mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	* Renamed StatisticReporter.h/cpp to Statistic.h/cpp
    * Broke constructor to take two const char * arguments instead of one, so
      that indendation can be taken care of automatically.
    * Sort the list by pass name when printing
    * Make sure to print all statistics as a group, instead of randomly when
      the statistics dtors are called.
    * Updated ProgrammersManual with new semantics.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@4002 91177308-0d34-0410-b5e6-96231b3b80d8
		
	
		
			
				
	
	
		
			296 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			296 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- GCSE.cpp - SSA based Global Common Subexpr Elimination ------------===//
 | 
						|
//
 | 
						|
// This pass is designed to be a very quick global transformation that
 | 
						|
// eliminates global common subexpressions from a function.  It does this by
 | 
						|
// using an existing value numbering implementation to identify the common
 | 
						|
// subexpressions, eliminating them when possible.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/iMemory.h"
 | 
						|
#include "llvm/Type.h"
 | 
						|
#include "llvm/Analysis/Dominators.h"
 | 
						|
#include "llvm/Analysis/ValueNumbering.h"
 | 
						|
#include "llvm/Support/InstIterator.h"
 | 
						|
#include "Support/Statistic.h"
 | 
						|
#include <algorithm>
 | 
						|
 | 
						|
namespace {
 | 
						|
  Statistic<> NumInstRemoved("gcse", "Number of instructions removed");
 | 
						|
  Statistic<> NumLoadRemoved("gcse", "Number of loads removed");
 | 
						|
  Statistic<> NumNonInsts   ("gcse", "Number of instructions removed due "
 | 
						|
                             "to non-instruction values");
 | 
						|
 | 
						|
  class GCSE : public FunctionPass {
 | 
						|
    std::set<Instruction*>  WorkList;
 | 
						|
    DominatorSet           *DomSetInfo;
 | 
						|
#if 0
 | 
						|
    ImmediateDominators    *ImmDominator;
 | 
						|
#endif
 | 
						|
    ValueNumbering         *VN;
 | 
						|
  public:
 | 
						|
    virtual bool runOnFunction(Function &F);
 | 
						|
 | 
						|
  private:
 | 
						|
    bool EliminateRedundancies(Instruction *I,std::vector<Value*> &EqualValues);
 | 
						|
    Instruction *EliminateCSE(Instruction *I, Instruction *Other);
 | 
						|
    void ReplaceInstWithInst(Instruction *First, BasicBlock::iterator SI);
 | 
						|
 | 
						|
    // This transformation requires dominator and immediate dominator info
 | 
						|
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
      AU.preservesCFG();
 | 
						|
      AU.addRequired<DominatorSet>();
 | 
						|
      AU.addRequired<ImmediateDominators>();
 | 
						|
      AU.addRequired<ValueNumbering>();
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  RegisterOpt<GCSE> X("gcse", "Global Common Subexpression Elimination");
 | 
						|
}
 | 
						|
 | 
						|
// createGCSEPass - The public interface to this file...
 | 
						|
Pass *createGCSEPass() { return new GCSE(); }
 | 
						|
 | 
						|
 | 
						|
// GCSE::runOnFunction - This is the main transformation entry point for a
 | 
						|
// function.
 | 
						|
//
 | 
						|
bool GCSE::runOnFunction(Function &F) {
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  // Get pointers to the analysis results that we will be using...
 | 
						|
  DomSetInfo = &getAnalysis<DominatorSet>();
 | 
						|
#if 0
 | 
						|
  ImmDominator = &getAnalysis<ImmediateDominators>();
 | 
						|
#endif
 | 
						|
  VN = &getAnalysis<ValueNumbering>();
 | 
						|
 | 
						|
  // Step #1: Add all instructions in the function to the worklist for
 | 
						|
  // processing.  All of the instructions are considered to be our
 | 
						|
  // subexpressions to eliminate if possible.
 | 
						|
  //
 | 
						|
  WorkList.insert(inst_begin(F), inst_end(F));
 | 
						|
 | 
						|
  // Step #2: WorkList processing.  Iterate through all of the instructions,
 | 
						|
  // checking to see if there are any additionally defined subexpressions in the
 | 
						|
  // program.  If so, eliminate them!
 | 
						|
  //
 | 
						|
  while (!WorkList.empty()) {
 | 
						|
    Instruction &I = **WorkList.begin(); // Get an instruction from the worklist
 | 
						|
    WorkList.erase(WorkList.begin());
 | 
						|
 | 
						|
    // If this instruction computes a value, try to fold together common
 | 
						|
    // instructions that compute it.
 | 
						|
    //
 | 
						|
    if (I.getType() != Type::VoidTy) {
 | 
						|
      std::vector<Value*> EqualValues;
 | 
						|
      VN->getEqualNumberNodes(&I, EqualValues);
 | 
						|
 | 
						|
      if (!EqualValues.empty())
 | 
						|
        Changed |= EliminateRedundancies(&I, EqualValues);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // When the worklist is empty, return whether or not we changed anything...
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
bool GCSE::EliminateRedundancies(Instruction *I,
 | 
						|
                                 std::vector<Value*> &EqualValues) {
 | 
						|
  // If the EqualValues set contains any non-instruction values, then we know
 | 
						|
  // that all of the instructions can be replaced with the non-instruction value
 | 
						|
  // because it is guaranteed to dominate all of the instructions in the
 | 
						|
  // function.  We only have to do hard work if all we have are instructions.
 | 
						|
  //
 | 
						|
  for (unsigned i = 0, e = EqualValues.size(); i != e; ++i)
 | 
						|
    if (!isa<Instruction>(EqualValues[i])) {
 | 
						|
      // Found a non-instruction.  Replace all instructions with the
 | 
						|
      // non-instruction.
 | 
						|
      //
 | 
						|
      Value *Replacement = EqualValues[i];
 | 
						|
 | 
						|
      // Make sure we get I as well...
 | 
						|
      EqualValues[i] = I;
 | 
						|
 | 
						|
      // Replace all instructions with the Replacement value.
 | 
						|
      for (i = 0; i != e; ++i)
 | 
						|
        if (Instruction *I = dyn_cast<Instruction>(EqualValues[i])) {
 | 
						|
          // Change all users of I to use Replacement.
 | 
						|
          I->replaceAllUsesWith(Replacement);
 | 
						|
 | 
						|
          if (isa<LoadInst>(I))
 | 
						|
            ++NumLoadRemoved; // Keep track of loads eliminated
 | 
						|
          ++NumInstRemoved;   // Keep track of number of instructions eliminated
 | 
						|
          ++NumNonInsts;      // Keep track of number of insts repl with values
 | 
						|
 | 
						|
          // Erase the instruction from the program.
 | 
						|
          I->getParent()->getInstList().erase(I);
 | 
						|
        }
 | 
						|
      
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  
 | 
						|
  // Remove duplicate entries from EqualValues...
 | 
						|
  std::sort(EqualValues.begin(), EqualValues.end());
 | 
						|
  EqualValues.erase(std::unique(EqualValues.begin(), EqualValues.end()),
 | 
						|
                    EqualValues.end());
 | 
						|
 | 
						|
  // From this point on, EqualValues is logically a vector of instructions.
 | 
						|
  //
 | 
						|
  bool Changed = false;
 | 
						|
  EqualValues.push_back(I); // Make sure I is included...
 | 
						|
  while (EqualValues.size() > 1) {
 | 
						|
    // FIXME, this could be done better than simple iteration!
 | 
						|
    Instruction *Test = cast<Instruction>(EqualValues.back());
 | 
						|
    EqualValues.pop_back();
 | 
						|
    
 | 
						|
    for (unsigned i = 0, e = EqualValues.size(); i != e; ++i)
 | 
						|
      if (Instruction *Ret = EliminateCSE(Test,
 | 
						|
                                          cast<Instruction>(EqualValues[i]))) {
 | 
						|
        if (Ret == Test)          // Eliminated EqualValues[i]
 | 
						|
          EqualValues[i] = Test;  // Make sure that we reprocess I at some point
 | 
						|
        Changed = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
  }
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// ReplaceInstWithInst - Destroy the instruction pointed to by SI, making all
 | 
						|
// uses of the instruction use First now instead.
 | 
						|
//
 | 
						|
void GCSE::ReplaceInstWithInst(Instruction *First, BasicBlock::iterator SI) {
 | 
						|
  Instruction &Second = *SI;
 | 
						|
  
 | 
						|
  //cerr << "DEL " << (void*)Second << Second;
 | 
						|
 | 
						|
  // Add the first instruction back to the worklist
 | 
						|
  WorkList.insert(First);
 | 
						|
 | 
						|
  // Add all uses of the second instruction to the worklist
 | 
						|
  for (Value::use_iterator UI = Second.use_begin(), UE = Second.use_end();
 | 
						|
       UI != UE; ++UI)
 | 
						|
    WorkList.insert(cast<Instruction>(*UI));
 | 
						|
    
 | 
						|
  // Make all users of 'Second' now use 'First'
 | 
						|
  Second.replaceAllUsesWith(First);
 | 
						|
 | 
						|
  // Erase the second instruction from the program
 | 
						|
  Second.getParent()->getInstList().erase(SI);
 | 
						|
}
 | 
						|
 | 
						|
// EliminateCSE - The two instruction I & Other have been found to be common
 | 
						|
// subexpressions.  This function is responsible for eliminating one of them,
 | 
						|
// and for fixing the worklist to be correct.  The instruction that is preserved
 | 
						|
// is returned from the function if the other is eliminated, otherwise null is
 | 
						|
// returned.
 | 
						|
//
 | 
						|
Instruction *GCSE::EliminateCSE(Instruction *I, Instruction *Other) {
 | 
						|
  assert(I != Other);
 | 
						|
 | 
						|
  WorkList.erase(I);
 | 
						|
  WorkList.erase(Other); // Other may not actually be on the worklist anymore...
 | 
						|
 | 
						|
  // Handle the easy case, where both instructions are in the same basic block
 | 
						|
  BasicBlock *BB1 = I->getParent(), *BB2 = Other->getParent();
 | 
						|
  Instruction *Ret = 0;
 | 
						|
 | 
						|
  if (BB1 == BB2) {
 | 
						|
    // Eliminate the second occuring instruction.  Add all uses of the second
 | 
						|
    // instruction to the worklist.
 | 
						|
    //
 | 
						|
    // Scan the basic block looking for the "first" instruction
 | 
						|
    BasicBlock::iterator BI = BB1->begin();
 | 
						|
    while (&*BI != I && &*BI != Other) {
 | 
						|
      ++BI;
 | 
						|
      assert(BI != BB1->end() && "Instructions not found in parent BB!");
 | 
						|
    }
 | 
						|
 | 
						|
    // Keep track of which instructions occurred first & second
 | 
						|
    Instruction *First = BI;
 | 
						|
    Instruction *Second = I != First ? I : Other; // Get iterator to second inst
 | 
						|
    BI = Second;
 | 
						|
 | 
						|
    // Destroy Second, using First instead.
 | 
						|
    ReplaceInstWithInst(First, BI);
 | 
						|
    Ret = First;
 | 
						|
 | 
						|
    // Otherwise, the two instructions are in different basic blocks.  If one
 | 
						|
    // dominates the other instruction, we can simply use it
 | 
						|
    //
 | 
						|
  } else if (DomSetInfo->dominates(BB1, BB2)) {    // I dom Other?
 | 
						|
    ReplaceInstWithInst(I, Other);
 | 
						|
    Ret = I;
 | 
						|
  } else if (DomSetInfo->dominates(BB2, BB1)) {    // Other dom I?
 | 
						|
    ReplaceInstWithInst(Other, I);
 | 
						|
    Ret = Other;
 | 
						|
  } else {
 | 
						|
    // This code is disabled because it has several problems:
 | 
						|
    // One, the actual assumption is wrong, as shown by this code:
 | 
						|
    // int "test"(int %X, int %Y) {
 | 
						|
    //         %Z = add int %X, %Y
 | 
						|
    //         ret int %Z
 | 
						|
    // Unreachable:
 | 
						|
    //         %Q = add int %X, %Y
 | 
						|
    //         ret int %Q
 | 
						|
    // }
 | 
						|
    //
 | 
						|
    // Here there are no shared dominators.  Additionally, this had the habit of
 | 
						|
    // moving computations where they were not always computed.  For example, in
 | 
						|
    // a cast like this:
 | 
						|
    //  if (c) {
 | 
						|
    //    if (d)  ...
 | 
						|
    //    else ... X+Y ...
 | 
						|
    //  } else {
 | 
						|
    //    ... X+Y ...
 | 
						|
    //  }
 | 
						|
    // 
 | 
						|
    // In thiscase, the expression would be hoisted to outside the 'if' stmt,
 | 
						|
    // causing the expression to be evaluated, even for the if (d) path, which
 | 
						|
    // could cause problems, if, for example, it caused a divide by zero.  In
 | 
						|
    // general the problem this case is trying to solve is better addressed with
 | 
						|
    // PRE than GCSE.
 | 
						|
    //
 | 
						|
    return 0;
 | 
						|
 | 
						|
#if 0
 | 
						|
    // Handle the most general case now.  In this case, neither I dom Other nor
 | 
						|
    // Other dom I.  Because we are in SSA form, we are guaranteed that the
 | 
						|
    // operands of the two instructions both dominate the uses, so we _know_
 | 
						|
    // that there must exist a block that dominates both instructions (if the
 | 
						|
    // operands of the instructions are globals or constants, worst case we
 | 
						|
    // would get the entry node of the function).  Search for this block now.
 | 
						|
    //
 | 
						|
 | 
						|
    // Search up the immediate dominator chain of BB1 for the shared dominator
 | 
						|
    BasicBlock *SharedDom = (*ImmDominator)[BB1];
 | 
						|
    while (!DomSetInfo->dominates(SharedDom, BB2))
 | 
						|
      SharedDom = (*ImmDominator)[SharedDom];
 | 
						|
 | 
						|
    // At this point, shared dom must dominate BOTH BB1 and BB2...
 | 
						|
    assert(SharedDom && DomSetInfo->dominates(SharedDom, BB1) &&
 | 
						|
           DomSetInfo->dominates(SharedDom, BB2) && "Dominators broken!");
 | 
						|
 | 
						|
    // Rip 'I' out of BB1, and move it to the end of SharedDom.
 | 
						|
    BB1->getInstList().remove(I);
 | 
						|
    SharedDom->getInstList().insert(--SharedDom->end(), I);
 | 
						|
 | 
						|
    // Eliminate 'Other' now.
 | 
						|
    ReplaceInstWithInst(I, Other);
 | 
						|
#endif
 | 
						|
  }
 | 
						|
 | 
						|
  if (isa<LoadInst>(Ret))
 | 
						|
    ++NumLoadRemoved;  // Keep track of loads eliminated
 | 
						|
  ++NumInstRemoved;   // Keep track of number of instructions eliminated
 | 
						|
 | 
						|
  // Add all users of Ret to the worklist...
 | 
						|
  for (Value::use_iterator I = Ret->use_begin(), E = Ret->use_end(); I != E;++I)
 | 
						|
    if (Instruction *Inst = dyn_cast<Instruction>(*I))
 | 
						|
      WorkList.insert(Inst);
 | 
						|
 | 
						|
  return Ret;
 | 
						|
}
 |