llvm-6502/utils/TableGen/CodeGenTarget.cpp
Jakob Stoklund Olesen 65766ce7df Clean up TargetOpcodes.h a bit, and limit the number of places where the full
list of predefined instructions appear. Add some consistency checks.

Ideally, TargetOpcodes.h should be produced by TableGen from Target.td, but it
is hardly worth the effort.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@107520 91177308-0d34-0410-b5e6-96231b3b80d8
2010-07-02 21:44:22 +00:00

570 lines
20 KiB
C++

//===- CodeGenTarget.cpp - CodeGen Target Class Wrapper -------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This class wraps target description classes used by the various code
// generation TableGen backends. This makes it easier to access the data and
// provides a single place that needs to check it for validity. All of these
// classes throw exceptions on error conditions.
//
//===----------------------------------------------------------------------===//
#include "CodeGenTarget.h"
#include "CodeGenIntrinsics.h"
#include "Record.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/CommandLine.h"
#include <algorithm>
using namespace llvm;
static cl::opt<unsigned>
AsmParserNum("asmparsernum", cl::init(0),
cl::desc("Make -gen-asm-parser emit assembly parser #N"));
static cl::opt<unsigned>
AsmWriterNum("asmwriternum", cl::init(0),
cl::desc("Make -gen-asm-writer emit assembly writer #N"));
/// getValueType - Return the MVT::SimpleValueType that the specified TableGen
/// record corresponds to.
MVT::SimpleValueType llvm::getValueType(Record *Rec) {
return (MVT::SimpleValueType)Rec->getValueAsInt("Value");
}
std::string llvm::getName(MVT::SimpleValueType T) {
switch (T) {
case MVT::Other: return "UNKNOWN";
case MVT::iPTR: return "TLI.getPointerTy()";
case MVT::iPTRAny: return "TLI.getPointerTy()";
default: return getEnumName(T);
}
}
std::string llvm::getEnumName(MVT::SimpleValueType T) {
switch (T) {
case MVT::Other: return "MVT::Other";
case MVT::i1: return "MVT::i1";
case MVT::i8: return "MVT::i8";
case MVT::i16: return "MVT::i16";
case MVT::i32: return "MVT::i32";
case MVT::i64: return "MVT::i64";
case MVT::i128: return "MVT::i128";
case MVT::iAny: return "MVT::iAny";
case MVT::fAny: return "MVT::fAny";
case MVT::vAny: return "MVT::vAny";
case MVT::f32: return "MVT::f32";
case MVT::f64: return "MVT::f64";
case MVT::f80: return "MVT::f80";
case MVT::f128: return "MVT::f128";
case MVT::ppcf128: return "MVT::ppcf128";
case MVT::Flag: return "MVT::Flag";
case MVT::isVoid:return "MVT::isVoid";
case MVT::v2i8: return "MVT::v2i8";
case MVT::v4i8: return "MVT::v4i8";
case MVT::v8i8: return "MVT::v8i8";
case MVT::v16i8: return "MVT::v16i8";
case MVT::v32i8: return "MVT::v32i8";
case MVT::v2i16: return "MVT::v2i16";
case MVT::v4i16: return "MVT::v4i16";
case MVT::v8i16: return "MVT::v8i16";
case MVT::v16i16: return "MVT::v16i16";
case MVT::v2i32: return "MVT::v2i32";
case MVT::v4i32: return "MVT::v4i32";
case MVT::v8i32: return "MVT::v8i32";
case MVT::v1i64: return "MVT::v1i64";
case MVT::v2i64: return "MVT::v2i64";
case MVT::v4i64: return "MVT::v4i64";
case MVT::v8i64: return "MVT::v8i64";
case MVT::v2f32: return "MVT::v2f32";
case MVT::v4f32: return "MVT::v4f32";
case MVT::v8f32: return "MVT::v8f32";
case MVT::v2f64: return "MVT::v2f64";
case MVT::v4f64: return "MVT::v4f64";
case MVT::Metadata: return "MVT::Metadata";
case MVT::iPTR: return "MVT::iPTR";
case MVT::iPTRAny: return "MVT::iPTRAny";
default: assert(0 && "ILLEGAL VALUE TYPE!"); return "";
}
}
/// getQualifiedName - Return the name of the specified record, with a
/// namespace qualifier if the record contains one.
///
std::string llvm::getQualifiedName(const Record *R) {
std::string Namespace = R->getValueAsString("Namespace");
if (Namespace.empty()) return R->getName();
return Namespace + "::" + R->getName();
}
/// getTarget - Return the current instance of the Target class.
///
CodeGenTarget::CodeGenTarget() {
std::vector<Record*> Targets = Records.getAllDerivedDefinitions("Target");
if (Targets.size() == 0)
throw std::string("ERROR: No 'Target' subclasses defined!");
if (Targets.size() != 1)
throw std::string("ERROR: Multiple subclasses of Target defined!");
TargetRec = Targets[0];
}
const std::string &CodeGenTarget::getName() const {
return TargetRec->getName();
}
std::string CodeGenTarget::getInstNamespace() const {
for (inst_iterator i = inst_begin(), e = inst_end(); i != e; ++i) {
// Make sure not to pick up "TargetOpcode" by accidentally getting
// the namespace off the PHI instruction or something.
if ((*i)->Namespace != "TargetOpcode")
return (*i)->Namespace;
}
return "";
}
Record *CodeGenTarget::getInstructionSet() const {
return TargetRec->getValueAsDef("InstructionSet");
}
/// getAsmParser - Return the AssemblyParser definition for this target.
///
Record *CodeGenTarget::getAsmParser() const {
std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyParsers");
if (AsmParserNum >= LI.size())
throw "Target does not have an AsmParser #" + utostr(AsmParserNum) + "!";
return LI[AsmParserNum];
}
/// getAsmWriter - Return the AssemblyWriter definition for this target.
///
Record *CodeGenTarget::getAsmWriter() const {
std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyWriters");
if (AsmWriterNum >= LI.size())
throw "Target does not have an AsmWriter #" + utostr(AsmWriterNum) + "!";
return LI[AsmWriterNum];
}
void CodeGenTarget::ReadRegisters() const {
std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register");
if (Regs.empty())
throw std::string("No 'Register' subclasses defined!");
std::sort(Regs.begin(), Regs.end(), LessRecord());
Registers.reserve(Regs.size());
Registers.assign(Regs.begin(), Regs.end());
}
CodeGenRegister::CodeGenRegister(Record *R) : TheDef(R) {
DeclaredSpillSize = R->getValueAsInt("SpillSize");
DeclaredSpillAlignment = R->getValueAsInt("SpillAlignment");
}
const std::string &CodeGenRegister::getName() const {
return TheDef->getName();
}
void CodeGenTarget::ReadSubRegIndices() const {
SubRegIndices = Records.getAllDerivedDefinitions("SubRegIndex");
std::sort(SubRegIndices.begin(), SubRegIndices.end(), LessRecord());
}
void CodeGenTarget::ReadRegisterClasses() const {
std::vector<Record*> RegClasses =
Records.getAllDerivedDefinitions("RegisterClass");
if (RegClasses.empty())
throw std::string("No 'RegisterClass' subclasses defined!");
RegisterClasses.reserve(RegClasses.size());
RegisterClasses.assign(RegClasses.begin(), RegClasses.end());
}
std::vector<MVT::SimpleValueType> CodeGenTarget::
getRegisterVTs(Record *R) const {
std::vector<MVT::SimpleValueType> Result;
const std::vector<CodeGenRegisterClass> &RCs = getRegisterClasses();
for (unsigned i = 0, e = RCs.size(); i != e; ++i) {
const CodeGenRegisterClass &RC = RegisterClasses[i];
for (unsigned ei = 0, ee = RC.Elements.size(); ei != ee; ++ei) {
if (R == RC.Elements[ei]) {
const std::vector<MVT::SimpleValueType> &InVTs = RC.getValueTypes();
Result.insert(Result.end(), InVTs.begin(), InVTs.end());
}
}
}
// Remove duplicates.
array_pod_sort(Result.begin(), Result.end());
Result.erase(std::unique(Result.begin(), Result.end()), Result.end());
return Result;
}
CodeGenRegisterClass::CodeGenRegisterClass(Record *R) : TheDef(R) {
// Rename anonymous register classes.
if (R->getName().size() > 9 && R->getName()[9] == '.') {
static unsigned AnonCounter = 0;
R->setName("AnonRegClass_"+utostr(AnonCounter++));
}
std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes");
for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
Record *Type = TypeList[i];
if (!Type->isSubClassOf("ValueType"))
throw "RegTypes list member '" + Type->getName() +
"' does not derive from the ValueType class!";
VTs.push_back(getValueType(Type));
}
assert(!VTs.empty() && "RegisterClass must contain at least one ValueType!");
std::vector<Record*> RegList = R->getValueAsListOfDefs("MemberList");
for (unsigned i = 0, e = RegList.size(); i != e; ++i) {
Record *Reg = RegList[i];
if (!Reg->isSubClassOf("Register"))
throw "Register Class member '" + Reg->getName() +
"' does not derive from the Register class!";
Elements.push_back(Reg);
}
// SubRegClasses is a list<dag> containing (RC, subregindex, ...) dags.
ListInit *SRC = R->getValueAsListInit("SubRegClasses");
for (ListInit::const_iterator i = SRC->begin(), e = SRC->end(); i != e; ++i) {
DagInit *DAG = dynamic_cast<DagInit*>(*i);
if (!DAG) throw "SubRegClasses must contain DAGs";
DefInit *DAGOp = dynamic_cast<DefInit*>(DAG->getOperator());
Record *RCRec;
if (!DAGOp || !(RCRec = DAGOp->getDef())->isSubClassOf("RegisterClass"))
throw "Operator '" + DAG->getOperator()->getAsString() +
"' in SubRegClasses is not a RegisterClass";
// Iterate over args, all SubRegIndex instances.
for (DagInit::const_arg_iterator ai = DAG->arg_begin(), ae = DAG->arg_end();
ai != ae; ++ai) {
DefInit *Idx = dynamic_cast<DefInit*>(*ai);
Record *IdxRec;
if (!Idx || !(IdxRec = Idx->getDef())->isSubClassOf("SubRegIndex"))
throw "Argument '" + (*ai)->getAsString() +
"' in SubRegClasses is not a SubRegIndex";
if (!SubRegClasses.insert(std::make_pair(IdxRec, RCRec)).second)
throw "SubRegIndex '" + IdxRec->getName() + "' mentioned twice";
}
}
// Allow targets to override the size in bits of the RegisterClass.
unsigned Size = R->getValueAsInt("Size");
Namespace = R->getValueAsString("Namespace");
SpillSize = Size ? Size : EVT(VTs[0]).getSizeInBits();
SpillAlignment = R->getValueAsInt("Alignment");
CopyCost = R->getValueAsInt("CopyCost");
MethodBodies = R->getValueAsCode("MethodBodies");
MethodProtos = R->getValueAsCode("MethodProtos");
}
const std::string &CodeGenRegisterClass::getName() const {
return TheDef->getName();
}
void CodeGenTarget::ReadLegalValueTypes() const {
const std::vector<CodeGenRegisterClass> &RCs = getRegisterClasses();
for (unsigned i = 0, e = RCs.size(); i != e; ++i)
for (unsigned ri = 0, re = RCs[i].VTs.size(); ri != re; ++ri)
LegalValueTypes.push_back(RCs[i].VTs[ri]);
// Remove duplicates.
std::sort(LegalValueTypes.begin(), LegalValueTypes.end());
LegalValueTypes.erase(std::unique(LegalValueTypes.begin(),
LegalValueTypes.end()),
LegalValueTypes.end());
}
void CodeGenTarget::ReadInstructions() const {
std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction");
if (Insts.size() <= 2)
throw std::string("No 'Instruction' subclasses defined!");
// Parse the instructions defined in the .td file.
std::string InstFormatName =
getAsmWriter()->getValueAsString("InstFormatName");
for (unsigned i = 0, e = Insts.size(); i != e; ++i) {
std::string AsmStr = Insts[i]->getValueAsString(InstFormatName);
Instructions[Insts[i]] = new CodeGenInstruction(Insts[i], AsmStr);
}
}
static const CodeGenInstruction *
GetInstByName(const char *Name,
const DenseMap<const Record*, CodeGenInstruction*> &Insts) {
const Record *Rec = Records.getDef(Name);
DenseMap<const Record*, CodeGenInstruction*>::const_iterator
I = Insts.find(Rec);
if (Rec == 0 || I == Insts.end())
throw std::string("Could not find '") + Name + "' instruction!";
return I->second;
}
namespace {
/// SortInstByName - Sorting predicate to sort instructions by name.
///
struct SortInstByName {
bool operator()(const CodeGenInstruction *Rec1,
const CodeGenInstruction *Rec2) const {
return Rec1->TheDef->getName() < Rec2->TheDef->getName();
}
};
}
/// getInstructionsByEnumValue - Return all of the instructions defined by the
/// target, ordered by their enum value.
void CodeGenTarget::ComputeInstrsByEnum() const {
// The ordering here must match the ordering in TargetOpcodes.h.
const char *const FixedInstrs[] = {
"PHI",
"INLINEASM",
"DBG_LABEL",
"EH_LABEL",
"GC_LABEL",
"KILL",
"EXTRACT_SUBREG",
"INSERT_SUBREG",
"IMPLICIT_DEF",
"SUBREG_TO_REG",
"COPY_TO_REGCLASS",
"DBG_VALUE",
"REG_SEQUENCE",
0
};
const DenseMap<const Record*, CodeGenInstruction*> &Insts = getInstructions();
for (const char *const *p = FixedInstrs; *p; ++p) {
const CodeGenInstruction *Instr = GetInstByName(*p, Insts);
assert(Instr && "Missing target independent instruction");
assert(Instr->Namespace == "TargetOpcode" && "Bad namespace");
InstrsByEnum.push_back(Instr);
}
unsigned EndOfPredefines = InstrsByEnum.size();
for (DenseMap<const Record*, CodeGenInstruction*>::const_iterator
I = Insts.begin(), E = Insts.end(); I != E; ++I) {
const CodeGenInstruction *CGI = I->second;
if (CGI->Namespace != "TargetOpcode")
InstrsByEnum.push_back(CGI);
}
assert(InstrsByEnum.size() == Insts.size() && "Missing predefined instr");
// All of the instructions are now in random order based on the map iteration.
// Sort them by name.
std::sort(InstrsByEnum.begin()+EndOfPredefines, InstrsByEnum.end(),
SortInstByName());
}
/// isLittleEndianEncoding - Return whether this target encodes its instruction
/// in little-endian format, i.e. bits laid out in the order [0..n]
///
bool CodeGenTarget::isLittleEndianEncoding() const {
return getInstructionSet()->getValueAsBit("isLittleEndianEncoding");
}
//===----------------------------------------------------------------------===//
// ComplexPattern implementation
//
ComplexPattern::ComplexPattern(Record *R) {
Ty = ::getValueType(R->getValueAsDef("Ty"));
NumOperands = R->getValueAsInt("NumOperands");
SelectFunc = R->getValueAsString("SelectFunc");
RootNodes = R->getValueAsListOfDefs("RootNodes");
// Parse the properties.
Properties = 0;
std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
for (unsigned i = 0, e = PropList.size(); i != e; ++i)
if (PropList[i]->getName() == "SDNPHasChain") {
Properties |= 1 << SDNPHasChain;
} else if (PropList[i]->getName() == "SDNPOptInFlag") {
Properties |= 1 << SDNPOptInFlag;
} else if (PropList[i]->getName() == "SDNPMayStore") {
Properties |= 1 << SDNPMayStore;
} else if (PropList[i]->getName() == "SDNPMayLoad") {
Properties |= 1 << SDNPMayLoad;
} else if (PropList[i]->getName() == "SDNPSideEffect") {
Properties |= 1 << SDNPSideEffect;
} else if (PropList[i]->getName() == "SDNPMemOperand") {
Properties |= 1 << SDNPMemOperand;
} else if (PropList[i]->getName() == "SDNPVariadic") {
Properties |= 1 << SDNPVariadic;
} else {
errs() << "Unsupported SD Node property '" << PropList[i]->getName()
<< "' on ComplexPattern '" << R->getName() << "'!\n";
exit(1);
}
}
//===----------------------------------------------------------------------===//
// CodeGenIntrinsic Implementation
//===----------------------------------------------------------------------===//
std::vector<CodeGenIntrinsic> llvm::LoadIntrinsics(const RecordKeeper &RC,
bool TargetOnly) {
std::vector<Record*> I = RC.getAllDerivedDefinitions("Intrinsic");
std::vector<CodeGenIntrinsic> Result;
for (unsigned i = 0, e = I.size(); i != e; ++i) {
bool isTarget = I[i]->getValueAsBit("isTarget");
if (isTarget == TargetOnly)
Result.push_back(CodeGenIntrinsic(I[i]));
}
return Result;
}
CodeGenIntrinsic::CodeGenIntrinsic(Record *R) {
TheDef = R;
std::string DefName = R->getName();
ModRef = WriteMem;
isOverloaded = false;
isCommutative = false;
if (DefName.size() <= 4 ||
std::string(DefName.begin(), DefName.begin() + 4) != "int_")
throw "Intrinsic '" + DefName + "' does not start with 'int_'!";
EnumName = std::string(DefName.begin()+4, DefName.end());
if (R->getValue("GCCBuiltinName")) // Ignore a missing GCCBuiltinName field.
GCCBuiltinName = R->getValueAsString("GCCBuiltinName");
TargetPrefix = R->getValueAsString("TargetPrefix");
Name = R->getValueAsString("LLVMName");
if (Name == "") {
// If an explicit name isn't specified, derive one from the DefName.
Name = "llvm.";
for (unsigned i = 0, e = EnumName.size(); i != e; ++i)
Name += (EnumName[i] == '_') ? '.' : EnumName[i];
} else {
// Verify it starts with "llvm.".
if (Name.size() <= 5 ||
std::string(Name.begin(), Name.begin() + 5) != "llvm.")
throw "Intrinsic '" + DefName + "'s name does not start with 'llvm.'!";
}
// If TargetPrefix is specified, make sure that Name starts with
// "llvm.<targetprefix>.".
if (!TargetPrefix.empty()) {
if (Name.size() < 6+TargetPrefix.size() ||
std::string(Name.begin() + 5, Name.begin() + 6 + TargetPrefix.size())
!= (TargetPrefix + "."))
throw "Intrinsic '" + DefName + "' does not start with 'llvm." +
TargetPrefix + ".'!";
}
// Parse the list of return types.
std::vector<MVT::SimpleValueType> OverloadedVTs;
ListInit *TypeList = R->getValueAsListInit("RetTypes");
for (unsigned i = 0, e = TypeList->getSize(); i != e; ++i) {
Record *TyEl = TypeList->getElementAsRecord(i);
assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
MVT::SimpleValueType VT;
if (TyEl->isSubClassOf("LLVMMatchType")) {
unsigned MatchTy = TyEl->getValueAsInt("Number");
assert(MatchTy < OverloadedVTs.size() &&
"Invalid matching number!");
VT = OverloadedVTs[MatchTy];
// It only makes sense to use the extended and truncated vector element
// variants with iAny types; otherwise, if the intrinsic is not
// overloaded, all the types can be specified directly.
assert(((!TyEl->isSubClassOf("LLVMExtendedElementVectorType") &&
!TyEl->isSubClassOf("LLVMTruncatedElementVectorType")) ||
VT == MVT::iAny || VT == MVT::vAny) &&
"Expected iAny or vAny type");
} else {
VT = getValueType(TyEl->getValueAsDef("VT"));
}
if (EVT(VT).isOverloaded()) {
OverloadedVTs.push_back(VT);
isOverloaded = true;
}
// Reject invalid types.
if (VT == MVT::isVoid)
throw "Intrinsic '" + DefName + " has void in result type list!";
IS.RetVTs.push_back(VT);
IS.RetTypeDefs.push_back(TyEl);
}
// Parse the list of parameter types.
TypeList = R->getValueAsListInit("ParamTypes");
for (unsigned i = 0, e = TypeList->getSize(); i != e; ++i) {
Record *TyEl = TypeList->getElementAsRecord(i);
assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
MVT::SimpleValueType VT;
if (TyEl->isSubClassOf("LLVMMatchType")) {
unsigned MatchTy = TyEl->getValueAsInt("Number");
assert(MatchTy < OverloadedVTs.size() &&
"Invalid matching number!");
VT = OverloadedVTs[MatchTy];
// It only makes sense to use the extended and truncated vector element
// variants with iAny types; otherwise, if the intrinsic is not
// overloaded, all the types can be specified directly.
assert(((!TyEl->isSubClassOf("LLVMExtendedElementVectorType") &&
!TyEl->isSubClassOf("LLVMTruncatedElementVectorType")) ||
VT == MVT::iAny || VT == MVT::vAny) &&
"Expected iAny or vAny type");
} else
VT = getValueType(TyEl->getValueAsDef("VT"));
if (EVT(VT).isOverloaded()) {
OverloadedVTs.push_back(VT);
isOverloaded = true;
}
// Reject invalid types.
if (VT == MVT::isVoid && i != e-1 /*void at end means varargs*/)
throw "Intrinsic '" + DefName + " has void in result type list!";
IS.ParamVTs.push_back(VT);
IS.ParamTypeDefs.push_back(TyEl);
}
// Parse the intrinsic properties.
ListInit *PropList = R->getValueAsListInit("Properties");
for (unsigned i = 0, e = PropList->getSize(); i != e; ++i) {
Record *Property = PropList->getElementAsRecord(i);
assert(Property->isSubClassOf("IntrinsicProperty") &&
"Expected a property!");
if (Property->getName() == "IntrNoMem")
ModRef = NoMem;
else if (Property->getName() == "IntrReadArgMem")
ModRef = ReadArgMem;
else if (Property->getName() == "IntrReadMem")
ModRef = ReadMem;
else if (Property->getName() == "IntrWriteArgMem")
ModRef = WriteArgMem;
else if (Property->getName() == "IntrWriteMem")
ModRef = WriteMem;
else if (Property->getName() == "Commutative")
isCommutative = true;
else if (Property->isSubClassOf("NoCapture")) {
unsigned ArgNo = Property->getValueAsInt("ArgNo");
ArgumentAttributes.push_back(std::make_pair(ArgNo, NoCapture));
} else
assert(0 && "Unknown property!");
}
}