llvm-6502/lib/CodeGen/PBQP/HeuristicSolver.h

793 lines
23 KiB
C++

//===-- HeuristicSolver.h - Heuristic PBQP Solver --------------*- C++ --*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Heuristic PBQP solver. This solver is able to perform optimal reductions for
// nodes of degree 0, 1 or 2. For nodes of degree >2 a plugable heuristic is
// used to to select a node for reduction.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_PBQP_HEURISTICSOLVER_H
#define LLVM_CODEGEN_PBQP_HEURISTICSOLVER_H
#include "Solver.h"
#include "AnnotatedGraph.h"
#include <limits>
#include <iostream>
namespace PBQP {
/// \brief Important types for the HeuristicSolverImpl.
///
/// Declared seperately to allow access to heuristic classes before the solver
/// is fully constructed.
template <typename HeuristicNodeData, typename HeuristicEdgeData>
class HSITypes {
public:
class NodeData;
class EdgeData;
typedef AnnotatedGraph<NodeData, EdgeData> SolverGraph;
typedef typename SolverGraph::NodeIterator GraphNodeIterator;
typedef typename SolverGraph::EdgeIterator GraphEdgeIterator;
typedef typename SolverGraph::AdjEdgeIterator GraphAdjEdgeIterator;
typedef std::list<GraphNodeIterator> NodeList;
typedef typename NodeList::iterator NodeListIterator;
typedef std::vector<GraphNodeIterator> NodeStack;
typedef typename NodeStack::iterator NodeStackIterator;
class NodeData {
friend class EdgeData;
private:
typedef std::list<GraphEdgeIterator> LinksList;
unsigned numLinks;
LinksList links, solvedLinks;
NodeListIterator bucketItr;
HeuristicNodeData heuristicData;
public:
typedef typename LinksList::iterator AdjLinkIterator;
private:
AdjLinkIterator addLink(const GraphEdgeIterator &edgeItr) {
++numLinks;
return links.insert(links.end(), edgeItr);
}
void delLink(const AdjLinkIterator &adjLinkItr) {
--numLinks;
links.erase(adjLinkItr);
}
public:
NodeData() : numLinks(0) {}
unsigned getLinkDegree() const { return numLinks; }
HeuristicNodeData& getHeuristicData() { return heuristicData; }
const HeuristicNodeData& getHeuristicData() const {
return heuristicData;
}
void setBucketItr(const NodeListIterator &bucketItr) {
this->bucketItr = bucketItr;
}
const NodeListIterator& getBucketItr() const {
return bucketItr;
}
AdjLinkIterator adjLinksBegin() {
return links.begin();
}
AdjLinkIterator adjLinksEnd() {
return links.end();
}
void addSolvedLink(const GraphEdgeIterator &solvedLinkItr) {
solvedLinks.push_back(solvedLinkItr);
}
AdjLinkIterator solvedLinksBegin() {
return solvedLinks.begin();
}
AdjLinkIterator solvedLinksEnd() {
return solvedLinks.end();
}
};
class EdgeData {
private:
SolverGraph &g;
GraphNodeIterator node1Itr, node2Itr;
HeuristicEdgeData heuristicData;
typename NodeData::AdjLinkIterator node1ThisEdgeItr, node2ThisEdgeItr;
public:
EdgeData(SolverGraph &g) : g(g) {}
HeuristicEdgeData& getHeuristicData() { return heuristicData; }
const HeuristicEdgeData& getHeuristicData() const {
return heuristicData;
}
void setup(const GraphEdgeIterator &thisEdgeItr) {
node1Itr = g.getEdgeNode1Itr(thisEdgeItr);
node2Itr = g.getEdgeNode2Itr(thisEdgeItr);
node1ThisEdgeItr = g.getNodeData(node1Itr).addLink(thisEdgeItr);
node2ThisEdgeItr = g.getNodeData(node2Itr).addLink(thisEdgeItr);
}
void unlink() {
g.getNodeData(node1Itr).delLink(node1ThisEdgeItr);
g.getNodeData(node2Itr).delLink(node2ThisEdgeItr);
}
};
};
template <typename Heuristic>
class HeuristicSolverImpl {
public:
// Typedefs to make life easier:
typedef HSITypes<typename Heuristic::NodeData,
typename Heuristic::EdgeData> HSIT;
typedef typename HSIT::SolverGraph SolverGraph;
typedef typename HSIT::NodeData NodeData;
typedef typename HSIT::EdgeData EdgeData;
typedef typename HSIT::GraphNodeIterator GraphNodeIterator;
typedef typename HSIT::GraphEdgeIterator GraphEdgeIterator;
typedef typename HSIT::GraphAdjEdgeIterator GraphAdjEdgeIterator;
typedef typename HSIT::NodeList NodeList;
typedef typename HSIT::NodeListIterator NodeListIterator;
typedef std::vector<GraphNodeIterator> NodeStack;
typedef typename NodeStack::iterator NodeStackIterator;
/// \brief Constructor, which performs all the actual solver work.
HeuristicSolverImpl(const SimpleGraph &orig) :
solution(orig.getNumNodes(), true)
{
copyGraph(orig);
simplify();
setup();
computeSolution();
computeSolutionCost(orig);
}
/// \brief Returns the graph for this solver.
SolverGraph& getGraph() { return g; }
/// \brief Return the solution found by this solver.
const Solution& getSolution() const { return solution; }
private:
/// \brief Add the given node to the appropriate bucket for its link
/// degree.
void addToBucket(const GraphNodeIterator &nodeItr) {
NodeData &nodeData = g.getNodeData(nodeItr);
switch (nodeData.getLinkDegree()) {
case 0: nodeData.setBucketItr(
r0Bucket.insert(r0Bucket.end(), nodeItr));
break;
case 1: nodeData.setBucketItr(
r1Bucket.insert(r1Bucket.end(), nodeItr));
break;
case 2: nodeData.setBucketItr(
r2Bucket.insert(r2Bucket.end(), nodeItr));
break;
default: heuristic.addToRNBucket(nodeItr);
break;
}
}
/// \brief Remove the given node from the appropriate bucket for its link
/// degree.
void removeFromBucket(const GraphNodeIterator &nodeItr) {
NodeData &nodeData = g.getNodeData(nodeItr);
switch (nodeData.getLinkDegree()) {
case 0: r0Bucket.erase(nodeData.getBucketItr()); break;
case 1: r1Bucket.erase(nodeData.getBucketItr()); break;
case 2: r2Bucket.erase(nodeData.getBucketItr()); break;
default: heuristic.removeFromRNBucket(nodeItr); break;
}
}
public:
/// \brief Add a link.
void addLink(const GraphEdgeIterator &edgeItr) {
g.getEdgeData(edgeItr).setup(edgeItr);
if ((g.getNodeData(g.getEdgeNode1Itr(edgeItr)).getLinkDegree() > 2) ||
(g.getNodeData(g.getEdgeNode2Itr(edgeItr)).getLinkDegree() > 2)) {
heuristic.handleAddLink(edgeItr);
}
}
/// \brief Remove link, update info for node.
///
/// Only updates information for the given node, since usually the other
/// is about to be removed.
void removeLink(const GraphEdgeIterator &edgeItr,
const GraphNodeIterator &nodeItr) {
if (g.getNodeData(nodeItr).getLinkDegree() > 2) {
heuristic.handleRemoveLink(edgeItr, nodeItr);
}
g.getEdgeData(edgeItr).unlink();
}
/// \brief Remove link, update info for both nodes. Useful for R2 only.
void removeLinkR2(const GraphEdgeIterator &edgeItr) {
GraphNodeIterator node1Itr = g.getEdgeNode1Itr(edgeItr);
if (g.getNodeData(node1Itr).getLinkDegree() > 2) {
heuristic.handleRemoveLink(edgeItr, node1Itr);
}
removeLink(edgeItr, g.getEdgeNode2Itr(edgeItr));
}
/// \brief Removes all links connected to the given node.
void unlinkNode(const GraphNodeIterator &nodeItr) {
NodeData &nodeData = g.getNodeData(nodeItr);
typedef std::vector<GraphEdgeIterator> TempEdgeList;
TempEdgeList edgesToUnlink;
edgesToUnlink.reserve(nodeData.getLinkDegree());
// Copy adj edges into a temp vector. We want to destroy them during
// the unlink, and we can't do that while we're iterating over them.
std::copy(nodeData.adjLinksBegin(), nodeData.adjLinksEnd(),
std::back_inserter(edgesToUnlink));
for (typename TempEdgeList::iterator
edgeItr = edgesToUnlink.begin(), edgeEnd = edgesToUnlink.end();
edgeItr != edgeEnd; ++edgeItr) {
GraphNodeIterator otherNode = g.getEdgeOtherNode(*edgeItr, nodeItr);
removeFromBucket(otherNode);
removeLink(*edgeItr, otherNode);
addToBucket(otherNode);
}
}
/// \brief Push the given node onto the stack to be solved with
/// backpropagation.
void pushStack(const GraphNodeIterator &nodeItr) {
stack.push_back(nodeItr);
}
/// \brief Set the solution of the given node.
void setSolution(const GraphNodeIterator &nodeItr, unsigned solIndex) {
solution.setSelection(g.getNodeID(nodeItr), solIndex);
for (GraphAdjEdgeIterator adjEdgeItr = g.adjEdgesBegin(nodeItr),
adjEdgeEnd = g.adjEdgesEnd(nodeItr);
adjEdgeItr != adjEdgeEnd; ++adjEdgeItr) {
GraphEdgeIterator edgeItr(*adjEdgeItr);
GraphNodeIterator adjNodeItr(g.getEdgeOtherNode(edgeItr, nodeItr));
g.getNodeData(adjNodeItr).addSolvedLink(edgeItr);
}
}
private:
SolverGraph g;
Heuristic heuristic;
Solution solution;
NodeList r0Bucket,
r1Bucket,
r2Bucket;
NodeStack stack;
// Copy the SimpleGraph into an annotated graph which we can use for reduction.
void copyGraph(const SimpleGraph &orig) {
assert((g.getNumEdges() == 0) && (g.getNumNodes() == 0) &&
"Graph should be empty prior to solver setup.");
assert(orig.areNodeIDsValid() &&
"Cannot copy from a graph with invalid node IDs.");
std::vector<GraphNodeIterator> newNodeItrs;
for (unsigned nodeID = 0; nodeID < orig.getNumNodes(); ++nodeID) {
newNodeItrs.push_back(
g.addNode(orig.getNodeCosts(orig.getNodeItr(nodeID)), NodeData()));
}
for (SimpleGraph::ConstEdgeIterator
origEdgeItr = orig.edgesBegin(), origEdgeEnd = orig.edgesEnd();
origEdgeItr != origEdgeEnd; ++origEdgeItr) {
unsigned id1 = orig.getNodeID(orig.getEdgeNode1Itr(origEdgeItr)),
id2 = orig.getNodeID(orig.getEdgeNode2Itr(origEdgeItr));
g.addEdge(newNodeItrs[id1], newNodeItrs[id2],
orig.getEdgeCosts(origEdgeItr), EdgeData(g));
}
// Assign IDs to the new nodes using the ordering from the old graph,
// this will lead to nodes in the new graph getting the same ID as the
// corresponding node in the old graph.
g.assignNodeIDs(newNodeItrs);
}
// Simplify the annotated graph by eliminating independent edges and trivial
// nodes.
void simplify() {
disconnectTrivialNodes();
eliminateIndependentEdges();
}
// Eliminate trivial nodes.
void disconnectTrivialNodes() {
for (GraphNodeIterator nodeItr = g.nodesBegin(), nodeEnd = g.nodesEnd();
nodeItr != nodeEnd; ++nodeItr) {
if (g.getNodeCosts(nodeItr).getLength() == 1) {
std::vector<GraphEdgeIterator> edgesToRemove;
for (GraphAdjEdgeIterator adjEdgeItr = g.adjEdgesBegin(nodeItr),
adjEdgeEnd = g.adjEdgesEnd(nodeItr);
adjEdgeItr != adjEdgeEnd; ++adjEdgeItr) {
GraphEdgeIterator edgeItr = *adjEdgeItr;
if (g.getEdgeNode1Itr(edgeItr) == nodeItr) {
GraphNodeIterator otherNodeItr = g.getEdgeNode2Itr(edgeItr);
g.getNodeCosts(otherNodeItr) +=
g.getEdgeCosts(edgeItr).getRowAsVector(0);
}
else {
GraphNodeIterator otherNodeItr = g.getEdgeNode1Itr(edgeItr);
g.getNodeCosts(otherNodeItr) +=
g.getEdgeCosts(edgeItr).getColAsVector(0);
}
edgesToRemove.push_back(edgeItr);
}
while (!edgesToRemove.empty()) {
g.removeEdge(edgesToRemove.back());
edgesToRemove.pop_back();
}
}
}
}
void eliminateIndependentEdges() {
std::vector<GraphEdgeIterator> edgesToProcess;
for (GraphEdgeIterator edgeItr = g.edgesBegin(), edgeEnd = g.edgesEnd();
edgeItr != edgeEnd; ++edgeItr) {
edgesToProcess.push_back(edgeItr);
}
while (!edgesToProcess.empty()) {
tryToEliminateEdge(edgesToProcess.back());
edgesToProcess.pop_back();
}
}
void tryToEliminateEdge(const GraphEdgeIterator &edgeItr) {
if (tryNormaliseEdgeMatrix(edgeItr)) {
g.removeEdge(edgeItr);
}
}
bool tryNormaliseEdgeMatrix(const GraphEdgeIterator &edgeItr) {
Matrix &edgeCosts = g.getEdgeCosts(edgeItr);
Vector &uCosts = g.getNodeCosts(g.getEdgeNode1Itr(edgeItr)),
&vCosts = g.getNodeCosts(g.getEdgeNode2Itr(edgeItr));
for (unsigned r = 0; r < edgeCosts.getRows(); ++r) {
PBQPNum rowMin = edgeCosts.getRowMin(r);
uCosts[r] += rowMin;
if (rowMin != std::numeric_limits<PBQPNum>::infinity()) {
edgeCosts.subFromRow(r, rowMin);
}
else {
edgeCosts.setRow(r, 0);
}
}
for (unsigned c = 0; c < edgeCosts.getCols(); ++c) {
PBQPNum colMin = edgeCosts.getColMin(c);
vCosts[c] += colMin;
if (colMin != std::numeric_limits<PBQPNum>::infinity()) {
edgeCosts.subFromCol(c, colMin);
}
else {
edgeCosts.setCol(c, 0);
}
}
return edgeCosts.isZero();
}
void setup() {
setupLinks();
heuristic.initialise(*this);
setupBuckets();
}
void setupLinks() {
for (GraphEdgeIterator edgeItr = g.edgesBegin(), edgeEnd = g.edgesEnd();
edgeItr != edgeEnd; ++edgeItr) {
g.getEdgeData(edgeItr).setup(edgeItr);
}
}
void setupBuckets() {
for (GraphNodeIterator nodeItr = g.nodesBegin(), nodeEnd = g.nodesEnd();
nodeItr != nodeEnd; ++nodeItr) {
addToBucket(nodeItr);
}
}
void computeSolution() {
assert(g.areNodeIDsValid() &&
"Nodes cannot be added/removed during reduction.");
reduce();
computeTrivialSolutions();
backpropagate();
}
void printNode(const GraphNodeIterator &nodeItr) {
std::cerr << "Node " << g.getNodeID(nodeItr) << " (" << &*nodeItr << "):\n"
<< " costs = " << g.getNodeCosts(nodeItr) << "\n"
<< " link degree = " << g.getNodeData(nodeItr).getLinkDegree() << "\n"
<< " links = [ ";
for (typename HSIT::NodeData::AdjLinkIterator
aeItr = g.getNodeData(nodeItr).adjLinksBegin(),
aeEnd = g.getNodeData(nodeItr).adjLinksEnd();
aeItr != aeEnd; ++aeItr) {
std::cerr << "(" << g.getNodeID(g.getEdgeNode1Itr(*aeItr))
<< ", " << g.getNodeID(g.getEdgeNode2Itr(*aeItr))
<< ") ";
}
std::cout << "]\n";
}
void dumpState() {
std::cerr << "\n";
for (GraphNodeIterator nodeItr = g.nodesBegin(), nodeEnd = g.nodesEnd();
nodeItr != nodeEnd; ++nodeItr) {
printNode(nodeItr);
}
NodeList* buckets[] = { &r0Bucket, &r1Bucket, &r2Bucket };
for (unsigned b = 0; b < 3; ++b) {
NodeList &bucket = *buckets[b];
std::cerr << "Bucket " << b << ": [ ";
for (NodeListIterator nItr = bucket.begin(), nEnd = bucket.end();
nItr != nEnd; ++nItr) {
std::cerr << g.getNodeID(*nItr) << " ";
}
std::cerr << "]\n";
}
std::cerr << "Stack: [ ";
for (NodeStackIterator nsItr = stack.begin(), nsEnd = stack.end();
nsItr != nsEnd; ++nsItr) {
std::cerr << g.getNodeID(*nsItr) << " ";
}
std::cerr << "]\n";
}
void reduce() {
bool reductionFinished = r1Bucket.empty() && r2Bucket.empty() &&
heuristic.rNBucketEmpty();
while (!reductionFinished) {
if (!r1Bucket.empty()) {
processR1();
}
else if (!r2Bucket.empty()) {
processR2();
}
else if (!heuristic.rNBucketEmpty()) {
solution.setProvedOptimal(false);
solution.incRNReductions();
heuristic.processRN();
}
else reductionFinished = true;
}
};
void processR1() {
// Remove the first node in the R0 bucket:
GraphNodeIterator xNodeItr = r1Bucket.front();
r1Bucket.pop_front();
solution.incR1Reductions();
//std::cerr << "Applying R1 to " << g.getNodeID(xNodeItr) << "\n";
assert((g.getNodeData(xNodeItr).getLinkDegree() == 1) &&
"Node in R1 bucket has degree != 1");
GraphEdgeIterator edgeItr = *g.getNodeData(xNodeItr).adjLinksBegin();
const Matrix &edgeCosts = g.getEdgeCosts(edgeItr);
const Vector &xCosts = g.getNodeCosts(xNodeItr);
unsigned xLen = xCosts.getLength();
// Duplicate a little code to avoid transposing matrices:
if (xNodeItr == g.getEdgeNode1Itr(edgeItr)) {
GraphNodeIterator yNodeItr = g.getEdgeNode2Itr(edgeItr);
Vector &yCosts = g.getNodeCosts(yNodeItr);
unsigned yLen = yCosts.getLength();
for (unsigned j = 0; j < yLen; ++j) {
PBQPNum min = edgeCosts[0][j] + xCosts[0];
for (unsigned i = 1; i < xLen; ++i) {
PBQPNum c = edgeCosts[i][j] + xCosts[i];
if (c < min)
min = c;
}
yCosts[j] += min;
}
}
else {
GraphNodeIterator yNodeItr = g.getEdgeNode1Itr(edgeItr);
Vector &yCosts = g.getNodeCosts(yNodeItr);
unsigned yLen = yCosts.getLength();
for (unsigned i = 0; i < yLen; ++i) {
PBQPNum min = edgeCosts[i][0] + xCosts[0];
for (unsigned j = 1; j < xLen; ++j) {
PBQPNum c = edgeCosts[i][j] + xCosts[j];
if (c < min)
min = c;
}
yCosts[i] += min;
}
}
unlinkNode(xNodeItr);
pushStack(xNodeItr);
}
void processR2() {
GraphNodeIterator xNodeItr = r2Bucket.front();
r2Bucket.pop_front();
solution.incR2Reductions();
// Unlink is unsafe here. At some point it may optimistically more a node
// to a lower-degree list when its degree will later rise, or vice versa,
// violating the assumption that node degrees monotonically decrease
// during the reduction phase. Instead we'll bucket shuffle manually.
pushStack(xNodeItr);
assert((g.getNodeData(xNodeItr).getLinkDegree() == 2) &&
"Node in R2 bucket has degree != 2");
const Vector &xCosts = g.getNodeCosts(xNodeItr);
typename NodeData::AdjLinkIterator tempItr =
g.getNodeData(xNodeItr).adjLinksBegin();
GraphEdgeIterator yxEdgeItr = *tempItr,
zxEdgeItr = *(++tempItr);
GraphNodeIterator yNodeItr = g.getEdgeOtherNode(yxEdgeItr, xNodeItr),
zNodeItr = g.getEdgeOtherNode(zxEdgeItr, xNodeItr);
removeFromBucket(yNodeItr);
removeFromBucket(zNodeItr);
removeLink(yxEdgeItr, yNodeItr);
removeLink(zxEdgeItr, zNodeItr);
// Graph some of the costs:
bool flipEdge1 = (g.getEdgeNode1Itr(yxEdgeItr) == xNodeItr),
flipEdge2 = (g.getEdgeNode1Itr(zxEdgeItr) == xNodeItr);
const Matrix *yxCosts = flipEdge1 ?
new Matrix(g.getEdgeCosts(yxEdgeItr).transpose()) :
&g.getEdgeCosts(yxEdgeItr),
*zxCosts = flipEdge2 ?
new Matrix(g.getEdgeCosts(zxEdgeItr).transpose()) :
&g.getEdgeCosts(zxEdgeItr);
unsigned xLen = xCosts.getLength(),
yLen = yxCosts->getRows(),
zLen = zxCosts->getRows();
// Compute delta:
Matrix delta(yLen, zLen);
for (unsigned i = 0; i < yLen; ++i) {
for (unsigned j = 0; j < zLen; ++j) {
PBQPNum min = (*yxCosts)[i][0] + (*zxCosts)[j][0] + xCosts[0];
for (unsigned k = 1; k < xLen; ++k) {
PBQPNum c = (*yxCosts)[i][k] + (*zxCosts)[j][k] + xCosts[k];
if (c < min) {
min = c;
}
}
delta[i][j] = min;
}
}
if (flipEdge1)
delete yxCosts;
if (flipEdge2)
delete zxCosts;
// Deal with the potentially induced yz edge.
GraphEdgeIterator yzEdgeItr = g.findEdge(yNodeItr, zNodeItr);
if (yzEdgeItr == g.edgesEnd()) {
yzEdgeItr = g.addEdge(yNodeItr, zNodeItr, delta, EdgeData(g));
}
else {
// There was an edge, but we're going to screw with it. Delete the old
// link, update the costs. We'll re-link it later.
removeLinkR2(yzEdgeItr);
g.getEdgeCosts(yzEdgeItr) +=
(yNodeItr == g.getEdgeNode1Itr(yzEdgeItr)) ?
delta : delta.transpose();
}
bool nullCostEdge = tryNormaliseEdgeMatrix(yzEdgeItr);
// Nulled the edge, remove it entirely.
if (nullCostEdge) {
g.removeEdge(yzEdgeItr);
}
else {
// Edge remains - re-link it.
addLink(yzEdgeItr);
}
addToBucket(yNodeItr);
addToBucket(zNodeItr);
}
void computeTrivialSolutions() {
for (NodeListIterator r0Itr = r0Bucket.begin(), r0End = r0Bucket.end();
r0Itr != r0End; ++r0Itr) {
GraphNodeIterator nodeItr = *r0Itr;
solution.incR0Reductions();
setSolution(nodeItr, g.getNodeCosts(nodeItr).minIndex());
}
}
void backpropagate() {
while (!stack.empty()) {
computeSolution(stack.back());
stack.pop_back();
}
}
void computeSolution(const GraphNodeIterator &nodeItr) {
NodeData &nodeData = g.getNodeData(nodeItr);
Vector v(g.getNodeCosts(nodeItr));
// Solve based on existing links.
for (typename NodeData::AdjLinkIterator
solvedLinkItr = nodeData.solvedLinksBegin(),
solvedLinkEnd = nodeData.solvedLinksEnd();
solvedLinkItr != solvedLinkEnd; ++solvedLinkItr) {
GraphEdgeIterator solvedEdgeItr(*solvedLinkItr);
Matrix &edgeCosts = g.getEdgeCosts(solvedEdgeItr);
if (nodeItr == g.getEdgeNode1Itr(solvedEdgeItr)) {
GraphNodeIterator adjNode(g.getEdgeNode2Itr(solvedEdgeItr));
unsigned adjSolution =
solution.getSelection(g.getNodeID(adjNode));
v += edgeCosts.getColAsVector(adjSolution);
}
else {
GraphNodeIterator adjNode(g.getEdgeNode1Itr(solvedEdgeItr));
unsigned adjSolution =
solution.getSelection(g.getNodeID(adjNode));
v += edgeCosts.getRowAsVector(adjSolution);
}
}
setSolution(nodeItr, v.minIndex());
}
void computeSolutionCost(const SimpleGraph &orig) {
PBQPNum cost = 0.0;
for (SimpleGraph::ConstNodeIterator
nodeItr = orig.nodesBegin(), nodeEnd = orig.nodesEnd();
nodeItr != nodeEnd; ++nodeItr) {
unsigned nodeId = orig.getNodeID(nodeItr);
cost += orig.getNodeCosts(nodeItr)[solution.getSelection(nodeId)];
}
for (SimpleGraph::ConstEdgeIterator
edgeItr = orig.edgesBegin(), edgeEnd = orig.edgesEnd();
edgeItr != edgeEnd; ++edgeItr) {
SimpleGraph::ConstNodeIterator n1 = orig.getEdgeNode1Itr(edgeItr),
n2 = orig.getEdgeNode2Itr(edgeItr);
unsigned sol1 = solution.getSelection(orig.getNodeID(n1)),
sol2 = solution.getSelection(orig.getNodeID(n2));
cost += orig.getEdgeCosts(edgeItr)[sol1][sol2];
}
solution.setSolutionCost(cost);
}
};
template <typename Heuristic>
class HeuristicSolver : public Solver {
public:
Solution solve(const SimpleGraph &g) const {
HeuristicSolverImpl<Heuristic> solverImpl(g);
return solverImpl.getSolution();
}
};
}
#endif // LLVM_CODEGEN_PBQP_HEURISTICSOLVER_H