llvm-6502/lib/Target/CellSPU/SPUISelDAGToDAG.cpp
Dan Gohman e8be6c6391 Add a new function, ReplaceAllUsesOfValuesWith, which handles bulk
replacement of multiple values. This is slightly more efficient
than doing multiple ReplaceAllUsesOfValueWith calls, and theoretically
could be optimized even further. However, an important property of this
new function is that it handles the case where the source value set and
destination value set overlap. This makes it feasible for isel to use
SelectNodeTo in many very common cases, which is advantageous because
SelectNodeTo avoids a temporary node and it doesn't require CSEMap
updates for users of values that don't change position.

Revamp MorphNodeTo, which is what does all the work of SelectNodeTo, to
handle operand lists more efficiently, and to correctly handle a number
of corner cases to which its new wider use exposes it.

This commit also includes a change to the encoding of post-isel opcodes
in SDNodes; now instead of being sandwiched between the target-independent
pre-isel opcodes and the target-dependent pre-isel opcodes, post-isel
opcodes are now represented as negative values. This makes it possible
to test if an opcode is pre-isel or post-isel without having to know
the size of the current target's post-isel instruction set.

These changes speed up llc overall by 3% and reduce memory usage by 10%
on the InstructionCombining.cpp testcase with -fast and -regalloc=local.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@53728 91177308-0d34-0410-b5e6-96231b3b80d8
2008-07-17 19:10:17 +00:00

706 lines
22 KiB
C++

//===-- SPUISelDAGToDAG.cpp - CellSPU pattern matching inst selector ------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a pattern matching instruction selector for the Cell SPU,
// converting from a legalized dag to a SPU-target dag.
//
//===----------------------------------------------------------------------===//
#include "SPU.h"
#include "SPUTargetMachine.h"
#include "SPUISelLowering.h"
#include "SPUHazardRecognizers.h"
#include "SPUFrameInfo.h"
#include "SPURegisterNames.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Constants.h"
#include "llvm/GlobalValue.h"
#include "llvm/Intrinsics.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Compiler.h"
#include <queue>
#include <set>
using namespace llvm;
namespace {
//! ConstantSDNode predicate for i32 sign-extended, 10-bit immediates
bool
isI64IntS10Immediate(ConstantSDNode *CN)
{
return isS10Constant(CN->getSignExtended());
}
//! ConstantSDNode predicate for i32 sign-extended, 10-bit immediates
bool
isI32IntS10Immediate(ConstantSDNode *CN)
{
return isS10Constant(CN->getSignExtended());
}
#if 0
//! SDNode predicate for sign-extended, 10-bit immediate values
bool
isI32IntS10Immediate(SDNode *N)
{
return (N->getOpcode() == ISD::Constant
&& isI32IntS10Immediate(cast<ConstantSDNode>(N)));
}
#endif
//! ConstantSDNode predicate for i32 unsigned 10-bit immediate values
bool
isI32IntU10Immediate(ConstantSDNode *CN)
{
return isU10Constant(CN->getSignExtended());
}
//! ConstantSDNode predicate for i16 sign-extended, 10-bit immediate values
bool
isI16IntS10Immediate(ConstantSDNode *CN)
{
return isS10Constant(CN->getSignExtended());
}
//! SDNode predicate for i16 sign-extended, 10-bit immediate values
bool
isI16IntS10Immediate(SDNode *N)
{
return (N->getOpcode() == ISD::Constant
&& isI16IntS10Immediate(cast<ConstantSDNode>(N)));
}
//! ConstantSDNode predicate for i16 unsigned 10-bit immediate values
bool
isI16IntU10Immediate(ConstantSDNode *CN)
{
return isU10Constant((short) CN->getValue());
}
//! SDNode predicate for i16 sign-extended, 10-bit immediate values
bool
isI16IntU10Immediate(SDNode *N)
{
return (N->getOpcode() == ISD::Constant
&& isI16IntU10Immediate(cast<ConstantSDNode>(N)));
}
//! ConstantSDNode predicate for signed 16-bit values
/*!
\arg CN The constant SelectionDAG node holding the value
\arg Imm The returned 16-bit value, if returning true
This predicate tests the value in \a CN to see whether it can be
represented as a 16-bit, sign-extended quantity. Returns true if
this is the case.
*/
bool
isIntS16Immediate(ConstantSDNode *CN, short &Imm)
{
MVT vt = CN->getValueType(0);
Imm = (short) CN->getValue();
if (vt.getSimpleVT() >= MVT::i1 && vt.getSimpleVT() <= MVT::i16) {
return true;
} else if (vt == MVT::i32) {
int32_t i_val = (int32_t) CN->getValue();
short s_val = (short) i_val;
return i_val == s_val;
} else {
int64_t i_val = (int64_t) CN->getValue();
short s_val = (short) i_val;
return i_val == s_val;
}
return false;
}
//! SDNode predicate for signed 16-bit values.
bool
isIntS16Immediate(SDNode *N, short &Imm)
{
return (N->getOpcode() == ISD::Constant
&& isIntS16Immediate(cast<ConstantSDNode>(N), Imm));
}
//! ConstantFPSDNode predicate for representing floats as 16-bit sign ext.
static bool
isFPS16Immediate(ConstantFPSDNode *FPN, short &Imm)
{
MVT vt = FPN->getValueType(0);
if (vt == MVT::f32) {
int val = FloatToBits(FPN->getValueAPF().convertToFloat());
int sval = (int) ((val << 16) >> 16);
Imm = (short) val;
return val == sval;
}
return false;
}
bool
isHighLow(const SDOperand &Op)
{
return (Op.getOpcode() == SPUISD::IndirectAddr
&& ((Op.getOperand(0).getOpcode() == SPUISD::Hi
&& Op.getOperand(1).getOpcode() == SPUISD::Lo)
|| (Op.getOperand(0).getOpcode() == SPUISD::Lo
&& Op.getOperand(1).getOpcode() == SPUISD::Hi)));
}
//===------------------------------------------------------------------===//
//! MVT to "useful stuff" mapping structure:
struct valtype_map_s {
MVT VT;
unsigned ldresult_ins; /// LDRESULT instruction (0 = undefined)
bool ldresult_imm; /// LDRESULT instruction requires immediate?
int prefslot_byte; /// Byte offset of the "preferred" slot
};
const valtype_map_s valtype_map[] = {
{ MVT::i1, 0, false, 3 },
{ MVT::i8, SPU::ORBIr8, true, 3 },
{ MVT::i16, SPU::ORHIr16, true, 2 },
{ MVT::i32, SPU::ORIr32, true, 0 },
{ MVT::i64, SPU::ORr64, false, 0 },
{ MVT::f32, SPU::ORf32, false, 0 },
{ MVT::f64, SPU::ORf64, false, 0 },
// vector types... (sigh!)
{ MVT::v16i8, 0, false, 0 },
{ MVT::v8i16, 0, false, 0 },
{ MVT::v4i32, 0, false, 0 },
{ MVT::v2i64, 0, false, 0 },
{ MVT::v4f32, 0, false, 0 },
{ MVT::v2f64, 0, false, 0 }
};
const size_t n_valtype_map = sizeof(valtype_map) / sizeof(valtype_map[0]);
const valtype_map_s *getValueTypeMapEntry(MVT VT)
{
const valtype_map_s *retval = 0;
for (size_t i = 0; i < n_valtype_map; ++i) {
if (valtype_map[i].VT == VT) {
retval = valtype_map + i;
break;
}
}
#ifndef NDEBUG
if (retval == 0) {
cerr << "SPUISelDAGToDAG.cpp: getValueTypeMapEntry returns NULL for "
<< VT.getMVTString()
<< "\n";
abort();
}
#endif
return retval;
}
}
namespace {
//===--------------------------------------------------------------------===//
/// SPUDAGToDAGISel - Cell SPU-specific code to select SPU machine
/// instructions for SelectionDAG operations.
///
class SPUDAGToDAGISel :
public SelectionDAGISel
{
SPUTargetMachine &TM;
SPUTargetLowering &SPUtli;
unsigned GlobalBaseReg;
public:
explicit SPUDAGToDAGISel(SPUTargetMachine &tm) :
SelectionDAGISel(*tm.getTargetLowering()),
TM(tm),
SPUtli(*tm.getTargetLowering())
{}
virtual bool runOnFunction(Function &Fn) {
// Make sure we re-emit a set of the global base reg if necessary
GlobalBaseReg = 0;
SelectionDAGISel::runOnFunction(Fn);
return true;
}
/// getI32Imm - Return a target constant with the specified value, of type
/// i32.
inline SDOperand getI32Imm(uint32_t Imm) {
return CurDAG->getTargetConstant(Imm, MVT::i32);
}
/// getI64Imm - Return a target constant with the specified value, of type
/// i64.
inline SDOperand getI64Imm(uint64_t Imm) {
return CurDAG->getTargetConstant(Imm, MVT::i64);
}
/// getSmallIPtrImm - Return a target constant of pointer type.
inline SDOperand getSmallIPtrImm(unsigned Imm) {
return CurDAG->getTargetConstant(Imm, SPUtli.getPointerTy());
}
/// Select - Convert the specified operand from a target-independent to a
/// target-specific node if it hasn't already been changed.
SDNode *Select(SDOperand Op);
//! Returns true if the address N is an A-form (local store) address
bool SelectAFormAddr(SDOperand Op, SDOperand N, SDOperand &Base,
SDOperand &Index);
//! D-form address predicate
bool SelectDFormAddr(SDOperand Op, SDOperand N, SDOperand &Base,
SDOperand &Index);
/// Alternate D-form address using i7 offset predicate
bool SelectDForm2Addr(SDOperand Op, SDOperand N, SDOperand &Disp,
SDOperand &Base);
/// D-form address selection workhorse
bool DFormAddressPredicate(SDOperand Op, SDOperand N, SDOperand &Disp,
SDOperand &Base, int minOffset, int maxOffset);
//! Address predicate if N can be expressed as an indexed [r+r] operation.
bool SelectXFormAddr(SDOperand Op, SDOperand N, SDOperand &Base,
SDOperand &Index);
/// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
/// inline asm expressions.
virtual bool SelectInlineAsmMemoryOperand(const SDOperand &Op,
char ConstraintCode,
std::vector<SDOperand> &OutOps,
SelectionDAG &DAG) {
SDOperand Op0, Op1;
switch (ConstraintCode) {
default: return true;
case 'm': // memory
if (!SelectDFormAddr(Op, Op, Op0, Op1)
&& !SelectAFormAddr(Op, Op, Op0, Op1))
SelectXFormAddr(Op, Op, Op0, Op1);
break;
case 'o': // offsetable
if (!SelectDFormAddr(Op, Op, Op0, Op1)
&& !SelectAFormAddr(Op, Op, Op0, Op1)) {
Op0 = Op;
AddToISelQueue(Op0); // r+0.
Op1 = getSmallIPtrImm(0);
}
break;
case 'v': // not offsetable
#if 1
assert(0 && "InlineAsmMemoryOperand 'v' constraint not handled.");
#else
SelectAddrIdxOnly(Op, Op, Op0, Op1);
#endif
break;
}
OutOps.push_back(Op0);
OutOps.push_back(Op1);
return false;
}
/// InstructionSelect - This callback is invoked by
/// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
virtual void InstructionSelect(SelectionDAG &DAG);
virtual const char *getPassName() const {
return "Cell SPU DAG->DAG Pattern Instruction Selection";
}
/// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
/// this target when scheduling the DAG.
virtual HazardRecognizer *CreateTargetHazardRecognizer() {
const TargetInstrInfo *II = SPUtli.getTargetMachine().getInstrInfo();
assert(II && "No InstrInfo?");
return new SPUHazardRecognizer(*II);
}
// Include the pieces autogenerated from the target description.
#include "SPUGenDAGISel.inc"
};
}
/// InstructionSelect - This callback is invoked by
/// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
void
SPUDAGToDAGISel::InstructionSelect(SelectionDAG &DAG)
{
DEBUG(BB->dump());
// Select target instructions for the DAG.
DAG.setRoot(SelectRoot(DAG.getRoot()));
DAG.RemoveDeadNodes();
}
/*!
\arg Op The ISD instructio operand
\arg N The address to be tested
\arg Base The base address
\arg Index The base address index
*/
bool
SPUDAGToDAGISel::SelectAFormAddr(SDOperand Op, SDOperand N, SDOperand &Base,
SDOperand &Index) {
// These match the addr256k operand type:
MVT OffsVT = MVT::i16;
SDOperand Zero = CurDAG->getTargetConstant(0, OffsVT);
switch (N.getOpcode()) {
case ISD::Constant:
case ISD::ConstantPool:
case ISD::GlobalAddress:
cerr << "SPU SelectAFormAddr: Constant/Pool/Global not lowered.\n";
abort();
/*NOTREACHED*/
case ISD::TargetConstant:
case ISD::TargetGlobalAddress:
case ISD::TargetJumpTable:
cerr << "SPUSelectAFormAddr: Target Constant/Pool/Global not wrapped as "
<< "A-form address.\n";
abort();
/*NOTREACHED*/
case SPUISD::AFormAddr:
// Just load from memory if there's only a single use of the location,
// otherwise, this will get handled below with D-form offset addresses
if (N.hasOneUse()) {
SDOperand Op0 = N.getOperand(0);
switch (Op0.getOpcode()) {
case ISD::TargetConstantPool:
case ISD::TargetJumpTable:
Base = Op0;
Index = Zero;
return true;
case ISD::TargetGlobalAddress: {
GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op0);
GlobalValue *GV = GSDN->getGlobal();
if (GV->getAlignment() == 16) {
Base = Op0;
Index = Zero;
return true;
}
break;
}
}
}
break;
}
return false;
}
bool
SPUDAGToDAGISel::SelectDForm2Addr(SDOperand Op, SDOperand N, SDOperand &Disp,
SDOperand &Base) {
const int minDForm2Offset = -(1 << 7);
const int maxDForm2Offset = (1 << 7) - 1;
return DFormAddressPredicate(Op, N, Disp, Base, minDForm2Offset,
maxDForm2Offset);
}
/*!
\arg Op The ISD instruction (ignored)
\arg N The address to be tested
\arg Base Base address register/pointer
\arg Index Base address index
Examine the input address by a base register plus a signed 10-bit
displacement, [r+I10] (D-form address).
\return true if \a N is a D-form address with \a Base and \a Index set
to non-empty SDOperand instances.
*/
bool
SPUDAGToDAGISel::SelectDFormAddr(SDOperand Op, SDOperand N, SDOperand &Base,
SDOperand &Index) {
return DFormAddressPredicate(Op, N, Base, Index,
SPUFrameInfo::minFrameOffset(),
SPUFrameInfo::maxFrameOffset());
}
bool
SPUDAGToDAGISel::DFormAddressPredicate(SDOperand Op, SDOperand N, SDOperand &Base,
SDOperand &Index, int minOffset,
int maxOffset) {
unsigned Opc = N.getOpcode();
MVT PtrTy = SPUtli.getPointerTy();
if (Opc == ISD::FrameIndex) {
// Stack frame index must be less than 512 (divided by 16):
FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(N);
int FI = int(FIN->getIndex());
DEBUG(cerr << "SelectDFormAddr: ISD::FrameIndex = "
<< FI << "\n");
if (SPUFrameInfo::FItoStackOffset(FI) < maxOffset) {
Base = CurDAG->getTargetConstant(0, PtrTy);
Index = CurDAG->getTargetFrameIndex(FI, PtrTy);
return true;
}
} else if (Opc == ISD::ADD) {
// Generated by getelementptr
const SDOperand Op0 = N.getOperand(0);
const SDOperand Op1 = N.getOperand(1);
if ((Op0.getOpcode() == SPUISD::Hi && Op1.getOpcode() == SPUISD::Lo)
|| (Op1.getOpcode() == SPUISD::Hi && Op0.getOpcode() == SPUISD::Lo)) {
Base = CurDAG->getTargetConstant(0, PtrTy);
Index = N;
return true;
} else if (Op1.getOpcode() == ISD::Constant
|| Op1.getOpcode() == ISD::TargetConstant) {
ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op1);
int32_t offset = int32_t(CN->getSignExtended());
if (Op0.getOpcode() == ISD::FrameIndex) {
FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Op0);
int FI = int(FIN->getIndex());
DEBUG(cerr << "SelectDFormAddr: ISD::ADD offset = " << offset
<< " frame index = " << FI << "\n");
if (SPUFrameInfo::FItoStackOffset(FI) < maxOffset) {
Base = CurDAG->getTargetConstant(offset, PtrTy);
Index = CurDAG->getTargetFrameIndex(FI, PtrTy);
return true;
}
} else if (offset > minOffset && offset < maxOffset) {
Base = CurDAG->getTargetConstant(offset, PtrTy);
Index = Op0;
return true;
}
} else if (Op0.getOpcode() == ISD::Constant
|| Op0.getOpcode() == ISD::TargetConstant) {
ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op0);
int32_t offset = int32_t(CN->getSignExtended());
if (Op1.getOpcode() == ISD::FrameIndex) {
FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Op1);
int FI = int(FIN->getIndex());
DEBUG(cerr << "SelectDFormAddr: ISD::ADD offset = " << offset
<< " frame index = " << FI << "\n");
if (SPUFrameInfo::FItoStackOffset(FI) < maxOffset) {
Base = CurDAG->getTargetConstant(offset, PtrTy);
Index = CurDAG->getTargetFrameIndex(FI, PtrTy);
return true;
}
} else if (offset > minOffset && offset < maxOffset) {
Base = CurDAG->getTargetConstant(offset, PtrTy);
Index = Op1;
return true;
}
}
} else if (Opc == SPUISD::IndirectAddr) {
// Indirect with constant offset -> D-Form address
const SDOperand Op0 = N.getOperand(0);
const SDOperand Op1 = N.getOperand(1);
if (Op0.getOpcode() == SPUISD::Hi
&& Op1.getOpcode() == SPUISD::Lo) {
// (SPUindirect (SPUhi <arg>, 0), (SPUlo <arg>, 0))
Base = CurDAG->getTargetConstant(0, PtrTy);
Index = N;
return true;
} else if (isa<ConstantSDNode>(Op0) || isa<ConstantSDNode>(Op1)) {
int32_t offset = 0;
SDOperand idxOp;
if (isa<ConstantSDNode>(Op1)) {
ConstantSDNode *CN = cast<ConstantSDNode>(Op1);
offset = int32_t(CN->getSignExtended());
idxOp = Op0;
} else if (isa<ConstantSDNode>(Op0)) {
ConstantSDNode *CN = cast<ConstantSDNode>(Op0);
offset = int32_t(CN->getSignExtended());
idxOp = Op1;
}
if (offset >= minOffset && offset <= maxOffset) {
Base = CurDAG->getTargetConstant(offset, PtrTy);
Index = idxOp;
return true;
}
}
} else if (Opc == SPUISD::AFormAddr) {
Base = CurDAG->getTargetConstant(0, N.getValueType());
Index = N;
return true;
} else if (Opc == SPUISD::LDRESULT) {
Base = CurDAG->getTargetConstant(0, N.getValueType());
Index = N;
return true;
}
return false;
}
/*!
\arg Op The ISD instruction operand
\arg N The address operand
\arg Base The base pointer operand
\arg Index The offset/index operand
If the address \a N can be expressed as a [r + s10imm] address, returns false.
Otherwise, creates two operands, Base and Index that will become the [r+r]
address.
*/
bool
SPUDAGToDAGISel::SelectXFormAddr(SDOperand Op, SDOperand N, SDOperand &Base,
SDOperand &Index) {
if (SelectAFormAddr(Op, N, Base, Index)
|| SelectDFormAddr(Op, N, Base, Index))
return false;
// All else fails, punt and use an X-form address:
Base = N.getOperand(0);
Index = N.getOperand(1);
return true;
}
//! Convert the operand from a target-independent to a target-specific node
/*!
*/
SDNode *
SPUDAGToDAGISel::Select(SDOperand Op) {
SDNode *N = Op.Val;
unsigned Opc = N->getOpcode();
int n_ops = -1;
unsigned NewOpc;
MVT OpVT = Op.getValueType();
SDOperand Ops[8];
if (N->isMachineOpcode()) {
return NULL; // Already selected.
} else if (Opc == ISD::FrameIndex) {
// Selects to (add $sp, FI * stackSlotSize)
int FI =
SPUFrameInfo::FItoStackOffset(cast<FrameIndexSDNode>(N)->getIndex());
MVT PtrVT = SPUtli.getPointerTy();
// Adjust stack slot to actual offset in frame:
if (isS10Constant(FI)) {
DEBUG(cerr << "SPUDAGToDAGISel: Replacing FrameIndex with AIr32 $sp, "
<< FI
<< "\n");
NewOpc = SPU::AIr32;
Ops[0] = CurDAG->getRegister(SPU::R1, PtrVT);
Ops[1] = CurDAG->getTargetConstant(FI, PtrVT);
n_ops = 2;
} else {
DEBUG(cerr << "SPUDAGToDAGISel: Replacing FrameIndex with Ar32 $sp, "
<< FI
<< "\n");
NewOpc = SPU::Ar32;
Ops[0] = CurDAG->getRegister(SPU::R1, PtrVT);
Ops[1] = CurDAG->getConstant(FI, PtrVT);
n_ops = 2;
AddToISelQueue(Ops[1]);
}
} else if (Opc == ISD::ZERO_EXTEND) {
// (zero_extend:i16 (and:i8 <arg>, <const>))
const SDOperand &Op1 = N->getOperand(0);
if (Op.getValueType() == MVT::i16 && Op1.getValueType() == MVT::i8) {
if (Op1.getOpcode() == ISD::AND) {
// Fold this into a single ANDHI. This is often seen in expansions of i1
// to i8, then i8 to i16 in logical/branching operations.
DEBUG(cerr << "CellSPU: Coalescing (zero_extend:i16 (and:i8 "
"<arg>, <const>))\n");
NewOpc = SPU::ANDHIi8i16;
Ops[0] = Op1.getOperand(0);
Ops[1] = Op1.getOperand(1);
n_ops = 2;
}
}
} else if (Opc == SPUISD::LDRESULT) {
// Custom select instructions for LDRESULT
MVT VT = N->getValueType(0);
SDOperand Arg = N->getOperand(0);
SDOperand Chain = N->getOperand(1);
SDNode *Result;
const valtype_map_s *vtm = getValueTypeMapEntry(VT);
if (vtm->ldresult_ins == 0) {
cerr << "LDRESULT for unsupported type: "
<< VT.getMVTString()
<< "\n";
abort();
}
AddToISelQueue(Arg);
Opc = vtm->ldresult_ins;
if (vtm->ldresult_imm) {
SDOperand Zero = CurDAG->getTargetConstant(0, VT);
AddToISelQueue(Zero);
Result = CurDAG->getTargetNode(Opc, VT, MVT::Other, Arg, Zero, Chain);
} else {
Result = CurDAG->getTargetNode(Opc, MVT::Other, Arg, Arg, Chain);
}
Chain = SDOperand(Result, 1);
AddToISelQueue(Chain);
return Result;
} else if (Opc == SPUISD::IndirectAddr) {
SDOperand Op0 = Op.getOperand(0);
if (Op0.getOpcode() == SPUISD::LDRESULT) {
/* || Op0.getOpcode() == SPUISD::AFormAddr) */
// (IndirectAddr (LDRESULT, imm))
SDOperand Op1 = Op.getOperand(1);
MVT VT = Op.getValueType();
DEBUG(cerr << "CellSPU: IndirectAddr(LDRESULT, imm):\nOp0 = ");
DEBUG(Op.getOperand(0).Val->dump(CurDAG));
DEBUG(cerr << "\nOp1 = ");
DEBUG(Op.getOperand(1).Val->dump(CurDAG));
DEBUG(cerr << "\n");
if (Op1.getOpcode() == ISD::Constant) {
ConstantSDNode *CN = cast<ConstantSDNode>(Op1);
Op1 = CurDAG->getTargetConstant(CN->getValue(), VT);
NewOpc = (isI32IntS10Immediate(CN) ? SPU::AIr32 : SPU::Ar32);
AddToISelQueue(Op0);
AddToISelQueue(Op1);
Ops[0] = Op0;
Ops[1] = Op1;
n_ops = 2;
}
}
}
if (n_ops > 0) {
if (N->hasOneUse())
return CurDAG->SelectNodeTo(N, NewOpc, OpVT, Ops, n_ops);
else
return CurDAG->getTargetNode(NewOpc, OpVT, Ops, n_ops);
} else
return SelectCode(Op);
}
/// createPPCISelDag - This pass converts a legalized DAG into a
/// SPU-specific DAG, ready for instruction scheduling.
///
FunctionPass *llvm::createSPUISelDag(SPUTargetMachine &TM) {
return new SPUDAGToDAGISel(TM);
}