mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-04 21:30:49 +00:00
16fd27b2c3
This commit adds scoped noalias metadata. The primary motivations for this feature are: 1. To preserve noalias function attribute information when inlining 2. To provide the ability to model block-scope C99 restrict pointers Neither of these two abilities are added here, only the necessary infrastructure. In fact, there should be no change to existing functionality, only the addition of new features. The logic that converts noalias function parameters into this metadata during inlining will come in a follow-up commit. What is added here is the ability to generally specify noalias memory-access sets. Regarding the metadata, alias-analysis scopes are defined similar to TBAA nodes: !scope0 = metadata !{ metadata !"scope of foo()" } !scope1 = metadata !{ metadata !"scope 1", metadata !scope0 } !scope2 = metadata !{ metadata !"scope 2", metadata !scope0 } !scope3 = metadata !{ metadata !"scope 2.1", metadata !scope2 } !scope4 = metadata !{ metadata !"scope 2.2", metadata !scope2 } Loads and stores can be tagged with an alias-analysis scope, and also, with a noalias tag for a specific scope: ... = load %ptr1, !alias.scope !{ !scope1 } ... = load %ptr2, !alias.scope !{ !scope1, !scope2 }, !noalias !{ !scope1 } When evaluating an aliasing query, if one of the instructions is associated with an alias.scope id that is identical to the noalias scope associated with the other instruction, or is a descendant (in the scope hierarchy) of the noalias scope associated with the other instruction, then the two memory accesses are assumed not to alias. Note that is the first element of the scope metadata is a string, then it can be combined accross functions and translation units. The string can be replaced by a self-reference to create globally unqiue scope identifiers. [Note: This overview is slightly stylized, since the metadata nodes really need to just be numbers (!0 instead of !scope0), and the scope lists are also global unnamed metadata.] Existing noalias metadata in a callee is "cloned" for use by the inlined code. This is necessary because the aliasing scopes are unique to each call site (because of possible control dependencies on the aliasing properties). For example, consider a function: foo(noalias a, noalias b) { *a = *b; } that gets inlined into bar() { ... if (...) foo(a1, b1); ... if (...) foo(a2, b2); } -- now just because we know that a1 does not alias with b1 at the first call site, and a2 does not alias with b2 at the second call site, we cannot let inlining these functons have the metadata imply that a1 does not alias with b2. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213864 91177308-0d34-0410-b5e6-96231b3b80d8 |
||
---|---|---|
.. | ||
_static | ||
_templates | ||
_themes/llvm-theme | ||
CommandGuide | ||
HistoricalNotes | ||
TableGen | ||
tutorial | ||
AliasAnalysis.rst | ||
ARM-BE-bitcastfail.png | ||
ARM-BE-bitcastsuccess.png | ||
ARM-BE-ld1.png | ||
ARM-BE-ldr.png | ||
Atomics.rst | ||
BigEndianNEON.rst | ||
BitCodeFormat.rst | ||
BlockFrequencyTerminology.rst | ||
BranchWeightMetadata.rst | ||
Bugpoint.rst | ||
CMake.rst | ||
CMakeLists.txt | ||
CodeGenerator.rst | ||
CodingStandards.rst | ||
CommandLine.rst | ||
CompilerWriterInfo.rst | ||
conf.py | ||
DebuggingJITedCode.rst | ||
DeveloperPolicy.rst | ||
doxygen.cfg.in | ||
doxygen.css | ||
doxygen.footer | ||
doxygen.header | ||
doxygen.intro | ||
Dummy.html | ||
ExceptionHandling.rst | ||
ExtendedIntegerResults.txt | ||
ExtendingLLVM.rst | ||
Extensions.rst | ||
FAQ.rst | ||
GarbageCollection.rst | ||
gcc-loops.png | ||
GetElementPtr.rst | ||
GettingStarted.rst | ||
GettingStartedVS.rst | ||
GoldPlugin.rst | ||
HowToAddABuilder.rst | ||
HowToBuildOnARM.rst | ||
HowToCrossCompileLLVM.rst | ||
HowToReleaseLLVM.rst | ||
HowToSetUpLLVMStyleRTTI.rst | ||
HowToSubmitABug.rst | ||
HowToUseAttributes.rst | ||
HowToUseInstrMappings.rst | ||
InAlloca.rst | ||
index.rst | ||
LangRef.rst | ||
Lexicon.rst | ||
LinkTimeOptimization.rst | ||
linpack-pc.png | ||
LLVMBuild.rst | ||
LLVMBuild.txt | ||
make.bat | ||
Makefile | ||
Makefile.sphinx | ||
MakefileGuide.rst | ||
MarkedUpDisassembly.rst | ||
MCJIT-creation.png | ||
MCJIT-dyld-load.png | ||
MCJIT-engine-builder.png | ||
MCJIT-load-object.png | ||
MCJIT-load.png | ||
MCJIT-resolve-relocations.png | ||
MCJITDesignAndImplementation.rst | ||
NVPTXUsage.rst | ||
Packaging.rst | ||
Passes.rst | ||
Phabricator.rst | ||
ProgrammersManual.rst | ||
Projects.rst | ||
re_format.7 | ||
README.txt | ||
ReleaseNotes.rst | ||
ReleaseProcess.rst | ||
SegmentedStacks.rst | ||
SourceLevelDebugging.rst | ||
SphinxQuickstartTemplate.rst | ||
StackMaps.rst | ||
SystemLibrary.rst | ||
TableGenFundamentals.rst | ||
TestingGuide.rst | ||
TestSuiteMakefileGuide.rst | ||
Vectorizers.rst | ||
WritingAnLLVMBackend.rst | ||
WritingAnLLVMPass.rst | ||
yaml2obj.rst | ||
YamlIO.rst |
LLVM Documentation ================== LLVM's documentation is written in reStructuredText, a lightweight plaintext markup language (file extension `.rst`). While the reStructuredText documentation should be quite readable in source form, it is mostly meant to be processed by the Sphinx documentation generation system to create HTML pages which are hosted on <http://llvm.org/docs/> and updated after every commit. Manpage output is also supported, see below. If you instead would like to generate and view the HTML locally, install Sphinx <http://sphinx-doc.org/> and then do: cd docs/ make -f Makefile.sphinx $BROWSER _build/html/index.html The mapping between reStructuredText files and generated documentation is `docs/Foo.rst` <-> `_build/html/Foo.html` <-> `http://llvm.org/docs/Foo.html`. If you are interested in writing new documentation, you will want to read `SphinxQuickstartTemplate.rst` which will get you writing documentation very fast and includes examples of the most important reStructuredText markup syntax. Manpage Output =============== Building the manpages is similar to building the HTML documentation. The primary difference is to use the `man` makefile target, instead of the default (which is `html`). Sphinx then produces the man pages in the directory `_build/man/`. cd docs/ make -f Makefile.sphinx man man -l _build/man/FileCheck.1 The correspondence between .rst files and man pages is `docs/CommandGuide/Foo.rst` <-> `_build/man/Foo.1`. These .rst files are also included during HTML generation so they are also viewable online (as noted above) at e.g. `http://llvm.org/docs/CommandGuide/Foo.html`. Checking links ============== The reachibility of external links in the documentation can be checked by running: cd docs/ make -f Makefile.sphinx linkcheck