mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108130 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1670 lines
		
	
	
		
			58 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1670 lines
		
	
	
		
			58 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This tablegen backend emits a target specifier matcher for converting parsed
 | |
| // assembly operands in the MCInst structures.
 | |
| //
 | |
| // The input to the target specific matcher is a list of literal tokens and
 | |
| // operands. The target specific parser should generally eliminate any syntax
 | |
| // which is not relevant for matching; for example, comma tokens should have
 | |
| // already been consumed and eliminated by the parser. Most instructions will
 | |
| // end up with a single literal token (the instruction name) and some number of
 | |
| // operands.
 | |
| //
 | |
| // Some example inputs, for X86:
 | |
| //   'addl' (immediate ...) (register ...)
 | |
| //   'add' (immediate ...) (memory ...)
 | |
| //   'call' '*' %epc 
 | |
| //
 | |
| // The assembly matcher is responsible for converting this input into a precise
 | |
| // machine instruction (i.e., an instruction with a well defined encoding). This
 | |
| // mapping has several properties which complicate matching:
 | |
| //
 | |
| //  - It may be ambiguous; many architectures can legally encode particular
 | |
| //    variants of an instruction in different ways (for example, using a smaller
 | |
| //    encoding for small immediates). Such ambiguities should never be
 | |
| //    arbitrarily resolved by the assembler, the assembler is always responsible
 | |
| //    for choosing the "best" available instruction.
 | |
| //
 | |
| //  - It may depend on the subtarget or the assembler context. Instructions
 | |
| //    which are invalid for the current mode, but otherwise unambiguous (e.g.,
 | |
| //    an SSE instruction in a file being assembled for i486) should be accepted
 | |
| //    and rejected by the assembler front end. However, if the proper encoding
 | |
| //    for an instruction is dependent on the assembler context then the matcher
 | |
| //    is responsible for selecting the correct machine instruction for the
 | |
| //    current mode.
 | |
| //
 | |
| // The core matching algorithm attempts to exploit the regularity in most
 | |
| // instruction sets to quickly determine the set of possibly matching
 | |
| // instructions, and the simplify the generated code. Additionally, this helps
 | |
| // to ensure that the ambiguities are intentionally resolved by the user.
 | |
| //
 | |
| // The matching is divided into two distinct phases:
 | |
| //
 | |
| //   1. Classification: Each operand is mapped to the unique set which (a)
 | |
| //      contains it, and (b) is the largest such subset for which a single
 | |
| //      instruction could match all members.
 | |
| //
 | |
| //      For register classes, we can generate these subgroups automatically. For
 | |
| //      arbitrary operands, we expect the user to define the classes and their
 | |
| //      relations to one another (for example, 8-bit signed immediates as a
 | |
| //      subset of 32-bit immediates).
 | |
| //
 | |
| //      By partitioning the operands in this way, we guarantee that for any
 | |
| //      tuple of classes, any single instruction must match either all or none
 | |
| //      of the sets of operands which could classify to that tuple.
 | |
| //
 | |
| //      In addition, the subset relation amongst classes induces a partial order
 | |
| //      on such tuples, which we use to resolve ambiguities.
 | |
| //
 | |
| //      FIXME: What do we do if a crazy case shows up where this is the wrong
 | |
| //      resolution?
 | |
| //
 | |
| //   2. The input can now be treated as a tuple of classes (static tokens are
 | |
| //      simple singleton sets). Each such tuple should generally map to a single
 | |
| //      instruction (we currently ignore cases where this isn't true, whee!!!),
 | |
| //      which we can emit a simple matcher for.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "AsmMatcherEmitter.h"
 | |
| #include "CodeGenTarget.h"
 | |
| #include "Record.h"
 | |
| #include "llvm/ADT/OwningPtr.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include <list>
 | |
| #include <map>
 | |
| #include <set>
 | |
| using namespace llvm;
 | |
| 
 | |
| static cl::opt<std::string>
 | |
| MatchPrefix("match-prefix", cl::init(""),
 | |
|             cl::desc("Only match instructions with the given prefix"));
 | |
| 
 | |
| /// FlattenVariants - Flatten an .td file assembly string by selecting the
 | |
| /// variant at index \arg N.
 | |
| static std::string FlattenVariants(const std::string &AsmString,
 | |
|                                    unsigned N) {
 | |
|   StringRef Cur = AsmString;
 | |
|   std::string Res = "";
 | |
|   
 | |
|   for (;;) {
 | |
|     // Find the start of the next variant string.
 | |
|     size_t VariantsStart = 0;
 | |
|     for (size_t e = Cur.size(); VariantsStart != e; ++VariantsStart)
 | |
|       if (Cur[VariantsStart] == '{' && 
 | |
|           (VariantsStart == 0 || (Cur[VariantsStart-1] != '$' &&
 | |
|                                   Cur[VariantsStart-1] != '\\')))
 | |
|         break;
 | |
| 
 | |
|     // Add the prefix to the result.
 | |
|     Res += Cur.slice(0, VariantsStart);
 | |
|     if (VariantsStart == Cur.size())
 | |
|       break;
 | |
| 
 | |
|     ++VariantsStart; // Skip the '{'.
 | |
| 
 | |
|     // Scan to the end of the variants string.
 | |
|     size_t VariantsEnd = VariantsStart;
 | |
|     unsigned NestedBraces = 1;
 | |
|     for (size_t e = Cur.size(); VariantsEnd != e; ++VariantsEnd) {
 | |
|       if (Cur[VariantsEnd] == '}' && Cur[VariantsEnd-1] != '\\') {
 | |
|         if (--NestedBraces == 0)
 | |
|           break;
 | |
|       } else if (Cur[VariantsEnd] == '{')
 | |
|         ++NestedBraces;
 | |
|     }
 | |
| 
 | |
|     // Select the Nth variant (or empty).
 | |
|     StringRef Selection = Cur.slice(VariantsStart, VariantsEnd);
 | |
|     for (unsigned i = 0; i != N; ++i)
 | |
|       Selection = Selection.split('|').second;
 | |
|     Res += Selection.split('|').first;
 | |
| 
 | |
|     assert(VariantsEnd != Cur.size() && 
 | |
|            "Unterminated variants in assembly string!");
 | |
|     Cur = Cur.substr(VariantsEnd + 1);
 | |
|   } 
 | |
| 
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| /// TokenizeAsmString - Tokenize a simplified assembly string.
 | |
| static void TokenizeAsmString(StringRef AsmString, 
 | |
|                               SmallVectorImpl<StringRef> &Tokens) {
 | |
|   unsigned Prev = 0;
 | |
|   bool InTok = true;
 | |
|   for (unsigned i = 0, e = AsmString.size(); i != e; ++i) {
 | |
|     switch (AsmString[i]) {
 | |
|     case '[':
 | |
|     case ']':
 | |
|     case '*':
 | |
|     case '!':
 | |
|     case ' ':
 | |
|     case '\t':
 | |
|     case ',':
 | |
|       if (InTok) {
 | |
|         Tokens.push_back(AsmString.slice(Prev, i));
 | |
|         InTok = false;
 | |
|       }
 | |
|       if (!isspace(AsmString[i]) && AsmString[i] != ',')
 | |
|         Tokens.push_back(AsmString.substr(i, 1));
 | |
|       Prev = i + 1;
 | |
|       break;
 | |
|       
 | |
|     case '\\':
 | |
|       if (InTok) {
 | |
|         Tokens.push_back(AsmString.slice(Prev, i));
 | |
|         InTok = false;
 | |
|       }
 | |
|       ++i;
 | |
|       assert(i != AsmString.size() && "Invalid quoted character");
 | |
|       Tokens.push_back(AsmString.substr(i, 1));
 | |
|       Prev = i + 1;
 | |
|       break;
 | |
| 
 | |
|     case '$': {
 | |
|       // If this isn't "${", treat like a normal token.
 | |
|       if (i + 1 == AsmString.size() || AsmString[i + 1] != '{') {
 | |
|         if (InTok) {
 | |
|           Tokens.push_back(AsmString.slice(Prev, i));
 | |
|           InTok = false;
 | |
|         }
 | |
|         Prev = i;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       if (InTok) {
 | |
|         Tokens.push_back(AsmString.slice(Prev, i));
 | |
|         InTok = false;
 | |
|       }
 | |
| 
 | |
|       StringRef::iterator End =
 | |
|         std::find(AsmString.begin() + i, AsmString.end(), '}');
 | |
|       assert(End != AsmString.end() && "Missing brace in operand reference!");
 | |
|       size_t EndPos = End - AsmString.begin();
 | |
|       Tokens.push_back(AsmString.slice(i, EndPos+1));
 | |
|       Prev = EndPos + 1;
 | |
|       i = EndPos;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     default:
 | |
|       InTok = true;
 | |
|     }
 | |
|   }
 | |
|   if (InTok && Prev != AsmString.size())
 | |
|     Tokens.push_back(AsmString.substr(Prev));
 | |
| }
 | |
| 
 | |
| static bool IsAssemblerInstruction(StringRef Name,
 | |
|                                    const CodeGenInstruction &CGI, 
 | |
|                                    const SmallVectorImpl<StringRef> &Tokens) {
 | |
|   // Ignore "codegen only" instructions.
 | |
|   if (CGI.TheDef->getValueAsBit("isCodeGenOnly"))
 | |
|     return false;
 | |
| 
 | |
|   // Ignore pseudo ops.
 | |
|   //
 | |
|   // FIXME: This is a hack; can we convert these instructions to set the
 | |
|   // "codegen only" bit instead?
 | |
|   if (const RecordVal *Form = CGI.TheDef->getValue("Form"))
 | |
|     if (Form->getValue()->getAsString() == "Pseudo")
 | |
|       return false;
 | |
| 
 | |
|   // Ignore "Int_*" and "*_Int" instructions, which are internal aliases.
 | |
|   //
 | |
|   // FIXME: This is a total hack.
 | |
|   if (StringRef(Name).startswith("Int_") || StringRef(Name).endswith("_Int"))
 | |
|     return false;
 | |
| 
 | |
|   // Ignore instructions with no .s string.
 | |
|   //
 | |
|   // FIXME: What are these?
 | |
|   if (CGI.AsmString.empty())
 | |
|     return false;
 | |
| 
 | |
|   // FIXME: Hack; ignore any instructions with a newline in them.
 | |
|   if (std::find(CGI.AsmString.begin(), 
 | |
|                 CGI.AsmString.end(), '\n') != CGI.AsmString.end())
 | |
|     return false;
 | |
|   
 | |
|   // Ignore instructions with attributes, these are always fake instructions for
 | |
|   // simplifying codegen.
 | |
|   //
 | |
|   // FIXME: Is this true?
 | |
|   //
 | |
|   // Also, check for instructions which reference the operand multiple times;
 | |
|   // this implies a constraint we would not honor.
 | |
|   std::set<std::string> OperandNames;
 | |
|   for (unsigned i = 1, e = Tokens.size(); i < e; ++i) {
 | |
|     if (Tokens[i][0] == '$' && 
 | |
|         std::find(Tokens[i].begin(), 
 | |
|                   Tokens[i].end(), ':') != Tokens[i].end()) {
 | |
|       DEBUG({
 | |
|           errs() << "warning: '" << Name << "': "
 | |
|                  << "ignoring instruction; operand with attribute '" 
 | |
|                  << Tokens[i] << "'\n";
 | |
|         });
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     if (Tokens[i][0] == '$' && !OperandNames.insert(Tokens[i]).second) {
 | |
|       std::string Err = "'" + Name.str() + "': " +
 | |
|         "invalid assembler instruction; tied operand '" + Tokens[i].str() + "'";
 | |
|       throw TGError(CGI.TheDef->getLoc(), Err);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// ClassInfo - Helper class for storing the information about a particular
 | |
| /// class of operands which can be matched.
 | |
| struct ClassInfo {
 | |
|   enum ClassInfoKind {
 | |
|     /// Invalid kind, for use as a sentinel value.
 | |
|     Invalid = 0,
 | |
| 
 | |
|     /// The class for a particular token.
 | |
|     Token,
 | |
| 
 | |
|     /// The (first) register class, subsequent register classes are
 | |
|     /// RegisterClass0+1, and so on.
 | |
|     RegisterClass0,
 | |
| 
 | |
|     /// The (first) user defined class, subsequent user defined classes are
 | |
|     /// UserClass0+1, and so on.
 | |
|     UserClass0 = 1<<16
 | |
|   };
 | |
| 
 | |
|   /// Kind - The class kind, which is either a predefined kind, or (UserClass0 +
 | |
|   /// N) for the Nth user defined class.
 | |
|   unsigned Kind;
 | |
| 
 | |
|   /// SuperClasses - The super classes of this class. Note that for simplicities
 | |
|   /// sake user operands only record their immediate super class, while register
 | |
|   /// operands include all superclasses.
 | |
|   std::vector<ClassInfo*> SuperClasses;
 | |
| 
 | |
|   /// Name - The full class name, suitable for use in an enum.
 | |
|   std::string Name;
 | |
| 
 | |
|   /// ClassName - The unadorned generic name for this class (e.g., Token).
 | |
|   std::string ClassName;
 | |
| 
 | |
|   /// ValueName - The name of the value this class represents; for a token this
 | |
|   /// is the literal token string, for an operand it is the TableGen class (or
 | |
|   /// empty if this is a derived class).
 | |
|   std::string ValueName;
 | |
| 
 | |
|   /// PredicateMethod - The name of the operand method to test whether the
 | |
|   /// operand matches this class; this is not valid for Token or register kinds.
 | |
|   std::string PredicateMethod;
 | |
| 
 | |
|   /// RenderMethod - The name of the operand method to add this operand to an
 | |
|   /// MCInst; this is not valid for Token or register kinds.
 | |
|   std::string RenderMethod;
 | |
| 
 | |
|   /// For register classes, the records for all the registers in this class.
 | |
|   std::set<Record*> Registers;
 | |
| 
 | |
| public:
 | |
|   /// isRegisterClass() - Check if this is a register class.
 | |
|   bool isRegisterClass() const {
 | |
|     return Kind >= RegisterClass0 && Kind < UserClass0;
 | |
|   }
 | |
| 
 | |
|   /// isUserClass() - Check if this is a user defined class.
 | |
|   bool isUserClass() const {
 | |
|     return Kind >= UserClass0;
 | |
|   }
 | |
| 
 | |
|   /// isRelatedTo - Check whether this class is "related" to \arg RHS. Classes
 | |
|   /// are related if they are in the same class hierarchy.
 | |
|   bool isRelatedTo(const ClassInfo &RHS) const {
 | |
|     // Tokens are only related to tokens.
 | |
|     if (Kind == Token || RHS.Kind == Token)
 | |
|       return Kind == Token && RHS.Kind == Token;
 | |
| 
 | |
|     // Registers classes are only related to registers classes, and only if
 | |
|     // their intersection is non-empty.
 | |
|     if (isRegisterClass() || RHS.isRegisterClass()) {
 | |
|       if (!isRegisterClass() || !RHS.isRegisterClass())
 | |
|         return false;
 | |
| 
 | |
|       std::set<Record*> Tmp;
 | |
|       std::insert_iterator< std::set<Record*> > II(Tmp, Tmp.begin());
 | |
|       std::set_intersection(Registers.begin(), Registers.end(), 
 | |
|                             RHS.Registers.begin(), RHS.Registers.end(),
 | |
|                             II);
 | |
| 
 | |
|       return !Tmp.empty();
 | |
|     }
 | |
| 
 | |
|     // Otherwise we have two users operands; they are related if they are in the
 | |
|     // same class hierarchy.
 | |
|     //
 | |
|     // FIXME: This is an oversimplification, they should only be related if they
 | |
|     // intersect, however we don't have that information.
 | |
|     assert(isUserClass() && RHS.isUserClass() && "Unexpected class!");
 | |
|     const ClassInfo *Root = this;
 | |
|     while (!Root->SuperClasses.empty())
 | |
|       Root = Root->SuperClasses.front();
 | |
| 
 | |
|     const ClassInfo *RHSRoot = &RHS;
 | |
|     while (!RHSRoot->SuperClasses.empty())
 | |
|       RHSRoot = RHSRoot->SuperClasses.front();
 | |
|     
 | |
|     return Root == RHSRoot;
 | |
|   }
 | |
| 
 | |
|   /// isSubsetOf - Test whether this class is a subset of \arg RHS; 
 | |
|   bool isSubsetOf(const ClassInfo &RHS) const {
 | |
|     // This is a subset of RHS if it is the same class...
 | |
|     if (this == &RHS)
 | |
|       return true;
 | |
| 
 | |
|     // ... or if any of its super classes are a subset of RHS.
 | |
|     for (std::vector<ClassInfo*>::const_iterator it = SuperClasses.begin(),
 | |
|            ie = SuperClasses.end(); it != ie; ++it)
 | |
|       if ((*it)->isSubsetOf(RHS))
 | |
|         return true;
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   /// operator< - Compare two classes.
 | |
|   bool operator<(const ClassInfo &RHS) const {
 | |
|     if (this == &RHS)
 | |
|       return false;
 | |
| 
 | |
|     // Unrelated classes can be ordered by kind.
 | |
|     if (!isRelatedTo(RHS))
 | |
|       return Kind < RHS.Kind;
 | |
| 
 | |
|     switch (Kind) {
 | |
|     case Invalid:
 | |
|       assert(0 && "Invalid kind!");
 | |
|     case Token:
 | |
|       // Tokens are comparable by value.
 | |
|       //
 | |
|       // FIXME: Compare by enum value.
 | |
|       return ValueName < RHS.ValueName;
 | |
| 
 | |
|     default:
 | |
|       // This class preceeds the RHS if it is a proper subset of the RHS.
 | |
|       if (isSubsetOf(RHS))
 | |
|         return true;
 | |
|       if (RHS.isSubsetOf(*this))
 | |
|         return false;
 | |
| 
 | |
|       // Otherwise, order by name to ensure we have a total ordering.
 | |
|       return ValueName < RHS.ValueName;
 | |
|     }
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// InstructionInfo - Helper class for storing the necessary information for an
 | |
| /// instruction which is capable of being matched.
 | |
| struct InstructionInfo {
 | |
|   struct Operand {
 | |
|     /// The unique class instance this operand should match.
 | |
|     ClassInfo *Class;
 | |
| 
 | |
|     /// The original operand this corresponds to, if any.
 | |
|     const CodeGenInstruction::OperandInfo *OperandInfo;
 | |
|   };
 | |
| 
 | |
|   /// InstrName - The target name for this instruction.
 | |
|   std::string InstrName;
 | |
| 
 | |
|   /// Instr - The instruction this matches.
 | |
|   const CodeGenInstruction *Instr;
 | |
| 
 | |
|   /// AsmString - The assembly string for this instruction (with variants
 | |
|   /// removed).
 | |
|   std::string AsmString;
 | |
| 
 | |
|   /// Tokens - The tokenized assembly pattern that this instruction matches.
 | |
|   SmallVector<StringRef, 4> Tokens;
 | |
| 
 | |
|   /// Operands - The operands that this instruction matches.
 | |
|   SmallVector<Operand, 4> Operands;
 | |
| 
 | |
|   /// ConversionFnKind - The enum value which is passed to the generated
 | |
|   /// ConvertToMCInst to convert parsed operands into an MCInst for this
 | |
|   /// function.
 | |
|   std::string ConversionFnKind;
 | |
| 
 | |
|   /// operator< - Compare two instructions.
 | |
|   bool operator<(const InstructionInfo &RHS) const {
 | |
|     if (Operands.size() != RHS.Operands.size())
 | |
|       return Operands.size() < RHS.Operands.size();
 | |
| 
 | |
|     // Compare lexicographically by operand. The matcher validates that other
 | |
|     // orderings wouldn't be ambiguous using \see CouldMatchAmiguouslyWith().
 | |
|     for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
 | |
|       if (*Operands[i].Class < *RHS.Operands[i].Class)
 | |
|         return true;
 | |
|       if (*RHS.Operands[i].Class < *Operands[i].Class)
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   /// CouldMatchAmiguouslyWith - Check whether this instruction could
 | |
|   /// ambiguously match the same set of operands as \arg RHS (without being a
 | |
|   /// strictly superior match).
 | |
|   bool CouldMatchAmiguouslyWith(const InstructionInfo &RHS) {
 | |
|     // The number of operands is unambiguous.
 | |
|     if (Operands.size() != RHS.Operands.size())
 | |
|       return false;
 | |
| 
 | |
|     // Otherwise, make sure the ordering of the two instructions is unambiguous
 | |
|     // by checking that either (a) a token or operand kind discriminates them,
 | |
|     // or (b) the ordering among equivalent kinds is consistent.
 | |
| 
 | |
|     // Tokens and operand kinds are unambiguous (assuming a correct target
 | |
|     // specific parser).
 | |
|     for (unsigned i = 0, e = Operands.size(); i != e; ++i)
 | |
|       if (Operands[i].Class->Kind != RHS.Operands[i].Class->Kind ||
 | |
|           Operands[i].Class->Kind == ClassInfo::Token)
 | |
|         if (*Operands[i].Class < *RHS.Operands[i].Class ||
 | |
|             *RHS.Operands[i].Class < *Operands[i].Class)
 | |
|           return false;
 | |
|     
 | |
|     // Otherwise, this operand could commute if all operands are equivalent, or
 | |
|     // there is a pair of operands that compare less than and a pair that
 | |
|     // compare greater than.
 | |
|     bool HasLT = false, HasGT = false;
 | |
|     for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
 | |
|       if (*Operands[i].Class < *RHS.Operands[i].Class)
 | |
|         HasLT = true;
 | |
|       if (*RHS.Operands[i].Class < *Operands[i].Class)
 | |
|         HasGT = true;
 | |
|     }
 | |
| 
 | |
|     return !(HasLT ^ HasGT);
 | |
|   }
 | |
| 
 | |
| public:
 | |
|   void dump();
 | |
| };
 | |
| 
 | |
| class AsmMatcherInfo {
 | |
| public:
 | |
|   /// The tablegen AsmParser record.
 | |
|   Record *AsmParser;
 | |
| 
 | |
|   /// The AsmParser "CommentDelimiter" value.
 | |
|   std::string CommentDelimiter;
 | |
| 
 | |
|   /// The AsmParser "RegisterPrefix" value.
 | |
|   std::string RegisterPrefix;
 | |
| 
 | |
|   /// The classes which are needed for matching.
 | |
|   std::vector<ClassInfo*> Classes;
 | |
|   
 | |
|   /// The information on the instruction to match.
 | |
|   std::vector<InstructionInfo*> Instructions;
 | |
| 
 | |
|   /// Map of Register records to their class information.
 | |
|   std::map<Record*, ClassInfo*> RegisterClasses;
 | |
| 
 | |
| private:
 | |
|   /// Map of token to class information which has already been constructed.
 | |
|   std::map<std::string, ClassInfo*> TokenClasses;
 | |
| 
 | |
|   /// Map of RegisterClass records to their class information.
 | |
|   std::map<Record*, ClassInfo*> RegisterClassClasses;
 | |
| 
 | |
|   /// Map of AsmOperandClass records to their class information.
 | |
|   std::map<Record*, ClassInfo*> AsmOperandClasses;
 | |
| 
 | |
| private:
 | |
|   /// getTokenClass - Lookup or create the class for the given token.
 | |
|   ClassInfo *getTokenClass(StringRef Token);
 | |
| 
 | |
|   /// getOperandClass - Lookup or create the class for the given operand.
 | |
|   ClassInfo *getOperandClass(StringRef Token,
 | |
|                              const CodeGenInstruction::OperandInfo &OI);
 | |
| 
 | |
|   /// BuildRegisterClasses - Build the ClassInfo* instances for register
 | |
|   /// classes.
 | |
|   void BuildRegisterClasses(CodeGenTarget &Target, 
 | |
|                             std::set<std::string> &SingletonRegisterNames);
 | |
| 
 | |
|   /// BuildOperandClasses - Build the ClassInfo* instances for user defined
 | |
|   /// operand classes.
 | |
|   void BuildOperandClasses(CodeGenTarget &Target);
 | |
| 
 | |
| public:
 | |
|   AsmMatcherInfo(Record *_AsmParser);
 | |
| 
 | |
|   /// BuildInfo - Construct the various tables used during matching.
 | |
|   void BuildInfo(CodeGenTarget &Target);
 | |
| };
 | |
| 
 | |
| }
 | |
| 
 | |
| void InstructionInfo::dump() {
 | |
|   errs() << InstrName << " -- " << "flattened:\"" << AsmString << '\"'
 | |
|          << ", tokens:[";
 | |
|   for (unsigned i = 0, e = Tokens.size(); i != e; ++i) {
 | |
|     errs() << Tokens[i];
 | |
|     if (i + 1 != e)
 | |
|       errs() << ", ";
 | |
|   }
 | |
|   errs() << "]\n";
 | |
| 
 | |
|   for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
 | |
|     Operand &Op = Operands[i];
 | |
|     errs() << "  op[" << i << "] = " << Op.Class->ClassName << " - ";
 | |
|     if (Op.Class->Kind == ClassInfo::Token) {
 | |
|       errs() << '\"' << Tokens[i] << "\"\n";
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (!Op.OperandInfo) {
 | |
|       errs() << "(singleton register)\n";
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     const CodeGenInstruction::OperandInfo &OI = *Op.OperandInfo;
 | |
|     errs() << OI.Name << " " << OI.Rec->getName()
 | |
|            << " (" << OI.MIOperandNo << ", " << OI.MINumOperands << ")\n";
 | |
|   }
 | |
| }
 | |
| 
 | |
| static std::string getEnumNameForToken(StringRef Str) {
 | |
|   std::string Res;
 | |
|   
 | |
|   for (StringRef::iterator it = Str.begin(), ie = Str.end(); it != ie; ++it) {
 | |
|     switch (*it) {
 | |
|     case '*': Res += "_STAR_"; break;
 | |
|     case '%': Res += "_PCT_"; break;
 | |
|     case ':': Res += "_COLON_"; break;
 | |
| 
 | |
|     default:
 | |
|       if (isalnum(*it))  {
 | |
|         Res += *it;
 | |
|       } else {
 | |
|         Res += "_" + utostr((unsigned) *it) + "_";
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| /// getRegisterRecord - Get the register record for \arg name, or 0.
 | |
| static Record *getRegisterRecord(CodeGenTarget &Target, StringRef Name) {
 | |
|   for (unsigned i = 0, e = Target.getRegisters().size(); i != e; ++i) {
 | |
|     const CodeGenRegister &Reg = Target.getRegisters()[i];
 | |
|     if (Name == Reg.TheDef->getValueAsString("AsmName"))
 | |
|       return Reg.TheDef;
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| ClassInfo *AsmMatcherInfo::getTokenClass(StringRef Token) {
 | |
|   ClassInfo *&Entry = TokenClasses[Token];
 | |
|   
 | |
|   if (!Entry) {
 | |
|     Entry = new ClassInfo();
 | |
|     Entry->Kind = ClassInfo::Token;
 | |
|     Entry->ClassName = "Token";
 | |
|     Entry->Name = "MCK_" + getEnumNameForToken(Token);
 | |
|     Entry->ValueName = Token;
 | |
|     Entry->PredicateMethod = "<invalid>";
 | |
|     Entry->RenderMethod = "<invalid>";
 | |
|     Classes.push_back(Entry);
 | |
|   }
 | |
| 
 | |
|   return Entry;
 | |
| }
 | |
| 
 | |
| ClassInfo *
 | |
| AsmMatcherInfo::getOperandClass(StringRef Token,
 | |
|                                 const CodeGenInstruction::OperandInfo &OI) {
 | |
|   if (OI.Rec->isSubClassOf("RegisterClass")) {
 | |
|     ClassInfo *CI = RegisterClassClasses[OI.Rec];
 | |
| 
 | |
|     if (!CI) {
 | |
|       PrintError(OI.Rec->getLoc(), "register class has no class info!");
 | |
|       throw std::string("ERROR: Missing register class!");
 | |
|     }
 | |
| 
 | |
|     return CI;
 | |
|   }
 | |
| 
 | |
|   assert(OI.Rec->isSubClassOf("Operand") && "Unexpected operand!");
 | |
|   Record *MatchClass = OI.Rec->getValueAsDef("ParserMatchClass");
 | |
|   ClassInfo *CI = AsmOperandClasses[MatchClass];
 | |
| 
 | |
|   if (!CI) {
 | |
|     PrintError(OI.Rec->getLoc(), "operand has no match class!");
 | |
|     throw std::string("ERROR: Missing match class!");
 | |
|   }
 | |
| 
 | |
|   return CI;
 | |
| }
 | |
| 
 | |
| void AsmMatcherInfo::BuildRegisterClasses(CodeGenTarget &Target,
 | |
|                                           std::set<std::string>
 | |
|                                             &SingletonRegisterNames) {
 | |
|   std::vector<CodeGenRegisterClass> RegisterClasses;
 | |
|   std::vector<CodeGenRegister> Registers;
 | |
| 
 | |
|   RegisterClasses = Target.getRegisterClasses();
 | |
|   Registers = Target.getRegisters();
 | |
| 
 | |
|   // The register sets used for matching.
 | |
|   std::set< std::set<Record*> > RegisterSets;
 | |
| 
 | |
|   // Gather the defined sets.  
 | |
|   for (std::vector<CodeGenRegisterClass>::iterator it = RegisterClasses.begin(),
 | |
|          ie = RegisterClasses.end(); it != ie; ++it)
 | |
|     RegisterSets.insert(std::set<Record*>(it->Elements.begin(),
 | |
|                                           it->Elements.end()));
 | |
| 
 | |
|   // Add any required singleton sets.
 | |
|   for (std::set<std::string>::iterator it = SingletonRegisterNames.begin(),
 | |
|          ie = SingletonRegisterNames.end(); it != ie; ++it)
 | |
|     if (Record *Rec = getRegisterRecord(Target, *it))
 | |
|       RegisterSets.insert(std::set<Record*>(&Rec, &Rec + 1));
 | |
|          
 | |
|   // Introduce derived sets where necessary (when a register does not determine
 | |
|   // a unique register set class), and build the mapping of registers to the set
 | |
|   // they should classify to.
 | |
|   std::map<Record*, std::set<Record*> > RegisterMap;
 | |
|   for (std::vector<CodeGenRegister>::iterator it = Registers.begin(),
 | |
|          ie = Registers.end(); it != ie; ++it) {
 | |
|     CodeGenRegister &CGR = *it;
 | |
|     // Compute the intersection of all sets containing this register.
 | |
|     std::set<Record*> ContainingSet;
 | |
|     
 | |
|     for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
 | |
|            ie = RegisterSets.end(); it != ie; ++it) {
 | |
|       if (!it->count(CGR.TheDef))
 | |
|         continue;
 | |
| 
 | |
|       if (ContainingSet.empty()) {
 | |
|         ContainingSet = *it;
 | |
|       } else {
 | |
|         std::set<Record*> Tmp;
 | |
|         std::swap(Tmp, ContainingSet);
 | |
|         std::insert_iterator< std::set<Record*> > II(ContainingSet,
 | |
|                                                      ContainingSet.begin());
 | |
|         std::set_intersection(Tmp.begin(), Tmp.end(), it->begin(), it->end(),
 | |
|                               II);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (!ContainingSet.empty()) {
 | |
|       RegisterSets.insert(ContainingSet);
 | |
|       RegisterMap.insert(std::make_pair(CGR.TheDef, ContainingSet));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Construct the register classes.
 | |
|   std::map<std::set<Record*>, ClassInfo*> RegisterSetClasses;
 | |
|   unsigned Index = 0;
 | |
|   for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
 | |
|          ie = RegisterSets.end(); it != ie; ++it, ++Index) {
 | |
|     ClassInfo *CI = new ClassInfo();
 | |
|     CI->Kind = ClassInfo::RegisterClass0 + Index;
 | |
|     CI->ClassName = "Reg" + utostr(Index);
 | |
|     CI->Name = "MCK_Reg" + utostr(Index);
 | |
|     CI->ValueName = "";
 | |
|     CI->PredicateMethod = ""; // unused
 | |
|     CI->RenderMethod = "addRegOperands";
 | |
|     CI->Registers = *it;
 | |
|     Classes.push_back(CI);
 | |
|     RegisterSetClasses.insert(std::make_pair(*it, CI));
 | |
|   }
 | |
| 
 | |
|   // Find the superclasses; we could compute only the subgroup lattice edges,
 | |
|   // but there isn't really a point.
 | |
|   for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
 | |
|          ie = RegisterSets.end(); it != ie; ++it) {
 | |
|     ClassInfo *CI = RegisterSetClasses[*it];
 | |
|     for (std::set< std::set<Record*> >::iterator it2 = RegisterSets.begin(),
 | |
|            ie2 = RegisterSets.end(); it2 != ie2; ++it2)
 | |
|       if (*it != *it2 && 
 | |
|           std::includes(it2->begin(), it2->end(), it->begin(), it->end()))
 | |
|         CI->SuperClasses.push_back(RegisterSetClasses[*it2]);
 | |
|   }
 | |
| 
 | |
|   // Name the register classes which correspond to a user defined RegisterClass.
 | |
|   for (std::vector<CodeGenRegisterClass>::iterator it = RegisterClasses.begin(),
 | |
|          ie = RegisterClasses.end(); it != ie; ++it) {
 | |
|     ClassInfo *CI = RegisterSetClasses[std::set<Record*>(it->Elements.begin(),
 | |
|                                                          it->Elements.end())];
 | |
|     if (CI->ValueName.empty()) {
 | |
|       CI->ClassName = it->getName();
 | |
|       CI->Name = "MCK_" + it->getName();
 | |
|       CI->ValueName = it->getName();
 | |
|     } else
 | |
|       CI->ValueName = CI->ValueName + "," + it->getName();
 | |
| 
 | |
|     RegisterClassClasses.insert(std::make_pair(it->TheDef, CI));
 | |
|   }
 | |
| 
 | |
|   // Populate the map for individual registers.
 | |
|   for (std::map<Record*, std::set<Record*> >::iterator it = RegisterMap.begin(),
 | |
|          ie = RegisterMap.end(); it != ie; ++it)
 | |
|     this->RegisterClasses[it->first] = RegisterSetClasses[it->second];
 | |
| 
 | |
|   // Name the register classes which correspond to singleton registers.
 | |
|   for (std::set<std::string>::iterator it = SingletonRegisterNames.begin(),
 | |
|          ie = SingletonRegisterNames.end(); it != ie; ++it) {
 | |
|     if (Record *Rec = getRegisterRecord(Target, *it)) {
 | |
|       ClassInfo *CI = this->RegisterClasses[Rec];
 | |
|       assert(CI && "Missing singleton register class info!");
 | |
| 
 | |
|       if (CI->ValueName.empty()) {
 | |
|         CI->ClassName = Rec->getName();
 | |
|         CI->Name = "MCK_" + Rec->getName();
 | |
|         CI->ValueName = Rec->getName();
 | |
|       } else
 | |
|         CI->ValueName = CI->ValueName + "," + Rec->getName();
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void AsmMatcherInfo::BuildOperandClasses(CodeGenTarget &Target) {
 | |
|   std::vector<Record*> AsmOperands;
 | |
|   AsmOperands = Records.getAllDerivedDefinitions("AsmOperandClass");
 | |
| 
 | |
|   // Pre-populate AsmOperandClasses map.
 | |
|   for (std::vector<Record*>::iterator it = AsmOperands.begin(), 
 | |
|          ie = AsmOperands.end(); it != ie; ++it)
 | |
|     AsmOperandClasses[*it] = new ClassInfo();
 | |
| 
 | |
|   unsigned Index = 0;
 | |
|   for (std::vector<Record*>::iterator it = AsmOperands.begin(), 
 | |
|          ie = AsmOperands.end(); it != ie; ++it, ++Index) {
 | |
|     ClassInfo *CI = AsmOperandClasses[*it];
 | |
|     CI->Kind = ClassInfo::UserClass0 + Index;
 | |
| 
 | |
|     ListInit *Supers = (*it)->getValueAsListInit("SuperClasses");
 | |
|     for (unsigned i = 0, e = Supers->getSize(); i != e; ++i) {
 | |
|       DefInit *DI = dynamic_cast<DefInit*>(Supers->getElement(i));
 | |
|       if (!DI) {
 | |
|         PrintError((*it)->getLoc(), "Invalid super class reference!");
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       ClassInfo *SC = AsmOperandClasses[DI->getDef()];
 | |
|       if (!SC)
 | |
|         PrintError((*it)->getLoc(), "Invalid super class reference!");
 | |
|       else
 | |
|         CI->SuperClasses.push_back(SC);
 | |
|     }
 | |
|     CI->ClassName = (*it)->getValueAsString("Name");
 | |
|     CI->Name = "MCK_" + CI->ClassName;
 | |
|     CI->ValueName = (*it)->getName();
 | |
| 
 | |
|     // Get or construct the predicate method name.
 | |
|     Init *PMName = (*it)->getValueInit("PredicateMethod");
 | |
|     if (StringInit *SI = dynamic_cast<StringInit*>(PMName)) {
 | |
|       CI->PredicateMethod = SI->getValue();
 | |
|     } else {
 | |
|       assert(dynamic_cast<UnsetInit*>(PMName) && 
 | |
|              "Unexpected PredicateMethod field!");
 | |
|       CI->PredicateMethod = "is" + CI->ClassName;
 | |
|     }
 | |
| 
 | |
|     // Get or construct the render method name.
 | |
|     Init *RMName = (*it)->getValueInit("RenderMethod");
 | |
|     if (StringInit *SI = dynamic_cast<StringInit*>(RMName)) {
 | |
|       CI->RenderMethod = SI->getValue();
 | |
|     } else {
 | |
|       assert(dynamic_cast<UnsetInit*>(RMName) &&
 | |
|              "Unexpected RenderMethod field!");
 | |
|       CI->RenderMethod = "add" + CI->ClassName + "Operands";
 | |
|     }
 | |
| 
 | |
|     AsmOperandClasses[*it] = CI;
 | |
|     Classes.push_back(CI);
 | |
|   }
 | |
| }
 | |
| 
 | |
| AsmMatcherInfo::AsmMatcherInfo(Record *_AsmParser) 
 | |
|   : AsmParser(_AsmParser),
 | |
|     CommentDelimiter(AsmParser->getValueAsString("CommentDelimiter")),
 | |
|     RegisterPrefix(AsmParser->getValueAsString("RegisterPrefix"))
 | |
| {
 | |
| }
 | |
| 
 | |
| void AsmMatcherInfo::BuildInfo(CodeGenTarget &Target) {
 | |
|   // Parse the instructions; we need to do this first so that we can gather the
 | |
|   // singleton register classes.
 | |
|   std::set<std::string> SingletonRegisterNames;
 | |
|   
 | |
|   const std::vector<const CodeGenInstruction*> &InstrList =
 | |
|     Target.getInstructionsByEnumValue();
 | |
|   
 | |
|   for (unsigned i = 0, e = InstrList.size(); i != e; ++i) {
 | |
|     const CodeGenInstruction &CGI = *InstrList[i];
 | |
| 
 | |
|     if (!StringRef(CGI.TheDef->getName()).startswith(MatchPrefix))
 | |
|       continue;
 | |
| 
 | |
|     OwningPtr<InstructionInfo> II(new InstructionInfo());
 | |
|     
 | |
|     II->InstrName = CGI.TheDef->getName();
 | |
|     II->Instr = &CGI;
 | |
|     II->AsmString = FlattenVariants(CGI.AsmString, 0);
 | |
| 
 | |
|     // Remove comments from the asm string.
 | |
|     if (!CommentDelimiter.empty()) {
 | |
|       size_t Idx = StringRef(II->AsmString).find(CommentDelimiter);
 | |
|       if (Idx != StringRef::npos)
 | |
|         II->AsmString = II->AsmString.substr(0, Idx);
 | |
|     }
 | |
| 
 | |
|     TokenizeAsmString(II->AsmString, II->Tokens);
 | |
| 
 | |
|     // Ignore instructions which shouldn't be matched.
 | |
|     if (!IsAssemblerInstruction(CGI.TheDef->getName(), CGI, II->Tokens))
 | |
|       continue;
 | |
| 
 | |
|     // Collect singleton registers, if used.
 | |
|     if (!RegisterPrefix.empty()) {
 | |
|       for (unsigned i = 0, e = II->Tokens.size(); i != e; ++i) {
 | |
|         if (II->Tokens[i].startswith(RegisterPrefix)) {
 | |
|           StringRef RegName = II->Tokens[i].substr(RegisterPrefix.size());
 | |
|           Record *Rec = getRegisterRecord(Target, RegName);
 | |
|           
 | |
|           if (!Rec) {
 | |
|             std::string Err = "unable to find register for '" + RegName.str() + 
 | |
|               "' (which matches register prefix)";
 | |
|             throw TGError(CGI.TheDef->getLoc(), Err);
 | |
|           }
 | |
| 
 | |
|           SingletonRegisterNames.insert(RegName);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     Instructions.push_back(II.take());
 | |
|   }
 | |
| 
 | |
|   // Build info for the register classes.
 | |
|   BuildRegisterClasses(Target, SingletonRegisterNames);
 | |
| 
 | |
|   // Build info for the user defined assembly operand classes.
 | |
|   BuildOperandClasses(Target);
 | |
| 
 | |
|   // Build the instruction information.
 | |
|   for (std::vector<InstructionInfo*>::iterator it = Instructions.begin(),
 | |
|          ie = Instructions.end(); it != ie; ++it) {
 | |
|     InstructionInfo *II = *it;
 | |
| 
 | |
|     for (unsigned i = 0, e = II->Tokens.size(); i != e; ++i) {
 | |
|       StringRef Token = II->Tokens[i];
 | |
| 
 | |
|       // Check for singleton registers.
 | |
|       if (!RegisterPrefix.empty() && Token.startswith(RegisterPrefix)) {
 | |
|         StringRef RegName = II->Tokens[i].substr(RegisterPrefix.size());
 | |
|         InstructionInfo::Operand Op;
 | |
|         Op.Class = RegisterClasses[getRegisterRecord(Target, RegName)];
 | |
|         Op.OperandInfo = 0;
 | |
|         assert(Op.Class && Op.Class->Registers.size() == 1 &&
 | |
|                "Unexpected class for singleton register");
 | |
|         II->Operands.push_back(Op);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Check for simple tokens.
 | |
|       if (Token[0] != '$') {
 | |
|         InstructionInfo::Operand Op;
 | |
|         Op.Class = getTokenClass(Token);
 | |
|         Op.OperandInfo = 0;
 | |
|         II->Operands.push_back(Op);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Otherwise this is an operand reference.
 | |
|       StringRef OperandName;
 | |
|       if (Token[1] == '{')
 | |
|         OperandName = Token.substr(2, Token.size() - 3);
 | |
|       else
 | |
|         OperandName = Token.substr(1);
 | |
| 
 | |
|       // Map this token to an operand. FIXME: Move elsewhere.
 | |
|       unsigned Idx;
 | |
|       try {
 | |
|         Idx = II->Instr->getOperandNamed(OperandName);
 | |
|       } catch(...) {
 | |
|         throw std::string("error: unable to find operand: '" + 
 | |
|                           OperandName.str() + "'");
 | |
|       }
 | |
| 
 | |
|       // FIXME: This is annoying, the named operand may be tied (e.g.,
 | |
|       // XCHG8rm). What we want is the untied operand, which we now have to
 | |
|       // grovel for. Only worry about this for single entry operands, we have to
 | |
|       // clean this up anyway.
 | |
|       const CodeGenInstruction::OperandInfo *OI = &II->Instr->OperandList[Idx];
 | |
|       if (OI->Constraints[0].isTied()) {
 | |
|         unsigned TiedOp = OI->Constraints[0].getTiedOperand();
 | |
| 
 | |
|         // The tied operand index is an MIOperand index, find the operand that
 | |
|         // contains it.
 | |
|         for (unsigned i = 0, e = II->Instr->OperandList.size(); i != e; ++i) {
 | |
|           if (II->Instr->OperandList[i].MIOperandNo == TiedOp) {
 | |
|             OI = &II->Instr->OperandList[i];
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         assert(OI && "Unable to find tied operand target!");
 | |
|       }
 | |
| 
 | |
|       InstructionInfo::Operand Op;
 | |
|       Op.Class = getOperandClass(Token, *OI);
 | |
|       Op.OperandInfo = OI;
 | |
|       II->Operands.push_back(Op);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Reorder classes so that classes preceed super classes.
 | |
|   std::sort(Classes.begin(), Classes.end(), less_ptr<ClassInfo>());
 | |
| }
 | |
| 
 | |
| static std::pair<unsigned, unsigned> *
 | |
| GetTiedOperandAtIndex(SmallVectorImpl<std::pair<unsigned, unsigned> > &List,
 | |
|                       unsigned Index) {
 | |
|   for (unsigned i = 0, e = List.size(); i != e; ++i)
 | |
|     if (Index == List[i].first)
 | |
|       return &List[i];
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| static void EmitConvertToMCInst(CodeGenTarget &Target,
 | |
|                                 std::vector<InstructionInfo*> &Infos,
 | |
|                                 raw_ostream &OS) {
 | |
|   // Write the convert function to a separate stream, so we can drop it after
 | |
|   // the enum.
 | |
|   std::string ConvertFnBody;
 | |
|   raw_string_ostream CvtOS(ConvertFnBody);
 | |
| 
 | |
|   // Function we have already generated.
 | |
|   std::set<std::string> GeneratedFns;
 | |
| 
 | |
|   // Start the unified conversion function.
 | |
| 
 | |
|   CvtOS << "static void ConvertToMCInst(ConversionKind Kind, MCInst &Inst, "
 | |
|         << "unsigned Opcode,\n"
 | |
|         << "                      const SmallVectorImpl<MCParsedAsmOperand*"
 | |
|         << "> &Operands) {\n";
 | |
|   CvtOS << "  Inst.setOpcode(Opcode);\n";
 | |
|   CvtOS << "  switch (Kind) {\n";
 | |
|   CvtOS << "  default:\n";
 | |
| 
 | |
|   // Start the enum, which we will generate inline.
 | |
| 
 | |
|   OS << "// Unified function for converting operants to MCInst instances.\n\n";
 | |
|   OS << "enum ConversionKind {\n";
 | |
|   
 | |
|   // TargetOperandClass - This is the target's operand class, like X86Operand.
 | |
|   std::string TargetOperandClass = Target.getName() + "Operand";
 | |
|   
 | |
|   for (std::vector<InstructionInfo*>::const_iterator it = Infos.begin(),
 | |
|          ie = Infos.end(); it != ie; ++it) {
 | |
|     InstructionInfo &II = **it;
 | |
| 
 | |
|     // Order the (class) operands by the order to convert them into an MCInst.
 | |
|     SmallVector<std::pair<unsigned, unsigned>, 4> MIOperandList;
 | |
|     for (unsigned i = 0, e = II.Operands.size(); i != e; ++i) {
 | |
|       InstructionInfo::Operand &Op = II.Operands[i];
 | |
|       if (Op.OperandInfo)
 | |
|         MIOperandList.push_back(std::make_pair(Op.OperandInfo->MIOperandNo, i));
 | |
|     }
 | |
| 
 | |
|     // Find any tied operands.
 | |
|     SmallVector<std::pair<unsigned, unsigned>, 4> TiedOperands;
 | |
|     for (unsigned i = 0, e = II.Instr->OperandList.size(); i != e; ++i) {
 | |
|       const CodeGenInstruction::OperandInfo &OpInfo = II.Instr->OperandList[i];
 | |
|       for (unsigned j = 0, e = OpInfo.Constraints.size(); j != e; ++j) {
 | |
|         const CodeGenInstruction::ConstraintInfo &CI = OpInfo.Constraints[j];
 | |
|         if (CI.isTied())
 | |
|           TiedOperands.push_back(std::make_pair(OpInfo.MIOperandNo + j,
 | |
|                                                 CI.getTiedOperand()));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     std::sort(MIOperandList.begin(), MIOperandList.end());
 | |
| 
 | |
|     // Compute the total number of operands.
 | |
|     unsigned NumMIOperands = 0;
 | |
|     for (unsigned i = 0, e = II.Instr->OperandList.size(); i != e; ++i) {
 | |
|       const CodeGenInstruction::OperandInfo &OI = II.Instr->OperandList[i];
 | |
|       NumMIOperands = std::max(NumMIOperands, 
 | |
|                                OI.MIOperandNo + OI.MINumOperands);
 | |
|     }
 | |
| 
 | |
|     // Build the conversion function signature.
 | |
|     std::string Signature = "Convert";
 | |
|     unsigned CurIndex = 0;
 | |
|     for (unsigned i = 0, e = MIOperandList.size(); i != e; ++i) {
 | |
|       InstructionInfo::Operand &Op = II.Operands[MIOperandList[i].second];
 | |
|       assert(CurIndex <= Op.OperandInfo->MIOperandNo &&
 | |
|              "Duplicate match for instruction operand!");
 | |
|       
 | |
|       // Skip operands which weren't matched by anything, this occurs when the
 | |
|       // .td file encodes "implicit" operands as explicit ones.
 | |
|       //
 | |
|       // FIXME: This should be removed from the MCInst structure.
 | |
|       for (; CurIndex != Op.OperandInfo->MIOperandNo; ++CurIndex) {
 | |
|         std::pair<unsigned, unsigned> *Tie = GetTiedOperandAtIndex(TiedOperands,
 | |
|                                                                    CurIndex);
 | |
|         if (!Tie)
 | |
|           Signature += "__Imp";
 | |
|         else
 | |
|           Signature += "__Tie" + utostr(Tie->second);
 | |
|       }
 | |
| 
 | |
|       Signature += "__";
 | |
| 
 | |
|       // Registers are always converted the same, don't duplicate the conversion
 | |
|       // function based on them.
 | |
|       //
 | |
|       // FIXME: We could generalize this based on the render method, if it
 | |
|       // mattered.
 | |
|       if (Op.Class->isRegisterClass())
 | |
|         Signature += "Reg";
 | |
|       else
 | |
|         Signature += Op.Class->ClassName;
 | |
|       Signature += utostr(Op.OperandInfo->MINumOperands);
 | |
|       Signature += "_" + utostr(MIOperandList[i].second);
 | |
| 
 | |
|       CurIndex += Op.OperandInfo->MINumOperands;
 | |
|     }
 | |
| 
 | |
|     // Add any trailing implicit operands.
 | |
|     for (; CurIndex != NumMIOperands; ++CurIndex) {
 | |
|       std::pair<unsigned, unsigned> *Tie = GetTiedOperandAtIndex(TiedOperands,
 | |
|                                                                  CurIndex);
 | |
|       if (!Tie)
 | |
|         Signature += "__Imp";
 | |
|       else
 | |
|         Signature += "__Tie" + utostr(Tie->second);
 | |
|     }
 | |
| 
 | |
|     II.ConversionFnKind = Signature;
 | |
| 
 | |
|     // Check if we have already generated this signature.
 | |
|     if (!GeneratedFns.insert(Signature).second)
 | |
|       continue;
 | |
| 
 | |
|     // If not, emit it now.
 | |
| 
 | |
|     // Add to the enum list.
 | |
|     OS << "  " << Signature << ",\n";
 | |
| 
 | |
|     // And to the convert function.
 | |
|     CvtOS << "  case " << Signature << ":\n";
 | |
|     CurIndex = 0;
 | |
|     for (unsigned i = 0, e = MIOperandList.size(); i != e; ++i) {
 | |
|       InstructionInfo::Operand &Op = II.Operands[MIOperandList[i].second];
 | |
| 
 | |
|       // Add the implicit operands.
 | |
|       for (; CurIndex != Op.OperandInfo->MIOperandNo; ++CurIndex) {
 | |
|         // See if this is a tied operand.
 | |
|         std::pair<unsigned, unsigned> *Tie = GetTiedOperandAtIndex(TiedOperands,
 | |
|                                                                    CurIndex);
 | |
| 
 | |
|         if (!Tie) {
 | |
|           // If not, this is some implicit operand. Just assume it is a register
 | |
|           // for now.
 | |
|           CvtOS << "    Inst.addOperand(MCOperand::CreateReg(0));\n";
 | |
|         } else {
 | |
|           // Copy the tied operand.
 | |
|           assert(Tie->first>Tie->second && "Tied operand preceeds its target!");
 | |
|           CvtOS << "    Inst.addOperand(Inst.getOperand("
 | |
|                 << Tie->second << "));\n";
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       CvtOS << "    ((" << TargetOperandClass << "*)Operands["
 | |
|          << MIOperandList[i].second 
 | |
|          << "])->" << Op.Class->RenderMethod 
 | |
|          << "(Inst, " << Op.OperandInfo->MINumOperands << ");\n";
 | |
|       CurIndex += Op.OperandInfo->MINumOperands;
 | |
|     }
 | |
|     
 | |
|     // And add trailing implicit operands.
 | |
|     for (; CurIndex != NumMIOperands; ++CurIndex) {
 | |
|       std::pair<unsigned, unsigned> *Tie = GetTiedOperandAtIndex(TiedOperands,
 | |
|                                                                  CurIndex);
 | |
| 
 | |
|       if (!Tie) {
 | |
|         // If not, this is some implicit operand. Just assume it is a register
 | |
|         // for now.
 | |
|         CvtOS << "    Inst.addOperand(MCOperand::CreateReg(0));\n";
 | |
|       } else {
 | |
|         // Copy the tied operand.
 | |
|         assert(Tie->first>Tie->second && "Tied operand preceeds its target!");
 | |
|         CvtOS << "    Inst.addOperand(Inst.getOperand("
 | |
|               << Tie->second << "));\n";
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     CvtOS << "    return;\n";
 | |
|   }
 | |
| 
 | |
|   // Finish the convert function.
 | |
| 
 | |
|   CvtOS << "  }\n";
 | |
|   CvtOS << "}\n\n";
 | |
| 
 | |
|   // Finish the enum, and drop the convert function after it.
 | |
| 
 | |
|   OS << "  NumConversionVariants\n";
 | |
|   OS << "};\n\n";
 | |
|   
 | |
|   OS << CvtOS.str();
 | |
| }
 | |
| 
 | |
| /// EmitMatchClassEnumeration - Emit the enumeration for match class kinds.
 | |
| static void EmitMatchClassEnumeration(CodeGenTarget &Target,
 | |
|                                       std::vector<ClassInfo*> &Infos,
 | |
|                                       raw_ostream &OS) {
 | |
|   OS << "namespace {\n\n";
 | |
| 
 | |
|   OS << "/// MatchClassKind - The kinds of classes which participate in\n"
 | |
|      << "/// instruction matching.\n";
 | |
|   OS << "enum MatchClassKind {\n";
 | |
|   OS << "  InvalidMatchClass = 0,\n";
 | |
|   for (std::vector<ClassInfo*>::iterator it = Infos.begin(), 
 | |
|          ie = Infos.end(); it != ie; ++it) {
 | |
|     ClassInfo &CI = **it;
 | |
|     OS << "  " << CI.Name << ", // ";
 | |
|     if (CI.Kind == ClassInfo::Token) {
 | |
|       OS << "'" << CI.ValueName << "'\n";
 | |
|     } else if (CI.isRegisterClass()) {
 | |
|       if (!CI.ValueName.empty())
 | |
|         OS << "register class '" << CI.ValueName << "'\n";
 | |
|       else
 | |
|         OS << "derived register class\n";
 | |
|     } else {
 | |
|       OS << "user defined class '" << CI.ValueName << "'\n";
 | |
|     }
 | |
|   }
 | |
|   OS << "  NumMatchClassKinds\n";
 | |
|   OS << "};\n\n";
 | |
| 
 | |
|   OS << "}\n\n";
 | |
| }
 | |
| 
 | |
| /// EmitClassifyOperand - Emit the function to classify an operand.
 | |
| static void EmitClassifyOperand(CodeGenTarget &Target,
 | |
|                                 AsmMatcherInfo &Info,
 | |
|                                 raw_ostream &OS) {
 | |
|   OS << "static MatchClassKind ClassifyOperand(MCParsedAsmOperand *GOp) {\n"
 | |
|      << "  " << Target.getName() << "Operand &Operand = *("
 | |
|      << Target.getName() << "Operand*)GOp;\n";
 | |
| 
 | |
|   // Classify tokens.
 | |
|   OS << "  if (Operand.isToken())\n";
 | |
|   OS << "    return MatchTokenString(Operand.getToken());\n\n";
 | |
| 
 | |
|   // Classify registers.
 | |
|   //
 | |
|   // FIXME: Don't hardcode isReg, getReg.
 | |
|   OS << "  if (Operand.isReg()) {\n";
 | |
|   OS << "    switch (Operand.getReg()) {\n";
 | |
|   OS << "    default: return InvalidMatchClass;\n";
 | |
|   for (std::map<Record*, ClassInfo*>::iterator 
 | |
|          it = Info.RegisterClasses.begin(), ie = Info.RegisterClasses.end();
 | |
|        it != ie; ++it)
 | |
|     OS << "    case " << Target.getName() << "::" 
 | |
|        << it->first->getName() << ": return " << it->second->Name << ";\n";
 | |
|   OS << "    }\n";
 | |
|   OS << "  }\n\n";
 | |
| 
 | |
|   // Classify user defined operands.
 | |
|   for (std::vector<ClassInfo*>::iterator it = Info.Classes.begin(), 
 | |
|          ie = Info.Classes.end(); it != ie; ++it) {
 | |
|     ClassInfo &CI = **it;
 | |
| 
 | |
|     if (!CI.isUserClass())
 | |
|       continue;
 | |
| 
 | |
|     OS << "  // '" << CI.ClassName << "' class";
 | |
|     if (!CI.SuperClasses.empty()) {
 | |
|       OS << ", subclass of ";
 | |
|       for (unsigned i = 0, e = CI.SuperClasses.size(); i != e; ++i) {
 | |
|         if (i) OS << ", ";
 | |
|         OS << "'" << CI.SuperClasses[i]->ClassName << "'";
 | |
|         assert(CI < *CI.SuperClasses[i] && "Invalid class relation!");
 | |
|       }
 | |
|     }
 | |
|     OS << "\n";
 | |
| 
 | |
|     OS << "  if (Operand." << CI.PredicateMethod << "()) {\n";
 | |
|       
 | |
|     // Validate subclass relationships.
 | |
|     if (!CI.SuperClasses.empty()) {
 | |
|       for (unsigned i = 0, e = CI.SuperClasses.size(); i != e; ++i)
 | |
|         OS << "    assert(Operand." << CI.SuperClasses[i]->PredicateMethod
 | |
|            << "() && \"Invalid class relationship!\");\n";
 | |
|     }
 | |
| 
 | |
|     OS << "    return " << CI.Name << ";\n";
 | |
|     OS << "  }\n\n";
 | |
|   }
 | |
|   OS << "  return InvalidMatchClass;\n";
 | |
|   OS << "}\n\n";
 | |
| }
 | |
| 
 | |
| /// EmitIsSubclass - Emit the subclass predicate function.
 | |
| static void EmitIsSubclass(CodeGenTarget &Target,
 | |
|                            std::vector<ClassInfo*> &Infos,
 | |
|                            raw_ostream &OS) {
 | |
|   OS << "/// IsSubclass - Compute whether \\arg A is a subclass of \\arg B.\n";
 | |
|   OS << "static bool IsSubclass(MatchClassKind A, MatchClassKind B) {\n";
 | |
|   OS << "  if (A == B)\n";
 | |
|   OS << "    return true;\n\n";
 | |
| 
 | |
|   OS << "  switch (A) {\n";
 | |
|   OS << "  default:\n";
 | |
|   OS << "    return false;\n";
 | |
|   for (std::vector<ClassInfo*>::iterator it = Infos.begin(), 
 | |
|          ie = Infos.end(); it != ie; ++it) {
 | |
|     ClassInfo &A = **it;
 | |
| 
 | |
|     if (A.Kind != ClassInfo::Token) {
 | |
|       std::vector<StringRef> SuperClasses;
 | |
|       for (std::vector<ClassInfo*>::iterator it = Infos.begin(), 
 | |
|              ie = Infos.end(); it != ie; ++it) {
 | |
|         ClassInfo &B = **it;
 | |
| 
 | |
|         if (&A != &B && A.isSubsetOf(B))
 | |
|           SuperClasses.push_back(B.Name);
 | |
|       }
 | |
| 
 | |
|       if (SuperClasses.empty())
 | |
|         continue;
 | |
| 
 | |
|       OS << "\n  case " << A.Name << ":\n";
 | |
| 
 | |
|       if (SuperClasses.size() == 1) {
 | |
|         OS << "    return B == " << SuperClasses.back() << ";\n";
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       OS << "    switch (B) {\n";
 | |
|       OS << "    default: return false;\n";
 | |
|       for (unsigned i = 0, e = SuperClasses.size(); i != e; ++i)
 | |
|         OS << "    case " << SuperClasses[i] << ": return true;\n";
 | |
|       OS << "    }\n";
 | |
|     }
 | |
|   }
 | |
|   OS << "  }\n";
 | |
|   OS << "}\n\n";
 | |
| }
 | |
| 
 | |
| typedef std::pair<std::string, std::string> StringPair;
 | |
| 
 | |
| /// FindFirstNonCommonLetter - Find the first character in the keys of the
 | |
| /// string pairs that is not shared across the whole set of strings.  All
 | |
| /// strings are assumed to have the same length.
 | |
| static unsigned 
 | |
| FindFirstNonCommonLetter(const std::vector<const StringPair*> &Matches) {
 | |
|   assert(!Matches.empty());
 | |
|   for (unsigned i = 0, e = Matches[0]->first.size(); i != e; ++i) {
 | |
|     // Check to see if letter i is the same across the set.
 | |
|     char Letter = Matches[0]->first[i];
 | |
|     
 | |
|     for (unsigned str = 0, e = Matches.size(); str != e; ++str)
 | |
|       if (Matches[str]->first[i] != Letter)
 | |
|         return i;
 | |
|   }
 | |
|   
 | |
|   return Matches[0]->first.size();
 | |
| }
 | |
| 
 | |
| /// EmitStringMatcherForChar - Given a set of strings that are known to be the
 | |
| /// same length and whose characters leading up to CharNo are the same, emit
 | |
| /// code to verify that CharNo and later are the same.
 | |
| ///
 | |
| /// \return - True if control can leave the emitted code fragment.
 | |
| static bool EmitStringMatcherForChar(const std::string &StrVariableName,
 | |
|                                   const std::vector<const StringPair*> &Matches,
 | |
|                                      unsigned CharNo, unsigned IndentCount,
 | |
|                                      raw_ostream &OS) {
 | |
|   assert(!Matches.empty() && "Must have at least one string to match!");
 | |
|   std::string Indent(IndentCount*2+4, ' ');
 | |
| 
 | |
|   // If we have verified that the entire string matches, we're done: output the
 | |
|   // matching code.
 | |
|   if (CharNo == Matches[0]->first.size()) {
 | |
|     assert(Matches.size() == 1 && "Had duplicate keys to match on");
 | |
|     
 | |
|     // FIXME: If Matches[0].first has embeded \n, this will be bad.
 | |
|     OS << Indent << Matches[0]->second << "\t // \"" << Matches[0]->first
 | |
|        << "\"\n";
 | |
|     return false;
 | |
|   }
 | |
|   
 | |
|   // Bucket the matches by the character we are comparing.
 | |
|   std::map<char, std::vector<const StringPair*> > MatchesByLetter;
 | |
|   
 | |
|   for (unsigned i = 0, e = Matches.size(); i != e; ++i)
 | |
|     MatchesByLetter[Matches[i]->first[CharNo]].push_back(Matches[i]);
 | |
|   
 | |
| 
 | |
|   // If we have exactly one bucket to match, see how many characters are common
 | |
|   // across the whole set and match all of them at once.
 | |
|   if (MatchesByLetter.size() == 1) {
 | |
|     unsigned FirstNonCommonLetter = FindFirstNonCommonLetter(Matches);
 | |
|     unsigned NumChars = FirstNonCommonLetter-CharNo;
 | |
|     
 | |
|     // Emit code to break out if the prefix doesn't match.
 | |
|     if (NumChars == 1) {
 | |
|       // Do the comparison with if (Str[1] != 'f')
 | |
|       // FIXME: Need to escape general characters.
 | |
|       OS << Indent << "if (" << StrVariableName << "[" << CharNo << "] != '"
 | |
|          << Matches[0]->first[CharNo] << "')\n";
 | |
|       OS << Indent << "  break;\n";
 | |
|     } else {
 | |
|       // Do the comparison with if (Str.substr(1,3) != "foo").    
 | |
|       // FIXME: Need to escape general strings.
 | |
|       OS << Indent << "if (" << StrVariableName << ".substr(" << CharNo << ","
 | |
|          << NumChars << ") != \"";
 | |
|       OS << Matches[0]->first.substr(CharNo, NumChars) << "\")\n";
 | |
|       OS << Indent << "  break;\n";
 | |
|     }
 | |
|     
 | |
|     return EmitStringMatcherForChar(StrVariableName, Matches, 
 | |
|                                     FirstNonCommonLetter, IndentCount, OS);
 | |
|   }
 | |
|   
 | |
|   // Otherwise, we have multiple possible things, emit a switch on the
 | |
|   // character.
 | |
|   OS << Indent << "switch (" << StrVariableName << "[" << CharNo << "]) {\n";
 | |
|   OS << Indent << "default: break;\n";
 | |
|   
 | |
|   for (std::map<char, std::vector<const StringPair*> >::iterator LI = 
 | |
|        MatchesByLetter.begin(), E = MatchesByLetter.end(); LI != E; ++LI) {
 | |
|     // TODO: escape hard stuff (like \n) if we ever care about it.
 | |
|     OS << Indent << "case '" << LI->first << "':\t // "
 | |
|        << LI->second.size() << " strings to match.\n";
 | |
|     if (EmitStringMatcherForChar(StrVariableName, LI->second, CharNo+1,
 | |
|                                  IndentCount+1, OS))
 | |
|       OS << Indent << "  break;\n";
 | |
|   }
 | |
|   
 | |
|   OS << Indent << "}\n";
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// EmitStringMatcher - Given a list of strings and code to execute when they
 | |
| /// match, output a simple switch tree to classify the input string.
 | |
| /// 
 | |
| /// If a match is found, the code in Vals[i].second is executed; control must
 | |
| /// not exit this code fragment.  If nothing matches, execution falls through.
 | |
| ///
 | |
| /// \param StrVariableName - The name of the variable to test.
 | |
| static void EmitStringMatcher(const std::string &StrVariableName,
 | |
|                               const std::vector<StringPair> &Matches,
 | |
|                               raw_ostream &OS) {
 | |
|   // First level categorization: group strings by length.
 | |
|   std::map<unsigned, std::vector<const StringPair*> > MatchesByLength;
 | |
|   
 | |
|   for (unsigned i = 0, e = Matches.size(); i != e; ++i)
 | |
|     MatchesByLength[Matches[i].first.size()].push_back(&Matches[i]);
 | |
|   
 | |
|   // Output a switch statement on length and categorize the elements within each
 | |
|   // bin.
 | |
|   OS << "  switch (" << StrVariableName << ".size()) {\n";
 | |
|   OS << "  default: break;\n";
 | |
|   
 | |
|   for (std::map<unsigned, std::vector<const StringPair*> >::iterator LI =
 | |
|        MatchesByLength.begin(), E = MatchesByLength.end(); LI != E; ++LI) {
 | |
|     OS << "  case " << LI->first << ":\t // " << LI->second.size()
 | |
|        << " strings to match.\n";
 | |
|     if (EmitStringMatcherForChar(StrVariableName, LI->second, 0, 0, OS))
 | |
|       OS << "    break;\n";
 | |
|   }
 | |
|   
 | |
|   OS << "  }\n";
 | |
| }
 | |
| 
 | |
| 
 | |
| /// EmitMatchTokenString - Emit the function to match a token string to the
 | |
| /// appropriate match class value.
 | |
| static void EmitMatchTokenString(CodeGenTarget &Target,
 | |
|                                  std::vector<ClassInfo*> &Infos,
 | |
|                                  raw_ostream &OS) {
 | |
|   // Construct the match list.
 | |
|   std::vector<StringPair> Matches;
 | |
|   for (std::vector<ClassInfo*>::iterator it = Infos.begin(), 
 | |
|          ie = Infos.end(); it != ie; ++it) {
 | |
|     ClassInfo &CI = **it;
 | |
| 
 | |
|     if (CI.Kind == ClassInfo::Token)
 | |
|       Matches.push_back(StringPair(CI.ValueName, "return " + CI.Name + ";"));
 | |
|   }
 | |
| 
 | |
|   OS << "static MatchClassKind MatchTokenString(StringRef Name) {\n";
 | |
| 
 | |
|   EmitStringMatcher("Name", Matches, OS);
 | |
| 
 | |
|   OS << "  return InvalidMatchClass;\n";
 | |
|   OS << "}\n\n";
 | |
| }
 | |
| 
 | |
| /// EmitMatchRegisterName - Emit the function to match a string to the target
 | |
| /// specific register enum.
 | |
| static void EmitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser,
 | |
|                                   raw_ostream &OS) {
 | |
|   // Construct the match list.
 | |
|   std::vector<StringPair> Matches;
 | |
|   for (unsigned i = 0, e = Target.getRegisters().size(); i != e; ++i) {
 | |
|     const CodeGenRegister &Reg = Target.getRegisters()[i];
 | |
|     if (Reg.TheDef->getValueAsString("AsmName").empty())
 | |
|       continue;
 | |
| 
 | |
|     Matches.push_back(StringPair(Reg.TheDef->getValueAsString("AsmName"),
 | |
|                                  "return " + utostr(i + 1) + ";"));
 | |
|   }
 | |
|   
 | |
|   OS << "static unsigned MatchRegisterName(StringRef Name) {\n";
 | |
| 
 | |
|   EmitStringMatcher("Name", Matches, OS);
 | |
|   
 | |
|   OS << "  return 0;\n";
 | |
|   OS << "}\n\n";
 | |
| }
 | |
| 
 | |
| void AsmMatcherEmitter::run(raw_ostream &OS) {
 | |
|   CodeGenTarget Target;
 | |
|   Record *AsmParser = Target.getAsmParser();
 | |
|   std::string ClassName = AsmParser->getValueAsString("AsmParserClassName");
 | |
| 
 | |
|   // Compute the information on the instructions to match.
 | |
|   AsmMatcherInfo Info(AsmParser);
 | |
|   Info.BuildInfo(Target);
 | |
| 
 | |
|   // Sort the instruction table using the partial order on classes. We use
 | |
|   // stable_sort to ensure that ambiguous instructions are still
 | |
|   // deterministically ordered.
 | |
|   std::stable_sort(Info.Instructions.begin(), Info.Instructions.end(),
 | |
|                    less_ptr<InstructionInfo>());
 | |
|   
 | |
|   DEBUG_WITH_TYPE("instruction_info", {
 | |
|       for (std::vector<InstructionInfo*>::iterator 
 | |
|              it = Info.Instructions.begin(), ie = Info.Instructions.end(); 
 | |
|            it != ie; ++it)
 | |
|         (*it)->dump();
 | |
|     });
 | |
| 
 | |
|   // Check for ambiguous instructions.
 | |
|   unsigned NumAmbiguous = 0;
 | |
|   for (unsigned i = 0, e = Info.Instructions.size(); i != e; ++i) {
 | |
|     for (unsigned j = i + 1; j != e; ++j) {
 | |
|       InstructionInfo &A = *Info.Instructions[i];
 | |
|       InstructionInfo &B = *Info.Instructions[j];
 | |
|     
 | |
|       if (A.CouldMatchAmiguouslyWith(B)) {
 | |
|         DEBUG_WITH_TYPE("ambiguous_instrs", {
 | |
|             errs() << "warning: ambiguous instruction match:\n";
 | |
|             A.dump();
 | |
|             errs() << "\nis incomparable with:\n";
 | |
|             B.dump();
 | |
|             errs() << "\n\n";
 | |
|           });
 | |
|         ++NumAmbiguous;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   if (NumAmbiguous)
 | |
|     DEBUG_WITH_TYPE("ambiguous_instrs", {
 | |
|         errs() << "warning: " << NumAmbiguous 
 | |
|                << " ambiguous instructions!\n";
 | |
|       });
 | |
| 
 | |
|   // Write the output.
 | |
| 
 | |
|   EmitSourceFileHeader("Assembly Matcher Source Fragment", OS);
 | |
| 
 | |
|   // Emit the function to match a register name to number.
 | |
|   EmitMatchRegisterName(Target, AsmParser, OS);
 | |
|   
 | |
|   OS << "#ifndef REGISTERS_ONLY\n\n";
 | |
| 
 | |
|   // Generate the unified function to convert operands into an MCInst.
 | |
|   EmitConvertToMCInst(Target, Info.Instructions, OS);
 | |
| 
 | |
|   // Emit the enumeration for classes which participate in matching.
 | |
|   EmitMatchClassEnumeration(Target, Info.Classes, OS);
 | |
| 
 | |
|   // Emit the routine to match token strings to their match class.
 | |
|   EmitMatchTokenString(Target, Info.Classes, OS);
 | |
| 
 | |
|   // Emit the routine to classify an operand.
 | |
|   EmitClassifyOperand(Target, Info, OS);
 | |
| 
 | |
|   // Emit the subclass predicate routine.
 | |
|   EmitIsSubclass(Target, Info.Classes, OS);
 | |
| 
 | |
|   // Finally, build the match function.
 | |
| 
 | |
|   size_t MaxNumOperands = 0;
 | |
|   for (std::vector<InstructionInfo*>::const_iterator it =
 | |
|          Info.Instructions.begin(), ie = Info.Instructions.end();
 | |
|        it != ie; ++it)
 | |
|     MaxNumOperands = std::max(MaxNumOperands, (*it)->Operands.size());
 | |
| 
 | |
|   const std::string &MatchName =
 | |
|     AsmParser->getValueAsString("MatchInstructionName");
 | |
|   OS << "bool " << Target.getName() << ClassName << "::\n"
 | |
|      << MatchName
 | |
|      << "(const SmallVectorImpl<MCParsedAsmOperand*> &Operands,\n";
 | |
|   OS.indent(MatchName.size() + 1);
 | |
|   OS << "MCInst &Inst) {\n";
 | |
| 
 | |
|   // Emit the static match table; unused classes get initalized to 0 which is
 | |
|   // guaranteed to be InvalidMatchClass.
 | |
|   //
 | |
|   // FIXME: We can reduce the size of this table very easily. First, we change
 | |
|   // it so that store the kinds in separate bit-fields for each index, which
 | |
|   // only needs to be the max width used for classes at that index (we also need
 | |
|   // to reject based on this during classification). If we then make sure to
 | |
|   // order the match kinds appropriately (putting mnemonics last), then we
 | |
|   // should only end up using a few bits for each class, especially the ones
 | |
|   // following the mnemonic.
 | |
|   OS << "  static const struct MatchEntry {\n";
 | |
|   OS << "    unsigned Opcode;\n";
 | |
|   OS << "    ConversionKind ConvertFn;\n";
 | |
|   OS << "    MatchClassKind Classes[" << MaxNumOperands << "];\n";
 | |
|   OS << "  } MatchTable[" << Info.Instructions.size() << "] = {\n";
 | |
| 
 | |
|   for (std::vector<InstructionInfo*>::const_iterator it =
 | |
|          Info.Instructions.begin(), ie = Info.Instructions.end();
 | |
|        it != ie; ++it) {
 | |
|     InstructionInfo &II = **it;
 | |
| 
 | |
|     OS << "    { " << Target.getName() << "::" << II.InstrName
 | |
|        << ", " << II.ConversionFnKind << ", { ";
 | |
|     for (unsigned i = 0, e = II.Operands.size(); i != e; ++i) {
 | |
|       InstructionInfo::Operand &Op = II.Operands[i];
 | |
|       
 | |
|       if (i) OS << ", ";
 | |
|       OS << Op.Class->Name;
 | |
|     }
 | |
|     OS << " } },\n";
 | |
|   }
 | |
| 
 | |
|   OS << "  };\n\n";
 | |
| 
 | |
|   // Emit code to compute the class list for this operand vector.
 | |
|   OS << "  // Eliminate obvious mismatches.\n";
 | |
|   OS << "  if (Operands.size() > " << MaxNumOperands << ")\n";
 | |
|   OS << "    return true;\n\n";
 | |
| 
 | |
|   OS << "  // Compute the class list for this operand vector.\n";
 | |
|   OS << "  MatchClassKind Classes[" << MaxNumOperands << "];\n";
 | |
|   OS << "  for (unsigned i = 0, e = Operands.size(); i != e; ++i) {\n";
 | |
|   OS << "    Classes[i] = ClassifyOperand(Operands[i]);\n\n";
 | |
| 
 | |
|   OS << "    // Check for invalid operands before matching.\n";
 | |
|   OS << "    if (Classes[i] == InvalidMatchClass)\n";
 | |
|   OS << "      return true;\n";
 | |
|   OS << "  }\n\n";
 | |
| 
 | |
|   OS << "  // Mark unused classes.\n";
 | |
|   OS << "  for (unsigned i = Operands.size(), e = " << MaxNumOperands << "; "
 | |
|      << "i != e; ++i)\n";
 | |
|   OS << "    Classes[i] = InvalidMatchClass;\n\n";
 | |
| 
 | |
|   // Emit code to search the table.
 | |
|   OS << "  // Search the table.\n";
 | |
|   OS << "  for (const MatchEntry *it = MatchTable, "
 | |
|      << "*ie = MatchTable + " << Info.Instructions.size()
 | |
|      << "; it != ie; ++it) {\n";
 | |
|   for (unsigned i = 0; i != MaxNumOperands; ++i) {
 | |
|     OS << "    if (!IsSubclass(Classes[" 
 | |
|        << i << "], it->Classes[" << i << "]))\n";
 | |
|     OS << "      continue;\n";
 | |
|   }
 | |
|   OS << "\n";
 | |
|   OS << "    ConvertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands);\n";
 | |
| 
 | |
|   // Call the post-processing function, if used.
 | |
|   std::string InsnCleanupFn =
 | |
|     AsmParser->getValueAsString("AsmParserInstCleanup");
 | |
|   if (!InsnCleanupFn.empty())
 | |
|     OS << "    " << InsnCleanupFn << "(Inst);\n";
 | |
| 
 | |
|   OS << "    return false;\n";
 | |
|   OS << "  }\n\n";
 | |
| 
 | |
|   OS << "  return true;\n";
 | |
|   OS << "}\n\n";
 | |
|   
 | |
|   OS << "#endif // REGISTERS_ONLY\n";
 | |
| }
 |