mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@15776 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			227 lines
		
	
	
		
			8.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			227 lines
		
	
	
		
			8.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- CodeGen/MachineFrameInfo.h - Abstract Stack Frame Rep. --*- C++ -*-===//
 | 
						|
// 
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file was developed by the LLVM research group and is distributed under
 | 
						|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
 | 
						|
// 
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// 
 | 
						|
// The MachineFrameInfo class represents an abstract stack frame until
 | 
						|
// prolog/epilog code is inserted.  This class is key to allowing stack frame
 | 
						|
// representation optimizations, such as frame pointer elimination.  It also
 | 
						|
// allows more mundane (but still important) optimizations, such as reordering
 | 
						|
// of abstract objects on the stack frame.
 | 
						|
//
 | 
						|
// To support this, the class assigns unique integer identifiers to stack
 | 
						|
// objects requested clients.  These identifiers are negative integers for fixed
 | 
						|
// stack objects (such as arguments passed on the stack) or positive for objects
 | 
						|
// that may be reordered.  Instructions which refer to stack objects use a
 | 
						|
// special MO_FrameIndex operand to represent these frame indexes.
 | 
						|
//
 | 
						|
// Because this class keeps track of all references to the stack frame, it knows
 | 
						|
// when a variable sized object is allocated on the stack.  This is the sole
 | 
						|
// condition which prevents frame pointer elimination, which is an important
 | 
						|
// optimization on register-poor architectures.  Because original variable sized
 | 
						|
// alloca's in the source program are the only source of variable sized stack
 | 
						|
// objects, it is safe to decide whether there will be any variable sized
 | 
						|
// objects before all stack objects are known (for example, register allocator
 | 
						|
// spill code never needs variable sized objects).
 | 
						|
//
 | 
						|
// When prolog/epilog code emission is performed, the final stack frame is built
 | 
						|
// and the machine instructions are modified to refer to the actual stack
 | 
						|
// offsets of the object, eliminating all MO_FrameIndex operands from the
 | 
						|
// program.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#ifndef LLVM_CODEGEN_MACHINEFRAMEINFO_H
 | 
						|
#define LLVM_CODEGEN_MACHINEFRAMEINFO_H
 | 
						|
 | 
						|
#include <vector>
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
class TargetData;
 | 
						|
class TargetRegisterClass;
 | 
						|
class Type;
 | 
						|
class MachineFunction;
 | 
						|
 | 
						|
class MachineFrameInfo {
 | 
						|
 | 
						|
  // StackObject - Represent a single object allocated on the stack.
 | 
						|
  struct StackObject {
 | 
						|
    // The size of this object on the stack. 0 means a variable sized object
 | 
						|
    unsigned Size;
 | 
						|
 | 
						|
    // Alignment - The required alignment of this stack slot.
 | 
						|
    unsigned Alignment;
 | 
						|
 | 
						|
    // SPOffset - The offset of this object from the stack pointer on entry to
 | 
						|
    // the function.  This field has no meaning for a variable sized element.
 | 
						|
    int SPOffset;
 | 
						|
 | 
						|
    StackObject(unsigned Sz, unsigned Al, int SP)
 | 
						|
      : Size(Sz), Alignment(Al), SPOffset(SP) {}
 | 
						|
  };
 | 
						|
 | 
						|
  /// Objects - The list of stack objects allocated...
 | 
						|
  ///
 | 
						|
  std::vector<StackObject> Objects;
 | 
						|
 | 
						|
  /// NumFixedObjects - This contains the number of fixed objects contained on
 | 
						|
  /// the stack.  Because fixed objects are stored at a negative index in the
 | 
						|
  /// Objects list, this is also the index to the 0th object in the list.
 | 
						|
  ///
 | 
						|
  unsigned NumFixedObjects;
 | 
						|
 | 
						|
  /// HasVarSizedObjects - This boolean keeps track of whether any variable
 | 
						|
  /// sized objects have been allocated yet.
 | 
						|
  ///
 | 
						|
  bool HasVarSizedObjects;
 | 
						|
 | 
						|
  /// StackSize - The prolog/epilog code inserter calculates the final stack
 | 
						|
  /// offsets for all of the fixed size objects, updating the Objects list
 | 
						|
  /// above.  It then updates StackSize to contain the number of bytes that need
 | 
						|
  /// to be allocated on entry to the function.
 | 
						|
  ///
 | 
						|
  unsigned StackSize;
 | 
						|
 | 
						|
  /// HasCalls - Set to true if this function has any function calls.  This is
 | 
						|
  /// only valid during and after prolog/epilog code insertion.
 | 
						|
  bool HasCalls;
 | 
						|
 | 
						|
  /// MaxCallFrameSize - This contains the size of the largest call frame if the
 | 
						|
  /// target uses frame setup/destroy pseudo instructions (as defined in the
 | 
						|
  /// TargetFrameInfo class).  This information is important for frame pointer
 | 
						|
  /// elimination.  If is only valid during and after prolog/epilog code
 | 
						|
  /// insertion.
 | 
						|
  ///
 | 
						|
  unsigned MaxCallFrameSize;
 | 
						|
public:
 | 
						|
  MachineFrameInfo() {
 | 
						|
    NumFixedObjects = StackSize = 0;
 | 
						|
    HasVarSizedObjects = false;
 | 
						|
    HasCalls = false;
 | 
						|
    MaxCallFrameSize = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  /// hasStackObjects - Return true if there are any stack objects in this
 | 
						|
  /// function.
 | 
						|
  ///
 | 
						|
  bool hasStackObjects() const { return !Objects.empty(); }
 | 
						|
 | 
						|
  /// hasVarSizedObjects - This method may be called any time after instruction
 | 
						|
  /// selection is complete to determine if the stack frame for this function
 | 
						|
  /// contains any variable sized objects.
 | 
						|
  ///
 | 
						|
  bool hasVarSizedObjects() const { return HasVarSizedObjects; }
 | 
						|
 | 
						|
  /// getObjectIndexBegin - Return the minimum frame object index...
 | 
						|
  ///
 | 
						|
  int getObjectIndexBegin() const { return -NumFixedObjects; }
 | 
						|
 | 
						|
  /// getObjectIndexEnd - Return one past the maximum frame object index...
 | 
						|
  ///
 | 
						|
  int getObjectIndexEnd() const { return Objects.size()-NumFixedObjects; }
 | 
						|
 | 
						|
  /// getObjectSize - Return the size of the specified object
 | 
						|
  ///
 | 
						|
  int getObjectSize(int ObjectIdx) const {
 | 
						|
    assert(ObjectIdx+NumFixedObjects < Objects.size() && "Invalid Object Idx!");
 | 
						|
    return Objects[ObjectIdx+NumFixedObjects].Size;
 | 
						|
  }
 | 
						|
 | 
						|
  /// getObjectAlignment - Return the alignment of the specified stack object...
 | 
						|
  int getObjectAlignment(int ObjectIdx) const {
 | 
						|
    assert(ObjectIdx+NumFixedObjects < Objects.size() && "Invalid Object Idx!");
 | 
						|
    return Objects[ObjectIdx+NumFixedObjects].Alignment;
 | 
						|
  }
 | 
						|
 | 
						|
  /// getObjectOffset - Return the assigned stack offset of the specified object
 | 
						|
  /// from the incoming stack pointer.
 | 
						|
  ///
 | 
						|
  int getObjectOffset(int ObjectIdx) const {
 | 
						|
    assert(ObjectIdx+NumFixedObjects < Objects.size() && "Invalid Object Idx!");
 | 
						|
    return Objects[ObjectIdx+NumFixedObjects].SPOffset;
 | 
						|
  }
 | 
						|
 | 
						|
  /// setObjectOffset - Set the stack frame offset of the specified object.  The
 | 
						|
  /// offset is relative to the stack pointer on entry to the function.
 | 
						|
  ///
 | 
						|
  void setObjectOffset(int ObjectIdx, int SPOffset) {
 | 
						|
    assert(ObjectIdx+NumFixedObjects < Objects.size() && "Invalid Object Idx!");
 | 
						|
    Objects[ObjectIdx+NumFixedObjects].SPOffset = SPOffset;
 | 
						|
  }
 | 
						|
 | 
						|
  /// getStackSize - Return the number of bytes that must be allocated to hold
 | 
						|
  /// all of the fixed size frame objects.  This is only valid after
 | 
						|
  /// Prolog/Epilog code insertion has finalized the stack frame layout.
 | 
						|
  ///
 | 
						|
  unsigned getStackSize() const { return StackSize; }
 | 
						|
 | 
						|
  /// setStackSize - Set the size of the stack...
 | 
						|
  ///
 | 
						|
  void setStackSize(unsigned Size) { StackSize = Size; }
 | 
						|
 | 
						|
  /// hasCalls - Return true if the current function has no function calls.
 | 
						|
  /// This is only valid during or after prolog/epilog code emission.
 | 
						|
  ///
 | 
						|
  bool hasCalls() const { return HasCalls; }
 | 
						|
  void setHasCalls(bool V) { HasCalls = V; }
 | 
						|
  
 | 
						|
  /// getMaxCallFrameSize - Return the maximum size of a call frame that must be
 | 
						|
  /// allocated for an outgoing function call.  This is only available if
 | 
						|
  /// CallFrameSetup/Destroy pseudo instructions are used by the target, and
 | 
						|
  /// then only during or after prolog/epilog code insertion.
 | 
						|
  ///
 | 
						|
  unsigned getMaxCallFrameSize() const { return MaxCallFrameSize; }
 | 
						|
  void setMaxCallFrameSize(unsigned S) { MaxCallFrameSize = S; }
 | 
						|
 | 
						|
  /// CreateFixedObject - Create a new object at a fixed location on the stack.
 | 
						|
  /// All fixed objects should be created before other objects are created for
 | 
						|
  /// efficiency.  This returns an index with a negative value.
 | 
						|
  ///
 | 
						|
  int CreateFixedObject(unsigned Size, int SPOffset) {
 | 
						|
    assert(Size != 0 && "Cannot allocate zero size fixed stack objects!");
 | 
						|
    Objects.insert(Objects.begin(), StackObject(Size, 1, SPOffset));
 | 
						|
    return -++NumFixedObjects;
 | 
						|
  }
 | 
						|
  
 | 
						|
  /// CreateStackObject - Create a new statically sized stack object, returning
 | 
						|
  /// a postive identifier to represent it.
 | 
						|
  ///
 | 
						|
  int CreateStackObject(unsigned Size, unsigned Alignment) {
 | 
						|
    assert(Size != 0 && "Cannot allocate zero size stack objects!");
 | 
						|
    Objects.push_back(StackObject(Size, Alignment, -1));
 | 
						|
    return Objects.size()-NumFixedObjects-1;
 | 
						|
  }
 | 
						|
 | 
						|
  /// CreateStackObject - Create a stack object for a value of the specified
 | 
						|
  /// LLVM type.
 | 
						|
  ///
 | 
						|
  int CreateStackObject(const Type *Ty, const TargetData &TD);
 | 
						|
 | 
						|
  /// CreateVariableSizedObject - Notify the MachineFrameInfo object that a
 | 
						|
  /// variable sized object has been created.  This must be created whenever a
 | 
						|
  /// variable sized object is created, whether or not the index returned is
 | 
						|
  /// actually used.
 | 
						|
  ///
 | 
						|
  int CreateVariableSizedObject() {
 | 
						|
    HasVarSizedObjects = true;
 | 
						|
    Objects.push_back(StackObject(0, 1, -1));
 | 
						|
    return Objects.size()-NumFixedObjects-1;
 | 
						|
  }
 | 
						|
 | 
						|
  /// print - Used by the MachineFunction printer to print information about
 | 
						|
  /// stack objects.  Implemented in MachineFunction.cpp
 | 
						|
  ///
 | 
						|
  void print(const MachineFunction &MF, std::ostream &OS) const;
 | 
						|
 | 
						|
  /// dump - Call print(MF, std::cerr) to be called from the debugger.
 | 
						|
  void dump(const MachineFunction &MF) const;
 | 
						|
};
 | 
						|
 | 
						|
} // End llvm namespace
 | 
						|
 | 
						|
#endif
 |