Chris Lattner 633a5b1aac Initial checkin of burg files
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@3785 91177308-0d34-0410-b5e6-96231b3b80d8
2002-09-17 23:03:30 +00:00

1053 lines
24 KiB
C

char rcsid_be[] = "$Id$";
#include <stdio.h>
#include <string.h>
#include "b.h"
#include "fe.h"
#define ERROR_VAL 0
FILE *outfile;
char *prefix = "burm";
static void doKids ARGS((RuleAST));
static void doLabel ARGS((Operator));
static void doLayout ARGS((RuleAST));
static void doMakeTable ARGS((Operator));
static void doVector ARGS((RuleAST));
static void layoutNts ARGS((PatternAST));
static void makeIndex_Map ARGS((Dimension));
static void makePvector ARGS((void));
static void makeState ARGS((void));
static void printPatternAST ARGS((PatternAST));
static void printPatternAST_int ARGS((PatternAST));
static void setVectors ARGS((PatternAST));
static void trailing_zeroes ARGS((int));
static int seminal ARGS((int from, int to));
static void printRule ARGS((RuleAST, char *));
static void
doLabel(op) Operator op;
{
fprintf(outfile, "\tcase %d:\n", op->num);
switch (op->arity) {
default:
assert(0);
break;
case 0:
fprintf(outfile, "\t\treturn %d;\n", op->table->transition[0]->num);
break;
case 1:
if (op->table->rules) {
fprintf(outfile, "\t\treturn %s_%s_transition[l];\n", prefix, op->name);
} else {
fprintf(outfile, "\t\treturn %d;\n", ERROR_VAL);
}
break;
case 2:
if (op->table->rules) {
fprintf(outfile, "\t\treturn %s_%s_transition[%s_%s_imap_1[l]][%s_%s_imap_2[r]];\n", prefix, op->name, prefix, op->name, prefix, op->name);
} else {
fprintf(outfile, "\t\treturn %d;\n", ERROR_VAL);
}
break;
}
}
int
opsOfArity(arity) int arity;
{
int c;
List l;
c = 0;
for (l = operators; l; l = l->next) {
Operator op = (Operator) l->x;
if (op->arity == arity) {
fprintf(outfile, "\tcase %d:\n", op->num);
c++;
}
}
return c;
}
static void
trailing_zeroes(z) int z;
{
int i;
for (i = 0; i < z; i++) {
fprintf(outfile, ", 0");
}
}
void
makeLabel()
{
int flag;
fprintf(outfile, "#ifdef __STDC__\n");
fprintf(outfile, "int %s_label(%s_NODEPTR_TYPE n) {\n", prefix, prefix);
fprintf(outfile, "#else\n");
fprintf(outfile, "int %s_label(n) %s_NODEPTR_TYPE n; {\n", prefix, prefix);
fprintf(outfile, "#endif\n");
fprintf(outfile,
"\t%s_assert(n, %s_PANIC(\"NULL pointer passed to %s_label\\n\"));\n",
prefix, prefix, prefix);
fprintf(outfile, "\tswitch (%s_OP_LABEL(n)) {\n", prefix);
fprintf(outfile, "\tdefault: %s_PANIC(\"Bad op %%d in %s_label\\n\", %s_OP_LABEL(n)); abort(); return 0;\n",
prefix, prefix, prefix);
flag = opsOfArity(0);
if (flag > 0) {
fprintf(outfile, "\t\treturn %s_STATE_LABEL(n) = %s_state(%s_OP_LABEL(n)",
prefix, prefix, prefix);
trailing_zeroes(max_arity);
fprintf(outfile, ");\n");
}
flag = opsOfArity(1);
if (flag > 0) {
fprintf(outfile, "\t\treturn %s_STATE_LABEL(n) = %s_state(%s_OP_LABEL(n), %s_label(%s_LEFT_CHILD(n))",
prefix, prefix, prefix, prefix, prefix);
trailing_zeroes(max_arity-1);
fprintf(outfile, ");\n");
}
flag = opsOfArity(2);
if (flag > 0) {
fprintf(outfile, "\t\treturn %s_STATE_LABEL(n) = %s_state(%s_OP_LABEL(n), %s_label(%s_LEFT_CHILD(n)), %s_label(%s_RIGHT_CHILD(n))",
prefix, prefix, prefix, prefix, prefix, prefix, prefix);
trailing_zeroes(max_arity-2);
fprintf(outfile, ");\n");
}
fprintf(outfile, "\t}\n");
fprintf(outfile, "}\n");
}
static void
makeState()
{
fprintf(outfile, "int %s_state(int op, int l, int r) {\n", prefix);
fprintf(outfile,
"\t%s_assert(l >= 0 && l < %d, PANIC(\"Bad state %%d passed to %s_state\\n\", l));\n",
prefix, globalMap->count, prefix);
fprintf(outfile,
"\t%s_assert(r >= 0 && r < %d, PANIC(\"Bad state %%d passed to %s_state\\n\", r));\n",
prefix, globalMap->count, prefix);
fprintf(outfile, "\tswitch (op) {\n");
fprintf(outfile, "\tdefault: %s_PANIC(\"Bad op %%d in %s_state\\n\", op); abort(); return 0;\n", prefix, prefix);
foreachList((ListFn) doLabel, operators);
fprintf(outfile, "\t}\n");
fprintf(outfile, "}\n");
}
static char cumBuf[4000];
static int vecIndex;
char vecBuf[4000];
static void
setVectors(ast) PatternAST ast;
{
char old[4000];
switch (ast->sym->tag) {
default:
assert(0);
break;
case NONTERMINAL:
sprintf(old, "\t\tkids[%d] = %s;\n", vecIndex, vecBuf);
strcat(cumBuf, old);
vecIndex++;
return;
case OPERATOR:
switch (ast->sym->u.op->arity) {
default:
assert(0);
break;
case 0:
return;
case 1:
strcpy(old, vecBuf);
sprintf(vecBuf, "%s_LEFT_CHILD(%s)", prefix, old);
setVectors((PatternAST) ast->children->x);
strcpy(vecBuf, old);
return;
case 2:
strcpy(old, vecBuf);
sprintf(vecBuf, "%s_LEFT_CHILD(%s)", prefix, old);
setVectors((PatternAST) ast->children->x);
sprintf(vecBuf, "%s_RIGHT_CHILD(%s)", prefix, old);
setVectors((PatternAST) ast->children->next->x);
strcpy(vecBuf, old);
return;
}
break;
}
}
#define MAX_VECTOR 10
void
makeRuleTable()
{
int s,nt;
fprintf(outfile, "static short %s_RuleNo[%d][%d] = {\n", prefix, globalMap->count, last_user_nonterminal-1);
for (s = 0; s < globalMap->count; s++) {
Item_Set ts = globalMap->set[s];
if (s > 0) {
fprintf(outfile, ",\n");
}
fprintf(outfile, "/* state %d */\n", s);
fprintf(outfile, "{");
for (nt = 1; nt < last_user_nonterminal; nt++) {
if (nt > 1) {
fprintf(outfile, ",");
if (nt % 10 == 1) {
fprintf(outfile, "\t/* state %d; Nonterminals %d-%d */\n", s, nt-10, nt-1);
}
}
if (ts->closed[nt].rule) {
ts->closed[nt].rule->used = 1;
fprintf(outfile, "%5d", ts->closed[nt].rule->erulenum);
} else {
fprintf(outfile, "%5d", ERROR_VAL);
}
}
fprintf(outfile, "}");
}
fprintf(outfile, "};\n");
}
static void
makeIndex_Map(d) Dimension d;
{
int s;
for (s = 0; s < globalMap->count; s++) {
if (s > 0) {
fprintf(outfile, ",");
if (s % 10 == 0) {
fprintf(outfile, "\t/* %d-%d */\n", s-10, s-1);
}
}
fprintf(outfile, "%5d", d->map->set[d->index_map.class[s]->num]->num);
}
fprintf(outfile, "};\n");
}
static void
doMakeTable(op) Operator op;
{
int s;
int i,j;
Dimension d;
switch (op->arity) {
default:
assert(0);
break;
case 0:
return;
case 1:
if (!op->table->rules) {
return;
}
d = op->table->dimen[0];
fprintf(outfile, "static short %s_%s_transition[%d] = {\n", prefix, op->name, globalMap->count);
for (s = 0; s < globalMap->count; s++) {
if (s > 0) {
fprintf(outfile, ", ");
if (s % 10 == 0) {
fprintf(outfile, "\t/* %d-%d */\n", s-10, s-1);
}
}
fprintf(outfile, "%5d", op->table->transition[d->map->set[d->index_map.class[s]->num]->num]->num);
}
fprintf(outfile, "};\n");
break;
case 2:
if (!op->table->rules) {
return;
}
fprintf(outfile, "static short %s_%s_imap_1[%d] = {\n", prefix, op->name, globalMap->count);
makeIndex_Map(op->table->dimen[0]);
fprintf(outfile, "static short %s_%s_imap_2[%d] = {\n", prefix, op->name, globalMap->count);
makeIndex_Map(op->table->dimen[1]);
fprintf(outfile, "static short %s_%s_transition[%d][%d] = {", prefix, op->name,
op->table->dimen[0]->map->count,
op->table->dimen[1]->map->count);
for (i = 0; i < op->table->dimen[0]->map->count; i++) {
if (i > 0) {
fprintf(outfile, ",");
}
fprintf(outfile, "\n");
fprintf(outfile, "{");
for (j = 0; j < op->table->dimen[1]->map->count; j++) {
Item_Set *ts = transLval(op->table, i, j);
if (j > 0) {
fprintf(outfile, ",");
}
fprintf(outfile, "%5d", (*ts)->num);
}
fprintf(outfile, "}\t/* row %d */", i);
}
fprintf(outfile, "\n};\n");
break;
}
}
void
makeTables()
{
foreachList((ListFn) doMakeTable, operators);
}
RuleAST *pVector;
void
makeLHSmap()
{
int i;
if (!pVector) {
makePvector();
}
fprintf(outfile, "short %s_lhs[] = {\n", prefix);
for (i = 0; i <= max_erule_num; i++) {
if (pVector[i]) {
fprintf(outfile, "\t%s_%s_NT,\n", prefix, pVector[i]->lhs);
} else {
fprintf(outfile, "\t0,\n");
}
}
fprintf(outfile, "};\n\n", prefix);
}
static int seminal(from, to)
{
return allpairs[from][to].rule ? allpairs[from][to].rule->erulenum : 0;
/*
int tmp, last;
tmp = 0;
for (;;) {
last = tmp;
tmp = allpairs[to][from].rule ? allpairs[to][from].rule->erulenum : 0;
if (!tmp) {
break;
}
assert(pVector[tmp]);
to = pVector[tmp]->rule->pat->children[0]->num;
}
return last;
*/
}
void
makeClosureArray()
{
int i, j;
if (!pVector) {
makePvector();
}
fprintf(outfile, "short %s_closure[%d][%d] = {\n", prefix, last_user_nonterminal, last_user_nonterminal);
for (i = 0; i < last_user_nonterminal; i++) {
fprintf(outfile, "\t{");
for (j = 0; j < last_user_nonterminal; j++) {
if (j > 0 && j%10 == 0) {
fprintf(outfile, "\n\t ");
}
fprintf(outfile, " %4d,", seminal(i,j));
}
fprintf(outfile, "},\n");
}
fprintf(outfile, "};\n");
}
void
makeCostVector(z,d) int z; DeltaCost d;
{
fprintf(outfile, "\t{");
#ifdef NOLEX
if (z) {
fprintf(outfile, "%5d", d);
} else {
fprintf(outfile, "%5d", 0);
}
#else
{
int j;
for (j = 0; j < DELTAWIDTH; j++) {
if (j > 0) {
fprintf(outfile, ",");
}
if (z) {
fprintf(outfile, "%5d", d[j]);
} else {
fprintf(outfile, "%5d", 0);
}
}
}
#endif /* NOLEX */
fprintf(outfile, "}");
}
void
makeCostArray()
{
int i;
if (!pVector) {
makePvector();
}
fprintf(outfile, "short %s_cost[][%d] = {\n", prefix, DELTAWIDTH);
for (i = 0; i <= max_erule_num; i++) {
makeCostVector(pVector[i], pVector[i] ? pVector[i]->rule->delta : 0);
fprintf(outfile, ", /* ");
printRule(pVector[i], "(none)");
fprintf(outfile, " = %d */\n", i);
}
fprintf(outfile, "};\n");
}
void
makeStateStringArray()
{
int s;
int nt;
int states;
states = globalMap->count;
fprintf(outfile, "\nconst char * %s_state_string[] = {\n", prefix);
fprintf(outfile, "\" not a state\", /* state 0 */\n");
for (s = 0; s < states-1; s++) {
fprintf(outfile, "\t\"");
printRepresentative(outfile, sortedStates[s]);
fprintf(outfile, "\", /* state #%d */\n", s+1);
}
fprintf(outfile, "};\n");
}
void
makeDeltaCostArray()
{
int s;
int nt;
int states;
states = globalMap->count;
fprintf(outfile, "\nshort %s_delta_cost[%d][%d][%d] = {\n", prefix, states, last_user_nonterminal, DELTAWIDTH);
fprintf(outfile, "{{0}}, /* state 0 */\n");
for (s = 0; s < states-1; s++) {
fprintf(outfile, "{ /* state #%d: ", s+1);
printRepresentative(outfile, sortedStates[s]);
fprintf(outfile, " */\n", s+1);
fprintf(outfile, "\t{0},\n");
for (nt = 1; nt < last_user_nonterminal; nt++) {
makeCostVector(1, sortedStates[s]->closed[nt].delta);
fprintf(outfile, ", /* ");
if (sortedStates[s]->closed[nt].rule) {
int erulenum = sortedStates[s]->closed[nt].rule->erulenum;
printRule(pVector[erulenum], "(none)");
fprintf(outfile, " = %d */", erulenum);
} else {
fprintf(outfile, "(none) */");
}
fprintf(outfile, "\n");
}
fprintf(outfile, "},\n");
}
fprintf(outfile, "};\n");
}
static void
printPatternAST_int(p) PatternAST p;
{
List l;
if (p) {
switch (p->sym->tag) {
case NONTERMINAL:
fprintf(outfile, "%5d,", -p->sym->u.nt->num);
break;
case OPERATOR:
fprintf(outfile, "%5d,", p->sym->u.op->num);
break;
default:
assert(0);
}
if (p->children) {
for (l = p->children; l; l = l->next) {
PatternAST pat = (PatternAST) l->x;
printPatternAST_int(pat);
}
}
}
}
static void
printPatternAST(p) PatternAST p;
{
List l;
if (p) {
fprintf(outfile, "%s", p->op);
if (p->children) {
fprintf(outfile, "(");
for (l = p->children; l; l = l->next) {
PatternAST pat = (PatternAST) l->x;
if (l != p->children) {
fprintf(outfile, ", ");
}
printPatternAST(pat);
}
fprintf(outfile, ")");
}
}
}
static void
layoutNts(ast) PatternAST ast;
{
char out[30];
switch (ast->sym->tag) {
default:
assert(0);
break;
case NONTERMINAL:
sprintf(out, "%d, ", ast->sym->u.nt->num);
strcat(cumBuf, out);
return;
case OPERATOR:
switch (ast->sym->u.op->arity) {
default:
assert(0);
break;
case 0:
return;
case 1:
layoutNts((PatternAST) ast->children->x);
return;
case 2:
layoutNts((PatternAST) ast->children->x);
layoutNts((PatternAST) ast->children->next->x);
return;
}
break;
}
}
static void
doVector(ast) RuleAST ast;
{
if (pVector[ast->rule->erulenum]) {
fprintf(stderr, "ERROR: non-unique external rule number: (%d)\n", ast->rule->erulenum);
exit(1);
}
pVector[ast->rule->erulenum] = ast;
}
static void
makePvector()
{
pVector = (RuleAST*) zalloc((max_erule_num+1) * sizeof(RuleAST));
foreachList((ListFn) doVector, ruleASTs);
}
static void
doLayout(ast) RuleAST ast;
{
sprintf(cumBuf, "{ ");
layoutNts(ast->pat);
strcat(cumBuf, "0 }");
}
void
makeNts()
{
int i;
int new;
StrTable nts;
nts = newStrTable();
if (!pVector) {
makePvector();
}
for (i = 0; i <= max_erule_num; i++) {
if (pVector[i]) {
doLayout(pVector[i]);
pVector[i]->nts = addString(nts, cumBuf, i, &new);
if (new) {
char ename[50];
sprintf(ename, "%s_r%d_nts", prefix, i);
pVector[i]->nts->ename = (char*) zalloc(strlen(ename)+1);
strcpy(pVector[i]->nts->ename, ename);
fprintf(outfile, "static short %s[] =", ename);
fprintf(outfile, "%s;\n", cumBuf);
}
}
}
fprintf(outfile, "short *%s_nts[] = {\n", prefix);
for (i = 0; i <= max_erule_num; i++) {
if (pVector[i]) {
fprintf(outfile, "\t%s,\n", pVector[i]->nts->ename);
} else {
fprintf(outfile, "\t0,\n");
}
}
fprintf(outfile, "};\n");
}
static void
printRule(r,d) RuleAST r; char *d;
{
if (r) {
fprintf(outfile, "%s: ", r->rule->lhs->name);
printPatternAST(r->pat);
} else {
fprintf(outfile, "%s", d);
}
}
void
makeRuleDescArray()
{
int i;
if (!pVector) {
makePvector();
}
if (last_user_nonterminal != max_nonterminal) {
/* not normal form */
fprintf(outfile, "short %s_rule_descriptor_0[] = { 0, 0 };\n", prefix);
} else {
fprintf(outfile, "short %s_rule_descriptor_0[] = { 0, 1 };\n", prefix);
}
for (i = 1; i <= max_erule_num; i++) {
if (pVector[i]) {
Operator o;
NonTerminal t;
fprintf(outfile, "short %s_rule_descriptor_%d[] = {", prefix, i);
fprintf(outfile, "%5d,", -pVector[i]->rule->lhs->num);
printPatternAST_int(pVector[i]->pat);
fprintf(outfile, " };\n");
}
}
fprintf(outfile, "/* %s_rule_descriptors[0][1] = 1 iff grammar is normal form. */\n", prefix);
fprintf(outfile, "short * %s_rule_descriptors[] = {\n", prefix);
fprintf(outfile, "\t%s_rule_descriptor_0,\n", prefix);
for (i = 1; i <= max_erule_num; i++) {
if (pVector[i]) {
fprintf(outfile, "\t%s_rule_descriptor_%d,\n", prefix, i);
} else {
fprintf(outfile, "\t%s_rule_descriptor_0,\n", prefix);
}
}
fprintf(outfile, "};\n");
}
void
makeRuleDescArray2()
{
int i;
if (!pVector) {
makePvector();
}
fprintf(outfile, "struct { int lhs, op, left, right; } %s_rule_struct[] = {\n", prefix);
if (last_user_nonterminal != max_nonterminal) {
/* not normal form */
fprintf(outfile, "\t{-1},");
} else {
fprintf(outfile, "\t{0},");
}
fprintf(outfile, " /* 0 if normal form, -1 if not normal form */\n");
for (i = 1; i <= max_erule_num; i++) {
fprintf(outfile, "\t");
if (pVector[i]) {
Operator o;
NonTerminal t;
fprintf(outfile, "{");
fprintf(outfile, "%5d, %5d, %5d, %5d",
pVector[i]->rule->lhs->num,
(o = pVector[i]->rule->pat->op) ? o->num : 0,
(t = pVector[i]->rule->pat->children[0]) ? t->num : 0,
(t = pVector[i]->rule->pat->children[1]) ? t->num : 0
);
fprintf(outfile, "} /* ");
printRule(pVector[i], "0");
fprintf(outfile, " = %d */", i);
} else {
fprintf(outfile, "{0}");
}
fprintf(outfile, ",\n");
}
fprintf(outfile, "};\n");
}
void
makeStringArray()
{
int i;
if (!pVector) {
makePvector();
}
fprintf(outfile, "const char *%s_string[] = {\n", prefix);
for (i = 0; i <= max_erule_num; i++) {
fprintf(outfile, "\t");
if (pVector[i]) {
fprintf(outfile, "\"");
printRule(pVector[i], "0");
fprintf(outfile, "\"");
} else {
fprintf(outfile, "0");
}
fprintf(outfile, ",\n");
}
fprintf(outfile, "};\n");
fprintf(outfile, "int %s_max_rule = %d;\n", prefix, max_erule_num);
fprintf(outfile, "#define %s_Max_rule %d\n", prefix, max_erule_num);
}
void
makeRule()
{
fprintf(outfile, "int %s_rule(int state, int goalnt) {\n", prefix);
fprintf(outfile,
"\t%s_assert(state >= 0 && state < %d, PANIC(\"Bad state %%d passed to %s_rule\\n\", state));\n",
prefix, globalMap->count, prefix);
fprintf(outfile,
"\t%s_assert(goalnt >= 1 && goalnt < %d, PANIC(\"Bad goalnt %%d passed to %s_rule\\n\", state));\n",
prefix, max_nonterminal, prefix);
fprintf(outfile, "\treturn %s_RuleNo[state][goalnt-1];\n", prefix);
fprintf(outfile, "};\n");
}
static StrTable kids;
static void
doKids(ast) RuleAST ast;
{
int new;
vecIndex = 0;
cumBuf[0] = 0;
strcpy(vecBuf, "p");
setVectors(ast->pat);
ast->kids = addString(kids, cumBuf, ast->rule->erulenum, &new);
}
void
makeKids()
{
List e;
IntList r;
kids = newStrTable();
fprintf(outfile, "#ifdef __STDC__\n");
fprintf(outfile, "%s_NODEPTR_TYPE * %s_kids(%s_NODEPTR_TYPE p, int rulenumber, %s_NODEPTR_TYPE *kids) {\n", prefix, prefix, prefix, prefix);
fprintf(outfile, "#else\n");
fprintf(outfile, "%s_NODEPTR_TYPE * %s_kids(p, rulenumber, kids) %s_NODEPTR_TYPE p; int rulenumber; %s_NODEPTR_TYPE *kids; {\n", prefix, prefix, prefix, prefix);
fprintf(outfile, "#endif\n");
fprintf(outfile,
"\t%s_assert(p, %s_PANIC(\"NULL node pointer passed to %s_kids\\n\"));\n",
prefix, prefix, prefix);
fprintf(outfile,
"\t%s_assert(kids, %s_PANIC(\"NULL kids pointer passed to %s_kids\\n\"));\n",
prefix, prefix, prefix);
fprintf(outfile, "\tswitch (rulenumber) {\n");
fprintf(outfile, "\tdefault:\n");
fprintf(outfile, "\t\t%s_PANIC(\"Unknown Rule %%d in %s_kids;\\n\", rulenumber);\n", prefix, prefix);
fprintf(outfile, "\t\tabort();\n");
fprintf(outfile, "\t\t/* NOTREACHED */\n");
foreachList((ListFn) doKids, ruleASTs);
for (e = kids->elems; e; e = e->next) {
StrTableElement el = (StrTableElement) e->x;
for (r = el->erulenos; r; r = r->next) {
int i = r->x;
fprintf(outfile, "\tcase %d:\n", i);
}
fprintf(outfile, "%s", el->str);
fprintf(outfile, "\t\tbreak;\n");
}
fprintf(outfile, "\t}\n");
fprintf(outfile, "\treturn kids;\n");
fprintf(outfile, "}\n");
}
void
makeOpLabel()
{
fprintf(outfile, "#ifdef __STDC__\n");
fprintf(outfile, "int %s_op_label(%s_NODEPTR_TYPE p) {\n", prefix, prefix);
fprintf(outfile, "#else\n");
fprintf(outfile, "int %s_op_label(p) %s_NODEPTR_TYPE p; {\n", prefix, prefix);
fprintf(outfile, "#endif\n");
fprintf(outfile,
"\t%s_assert(p, %s_PANIC(\"NULL pointer passed to %s_op_label\\n\"));\n",
prefix, prefix, prefix);
fprintf(outfile, "\treturn %s_OP_LABEL(p);\n", prefix);
fprintf(outfile, "}\n");
}
void
makeStateLabel()
{
fprintf(outfile, "#ifdef __STDC__\n");
fprintf(outfile, "int %s_state_label(%s_NODEPTR_TYPE p) {\n", prefix, prefix);
fprintf(outfile, "#else\n");
fprintf(outfile, "int %s_state_label(p) %s_NODEPTR_TYPE p; {\n", prefix, prefix);
fprintf(outfile, "#endif\n");
fprintf(outfile,
"\t%s_assert(p, %s_PANIC(\"NULL pointer passed to %s_state_label\\n\"));\n",
prefix, prefix, prefix);
fprintf(outfile, "\treturn %s_STATE_LABEL(p);\n", prefix);
fprintf(outfile, "}\n");
}
void
makeChild()
{
fprintf(outfile, "#ifdef __STDC__\n");
fprintf(outfile, "%s_NODEPTR_TYPE %s_child(%s_NODEPTR_TYPE p, int index) {\n", prefix, prefix, prefix);
fprintf(outfile, "#else\n");
fprintf(outfile, "%s_NODEPTR_TYPE %s_child(p, index) %s_NODEPTR_TYPE p; int index; {\n", prefix, prefix, prefix);
fprintf(outfile, "#endif\n");
fprintf(outfile,
"\t%s_assert(p, %s_PANIC(\"NULL pointer passed to %s_child\\n\"));\n",
prefix, prefix, prefix);
fprintf(outfile, "\tswitch (index) {\n");
fprintf(outfile, "\tcase 0:\n");
fprintf(outfile, "\t\treturn %s_LEFT_CHILD(p);\n", prefix);
fprintf(outfile, "\tcase 1:\n");
fprintf(outfile, "\t\treturn %s_RIGHT_CHILD(p);\n", prefix);
fprintf(outfile, "\t}\n");
fprintf(outfile, "\t%s_PANIC(\"Bad index %%d in %s_child;\\n\", index);\n", prefix, prefix);
fprintf(outfile, "\tabort();\n");
fprintf(outfile, "\treturn 0;\n");
fprintf(outfile, "}\n");
}
static Operator *opVector;
static int maxOperator;
void
makeOperatorVector()
{
List l;
maxOperator = 0;
for (l = operators; l; l = l->next) {
Operator op = (Operator) l->x;
if (op->num > maxOperator) {
maxOperator = op->num;
}
}
opVector = (Operator*) zalloc((maxOperator+1) * sizeof(*opVector));
for (l = operators; l; l = l->next) {
Operator op = (Operator) l->x;
if (opVector[op->num]) {
fprintf(stderr, "ERROR: Non-unique external symbol number (%d)\n", op->num);
exit(1);
}
opVector[op->num] = op;
}
}
void
makeOperators()
{
int i;
if (!opVector) {
makeOperatorVector();
}
fprintf(outfile, "const char * %s_opname[] = {\n", prefix);
for (i = 0; i <= maxOperator; i++) {
if (i > 0) {
fprintf(outfile, ", /* %d */\n", i-1);
}
if (opVector[i]) {
fprintf(outfile, "\t\"%s\"", opVector[i]->name);
} else {
fprintf(outfile, "\t0");
}
}
fprintf(outfile, "\n};\n");
fprintf(outfile, "char %s_arity[] = {\n", prefix);
for (i = 0; i <= maxOperator; i++) {
if (i > 0) {
fprintf(outfile, ", /* %d */\n", i-1);
}
fprintf(outfile, "\t%d", opVector[i] ? opVector[i]->arity : -1);
}
fprintf(outfile, "\n};\n");
fprintf(outfile, "int %s_max_op = %d;\n", prefix, maxOperator);
fprintf(outfile, "int %s_max_state = %d;\n", prefix, globalMap->count-1);
fprintf(outfile, "#define %s_Max_state %d\n", prefix, globalMap->count-1);
}
void
makeDebug()
{
fprintf(outfile, "#ifdef DEBUG\n");
fprintf(outfile, "int %s_debug;\n", prefix);
fprintf(outfile, "#endif /* DEBUG */\n");
}
void
makeSimple()
{
makeRuleTable();
makeTables();
makeRule();
makeState();
}
void
startOptional()
{
fprintf(outfile, "#ifdef %s_STATE_LABEL\n", prefix);
fprintf(outfile, "#define %s_INCLUDE_EXTRA\n", prefix);
fprintf(outfile, "#else\n");
fprintf(outfile, "#ifdef STATE_LABEL\n");
fprintf(outfile, "#define %s_INCLUDE_EXTRA\n", prefix);
fprintf(outfile, "#define %s_STATE_LABEL \tSTATE_LABEL\n", prefix);
fprintf(outfile, "#define %s_NODEPTR_TYPE\tNODEPTR_TYPE\n", prefix);
fprintf(outfile, "#define %s_LEFT_CHILD \tLEFT_CHILD\n", prefix);
fprintf(outfile, "#define %s_OP_LABEL \tOP_LABEL\n", prefix);
fprintf(outfile, "#define %s_RIGHT_CHILD \tRIGHT_CHILD\n", prefix);
fprintf(outfile, "#endif /* STATE_LABEL */\n");
fprintf(outfile, "#endif /* %s_STATE_LABEL */\n\n", prefix);
fprintf(outfile, "#ifdef %s_INCLUDE_EXTRA\n\n", prefix);
}
void
makeNonterminals()
{
List l;
for (l = nonterminals; l; l = l->next) {
NonTerminal nt = (NonTerminal) l->x;
if (nt->num < last_user_nonterminal) {
fprintf(outfile, "#define %s_%s_NT %d\n", prefix, nt->name, nt->num);
}
}
fprintf(outfile, "#define %s_NT %d\n", prefix, last_user_nonterminal-1);
}
void
makeNonterminalArray()
{
int i;
List l;
NonTerminal *nta;
nta = (NonTerminal *) zalloc(sizeof(*nta) * last_user_nonterminal);
for (l = nonterminals; l; l = l->next) {
NonTerminal nt = (NonTerminal) l->x;
if (nt->num < last_user_nonterminal) {
nta[nt->num] = nt;
}
}
fprintf(outfile, "const char *%s_ntname[] = {\n", prefix);
fprintf(outfile, "\t\"Error: Nonterminals are > 0\",\n");
for (i = 1; i < last_user_nonterminal; i++) {
fprintf(outfile, "\t\"%s\",\n", nta[i]->name);
}
fprintf(outfile, "\t0\n");
fprintf(outfile, "};\n\n");
zfree(nta);
}
void
endOptional()
{
fprintf(outfile, "#endif /* %s_INCLUDE_EXTRA */\n", prefix);
}
void
startBurm()
{
fprintf(outfile, "#ifndef %s_PANIC\n", prefix);
fprintf(outfile, "#define %s_PANIC\tPANIC\n", prefix);
fprintf(outfile, "#endif /* %s_PANIC */\n", prefix);
fprintf(outfile, "#ifdef __STDC__\n");
fprintf(outfile, "extern void abort(void);\n");
fprintf(outfile, "#else\n");
fprintf(outfile, "extern void abort();\n");
fprintf(outfile, "#endif\n");
fprintf(outfile, "#ifdef NDEBUG\n");
fprintf(outfile, "#define %s_assert(x,y)\t;\n", prefix);
fprintf(outfile, "#else\n");
fprintf(outfile, "#define %s_assert(x,y)\tif(!(x)) {y; abort();}\n", prefix);
fprintf(outfile, "#endif\n");
}
void
reportDiagnostics()
{
List l;
for (l = operators; l; l = l->next) {
Operator op = (Operator) l->x;
if (!op->ref) {
fprintf(stderr, "warning: Unreferenced Operator: %s\n", op->name);
}
}
for (l = rules; l; l = l->next) {
Rule r = (Rule) l->x;
if (!r->used && r->num < max_ruleAST) {
fprintf(stderr, "warning: Unused Rule: #%d\n", r->erulenum);
}
}
if (!start->pmap) {
fprintf(stderr, "warning: Start Nonterminal (%s) does not appear on LHS.\n", start->name);
}
fprintf(stderr, "start symbol = \"%s\"\n", start->name);
fprintf(stderr, "# of states = %d\n", globalMap->count-1);
fprintf(stderr, "# of nonterminals = %d\n", max_nonterminal-1);
fprintf(stderr, "# of user nonterminals = %d\n", last_user_nonterminal-1);
fprintf(stderr, "# of rules = %d\n", max_rule);
fprintf(stderr, "# of user rules = %d\n", max_ruleAST);
}