.end(); PCI != E; ++PCI) {
 | 
						|
          BasicBlock *Pred     = PCI->first;
 | 
						|
          for (unsigned NumToRemove = PCI->second; NumToRemove; --NumToRemove)
 | 
						|
            PN->removeIncomingValue(Pred, false);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    // If the loops above have made these phi nodes have 0 or 1 operand,
 | 
						|
    // replace them with undef or the input value.  We must do this for
 | 
						|
    // correctness, because 0-operand phis are not valid.
 | 
						|
    PN = cast<PHINode>(NewBB->begin());
 | 
						|
    if (PN->getNumIncomingValues() == 0) {
 | 
						|
      BasicBlock::iterator I = NewBB->begin();
 | 
						|
      BasicBlock::const_iterator OldI = OldBB->begin();
 | 
						|
      while ((PN = dyn_cast<PHINode>(I++))) {
 | 
						|
        Value *NV = UndefValue::get(PN->getType());
 | 
						|
        PN->replaceAllUsesWith(NV);
 | 
						|
        assert(ValueMap[OldI] == PN && "ValueMap mismatch");
 | 
						|
        ValueMap[OldI] = NV;
 | 
						|
        PN->eraseFromParent();
 | 
						|
        ++OldI;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    // NOTE: We cannot eliminate single entry phi nodes here, because of
 | 
						|
    // ValueMap.  Single entry phi nodes can have multiple ValueMap entries
 | 
						|
    // pointing at them.  Thus, deleting one would require scanning the ValueMap
 | 
						|
    // to update any entries in it that would require that.  This would be
 | 
						|
    // really slow.
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Now that the inlined function body has been fully constructed, go through
 | 
						|
  // and zap unconditional fall-through branches.  This happen all the time when
 | 
						|
  // specializing code: code specialization turns conditional branches into
 | 
						|
  // uncond branches, and this code folds them.
 | 
						|
  Function::iterator I = cast<BasicBlock>(ValueMap[&OldFunc->getEntryBlock()]);
 | 
						|
  while (I != NewFunc->end()) {
 | 
						|
    BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator());
 | 
						|
    if (!BI || BI->isConditional()) { ++I; continue; }
 | 
						|
    
 | 
						|
    // Note that we can't eliminate uncond branches if the destination has
 | 
						|
    // single-entry PHI nodes.  Eliminating the single-entry phi nodes would
 | 
						|
    // require scanning the ValueMap to update any entries that point to the phi
 | 
						|
    // node.
 | 
						|
    BasicBlock *Dest = BI->getSuccessor(0);
 | 
						|
    if (!Dest->getSinglePredecessor() || isa<PHINode>(Dest->begin())) {
 | 
						|
      ++I; continue;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // We know all single-entry PHI nodes in the inlined function have been
 | 
						|
    // removed, so we just need to splice the blocks.
 | 
						|
    BI->eraseFromParent();
 | 
						|
    
 | 
						|
    // Move all the instructions in the succ to the pred.
 | 
						|
    I->getInstList().splice(I->end(), Dest->getInstList());
 | 
						|
    
 | 
						|
    // Make all PHI nodes that referred to Dest now refer to I as their source.
 | 
						|
    Dest->replaceAllUsesWith(I);
 | 
						|
 | 
						|
    // Remove the dest block.
 | 
						|
    Dest->eraseFromParent();
 | 
						|
    
 | 
						|
    // Do not increment I, iteratively merge all things this block branches to.
 | 
						|
  }
 | 
						|
}
 |