mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	Instead add m0 as an implicit operand. This helps avoid spills of the m0 register in some cases. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237140 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2175 lines
		
	
	
		
			76 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2175 lines
		
	
	
		
			76 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
/// \file
 | 
						|
/// \brief Custom DAG lowering for SI
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#ifdef _MSC_VER
 | 
						|
// Provide M_PI.
 | 
						|
#define _USE_MATH_DEFINES
 | 
						|
#include <cmath>
 | 
						|
#endif
 | 
						|
 | 
						|
#include "SIISelLowering.h"
 | 
						|
#include "AMDGPU.h"
 | 
						|
#include "AMDGPUIntrinsicInfo.h"
 | 
						|
#include "AMDGPUSubtarget.h"
 | 
						|
#include "SIInstrInfo.h"
 | 
						|
#include "SIMachineFunctionInfo.h"
 | 
						|
#include "SIRegisterInfo.h"
 | 
						|
#include "llvm/ADT/BitVector.h"
 | 
						|
#include "llvm/CodeGen/CallingConvLower.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/SelectionDAG.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/ADT/SmallString.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
SITargetLowering::SITargetLowering(TargetMachine &TM,
 | 
						|
                                   const AMDGPUSubtarget &STI)
 | 
						|
    : AMDGPUTargetLowering(TM, STI) {
 | 
						|
  addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass);
 | 
						|
  addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass);
 | 
						|
 | 
						|
  addRegisterClass(MVT::v32i8, &AMDGPU::SReg_256RegClass);
 | 
						|
  addRegisterClass(MVT::v64i8, &AMDGPU::SReg_512RegClass);
 | 
						|
 | 
						|
  addRegisterClass(MVT::i32, &AMDGPU::SReg_32RegClass);
 | 
						|
  addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass);
 | 
						|
 | 
						|
  addRegisterClass(MVT::f64, &AMDGPU::VReg_64RegClass);
 | 
						|
  addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass);
 | 
						|
  addRegisterClass(MVT::v2f32, &AMDGPU::VReg_64RegClass);
 | 
						|
 | 
						|
  addRegisterClass(MVT::v4i32, &AMDGPU::SReg_128RegClass);
 | 
						|
  addRegisterClass(MVT::v4f32, &AMDGPU::VReg_128RegClass);
 | 
						|
 | 
						|
  addRegisterClass(MVT::v8i32, &AMDGPU::SReg_256RegClass);
 | 
						|
  addRegisterClass(MVT::v8f32, &AMDGPU::VReg_256RegClass);
 | 
						|
 | 
						|
  addRegisterClass(MVT::v16i32, &AMDGPU::SReg_512RegClass);
 | 
						|
  addRegisterClass(MVT::v16f32, &AMDGPU::VReg_512RegClass);
 | 
						|
 | 
						|
  computeRegisterProperties(STI.getRegisterInfo());
 | 
						|
 | 
						|
  setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i32, Expand);
 | 
						|
  setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Expand);
 | 
						|
  setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i32, Expand);
 | 
						|
  setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16f32, Expand);
 | 
						|
 | 
						|
  setOperationAction(ISD::ADD, MVT::i32, Legal);
 | 
						|
  setOperationAction(ISD::ADDC, MVT::i32, Legal);
 | 
						|
  setOperationAction(ISD::ADDE, MVT::i32, Legal);
 | 
						|
  setOperationAction(ISD::SUBC, MVT::i32, Legal);
 | 
						|
  setOperationAction(ISD::SUBE, MVT::i32, Legal);
 | 
						|
 | 
						|
  setOperationAction(ISD::FSIN, MVT::f32, Custom);
 | 
						|
  setOperationAction(ISD::FCOS, MVT::f32, Custom);
 | 
						|
 | 
						|
  setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
 | 
						|
  setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
 | 
						|
 | 
						|
  // We need to custom lower vector stores from local memory
 | 
						|
  setOperationAction(ISD::LOAD, MVT::v4i32, Custom);
 | 
						|
  setOperationAction(ISD::LOAD, MVT::v8i32, Custom);
 | 
						|
  setOperationAction(ISD::LOAD, MVT::v16i32, Custom);
 | 
						|
 | 
						|
  setOperationAction(ISD::STORE, MVT::v8i32, Custom);
 | 
						|
  setOperationAction(ISD::STORE, MVT::v16i32, Custom);
 | 
						|
 | 
						|
  setOperationAction(ISD::STORE, MVT::i1, Custom);
 | 
						|
  setOperationAction(ISD::STORE, MVT::v4i32, Custom);
 | 
						|
 | 
						|
  setOperationAction(ISD::SELECT, MVT::i64, Custom);
 | 
						|
  setOperationAction(ISD::SELECT, MVT::f64, Promote);
 | 
						|
  AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64);
 | 
						|
 | 
						|
  setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
 | 
						|
  setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
 | 
						|
  setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
 | 
						|
  setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
 | 
						|
 | 
						|
  setOperationAction(ISD::SETCC, MVT::v2i1, Expand);
 | 
						|
  setOperationAction(ISD::SETCC, MVT::v4i1, Expand);
 | 
						|
 | 
						|
  setOperationAction(ISD::BSWAP, MVT::i32, Legal);
 | 
						|
 | 
						|
  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Legal);
 | 
						|
  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Custom);
 | 
						|
  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Custom);
 | 
						|
 | 
						|
  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Legal);
 | 
						|
  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
 | 
						|
  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Custom);
 | 
						|
 | 
						|
  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Legal);
 | 
						|
  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
 | 
						|
  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Custom);
 | 
						|
 | 
						|
  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
 | 
						|
  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Custom);
 | 
						|
 | 
						|
  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
 | 
						|
  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f32, Custom);
 | 
						|
  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v16i8, Custom);
 | 
						|
  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom);
 | 
						|
 | 
						|
  setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
 | 
						|
  setOperationAction(ISD::BRCOND, MVT::Other, Custom);
 | 
						|
 | 
						|
  for (MVT VT : MVT::integer_valuetypes()) {
 | 
						|
    if (VT == MVT::i64)
 | 
						|
      continue;
 | 
						|
 | 
						|
    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
 | 
						|
    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal);
 | 
						|
    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal);
 | 
						|
    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
 | 
						|
 | 
						|
    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
 | 
						|
    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal);
 | 
						|
    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal);
 | 
						|
    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
 | 
						|
 | 
						|
    setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
 | 
						|
    setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal);
 | 
						|
    setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal);
 | 
						|
    setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand);
 | 
						|
  }
 | 
						|
 | 
						|
  for (MVT VT : MVT::integer_vector_valuetypes()) {
 | 
						|
    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v8i16, Expand);
 | 
						|
    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v16i16, Expand);
 | 
						|
  }
 | 
						|
 | 
						|
  for (MVT VT : MVT::fp_valuetypes())
 | 
						|
    setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
 | 
						|
 | 
						|
  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
 | 
						|
  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
 | 
						|
  setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand);
 | 
						|
  setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand);
 | 
						|
 | 
						|
  setOperationAction(ISD::LOAD, MVT::i1, Custom);
 | 
						|
 | 
						|
  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
 | 
						|
  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
 | 
						|
  setOperationAction(ISD::FrameIndex, MVT::i32, Custom);
 | 
						|
 | 
						|
  // These should use UDIVREM, so set them to expand
 | 
						|
  setOperationAction(ISD::UDIV, MVT::i64, Expand);
 | 
						|
  setOperationAction(ISD::UREM, MVT::i64, Expand);
 | 
						|
 | 
						|
  setOperationAction(ISD::SELECT_CC, MVT::i1, Expand);
 | 
						|
  setOperationAction(ISD::SELECT, MVT::i1, Promote);
 | 
						|
 | 
						|
  // We only support LOAD/STORE and vector manipulation ops for vectors
 | 
						|
  // with > 4 elements.
 | 
						|
  for (MVT VT : {MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32}) {
 | 
						|
    for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
 | 
						|
      switch(Op) {
 | 
						|
      case ISD::LOAD:
 | 
						|
      case ISD::STORE:
 | 
						|
      case ISD::BUILD_VECTOR:
 | 
						|
      case ISD::BITCAST:
 | 
						|
      case ISD::EXTRACT_VECTOR_ELT:
 | 
						|
      case ISD::INSERT_VECTOR_ELT:
 | 
						|
      case ISD::INSERT_SUBVECTOR:
 | 
						|
      case ISD::EXTRACT_SUBVECTOR:
 | 
						|
        break;
 | 
						|
      case ISD::CONCAT_VECTORS:
 | 
						|
        setOperationAction(Op, VT, Custom);
 | 
						|
        break;
 | 
						|
      default:
 | 
						|
        setOperationAction(Op, VT, Expand);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Subtarget->getGeneration() >= AMDGPUSubtarget::SEA_ISLANDS) {
 | 
						|
    setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
 | 
						|
    setOperationAction(ISD::FCEIL, MVT::f64, Legal);
 | 
						|
    setOperationAction(ISD::FRINT, MVT::f64, Legal);
 | 
						|
  }
 | 
						|
 | 
						|
  setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
 | 
						|
  setOperationAction(ISD::FDIV, MVT::f32, Custom);
 | 
						|
  setOperationAction(ISD::FDIV, MVT::f64, Custom);
 | 
						|
 | 
						|
  setTargetDAGCombine(ISD::FADD);
 | 
						|
  setTargetDAGCombine(ISD::FSUB);
 | 
						|
  setTargetDAGCombine(ISD::FMINNUM);
 | 
						|
  setTargetDAGCombine(ISD::FMAXNUM);
 | 
						|
  setTargetDAGCombine(ISD::SELECT_CC);
 | 
						|
  setTargetDAGCombine(ISD::SETCC);
 | 
						|
  setTargetDAGCombine(ISD::AND);
 | 
						|
  setTargetDAGCombine(ISD::OR);
 | 
						|
  setTargetDAGCombine(ISD::UINT_TO_FP);
 | 
						|
 | 
						|
  // All memory operations. Some folding on the pointer operand is done to help
 | 
						|
  // matching the constant offsets in the addressing modes.
 | 
						|
  setTargetDAGCombine(ISD::LOAD);
 | 
						|
  setTargetDAGCombine(ISD::STORE);
 | 
						|
  setTargetDAGCombine(ISD::ATOMIC_LOAD);
 | 
						|
  setTargetDAGCombine(ISD::ATOMIC_STORE);
 | 
						|
  setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP);
 | 
						|
  setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
 | 
						|
  setTargetDAGCombine(ISD::ATOMIC_SWAP);
 | 
						|
  setTargetDAGCombine(ISD::ATOMIC_LOAD_ADD);
 | 
						|
  setTargetDAGCombine(ISD::ATOMIC_LOAD_SUB);
 | 
						|
  setTargetDAGCombine(ISD::ATOMIC_LOAD_AND);
 | 
						|
  setTargetDAGCombine(ISD::ATOMIC_LOAD_OR);
 | 
						|
  setTargetDAGCombine(ISD::ATOMIC_LOAD_XOR);
 | 
						|
  setTargetDAGCombine(ISD::ATOMIC_LOAD_NAND);
 | 
						|
  setTargetDAGCombine(ISD::ATOMIC_LOAD_MIN);
 | 
						|
  setTargetDAGCombine(ISD::ATOMIC_LOAD_MAX);
 | 
						|
  setTargetDAGCombine(ISD::ATOMIC_LOAD_UMIN);
 | 
						|
  setTargetDAGCombine(ISD::ATOMIC_LOAD_UMAX);
 | 
						|
 | 
						|
  setSchedulingPreference(Sched::RegPressure);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// TargetLowering queries
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
bool SITargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &,
 | 
						|
                                          EVT) const {
 | 
						|
  // SI has some legal vector types, but no legal vector operations. Say no
 | 
						|
  // shuffles are legal in order to prefer scalarizing some vector operations.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// FIXME: This really needs an address space argument. The immediate offset
 | 
						|
// size is different for different sets of memory instruction sets.
 | 
						|
 | 
						|
// The single offset DS instructions have a 16-bit unsigned byte offset.
 | 
						|
//
 | 
						|
// MUBUF / MTBUF have a 12-bit unsigned byte offset, and additionally can do r +
 | 
						|
// r + i with addr64. 32-bit has more addressing mode options. Depending on the
 | 
						|
// resource constant, it can also do (i64 r0) + (i32 r1) * (i14 i).
 | 
						|
//
 | 
						|
// SMRD instructions have an 8-bit, dword offset.
 | 
						|
//
 | 
						|
bool SITargetLowering::isLegalAddressingMode(const AddrMode &AM,
 | 
						|
                                             Type *Ty) const {
 | 
						|
  // No global is ever allowed as a base.
 | 
						|
  if (AM.BaseGV)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Allow a 16-bit unsigned immediate field, since this is what DS instructions
 | 
						|
  // use.
 | 
						|
  if (!isUInt<16>(AM.BaseOffs))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Only support r+r,
 | 
						|
  switch (AM.Scale) {
 | 
						|
  case 0:  // "r+i" or just "i", depending on HasBaseReg.
 | 
						|
    break;
 | 
						|
  case 1:
 | 
						|
    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
 | 
						|
      return false;
 | 
						|
    // Otherwise we have r+r or r+i.
 | 
						|
    break;
 | 
						|
  case 2:
 | 
						|
    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
 | 
						|
      return false;
 | 
						|
    // Allow 2*r as r+r.
 | 
						|
    break;
 | 
						|
  default: // Don't allow n * r
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool SITargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
 | 
						|
                                                      unsigned AddrSpace,
 | 
						|
                                                      unsigned Align,
 | 
						|
                                                      bool *IsFast) const {
 | 
						|
  if (IsFast)
 | 
						|
    *IsFast = false;
 | 
						|
 | 
						|
  // TODO: I think v3i32 should allow unaligned accesses on CI with DS_READ_B96,
 | 
						|
  // which isn't a simple VT.
 | 
						|
  if (!VT.isSimple() || VT == MVT::Other)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // TODO - CI+ supports unaligned memory accesses, but this requires driver
 | 
						|
  // support.
 | 
						|
 | 
						|
  // XXX - The only mention I see of this in the ISA manual is for LDS direct
 | 
						|
  // reads the "byte address and must be dword aligned". Is it also true for the
 | 
						|
  // normal loads and stores?
 | 
						|
  if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS) {
 | 
						|
    // ds_read/write_b64 require 8-byte alignment, but we can do a 4 byte
 | 
						|
    // aligned, 8 byte access in a single operation using ds_read2/write2_b32
 | 
						|
    // with adjacent offsets.
 | 
						|
    return Align % 4 == 0;
 | 
						|
  }
 | 
						|
 | 
						|
  // Smaller than dword value must be aligned.
 | 
						|
  // FIXME: This should be allowed on CI+
 | 
						|
  if (VT.bitsLT(MVT::i32))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the
 | 
						|
  // byte-address are ignored, thus forcing Dword alignment.
 | 
						|
  // This applies to private, global, and constant memory.
 | 
						|
  if (IsFast)
 | 
						|
    *IsFast = true;
 | 
						|
 | 
						|
  return VT.bitsGT(MVT::i32) && Align % 4 == 0;
 | 
						|
}
 | 
						|
 | 
						|
EVT SITargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
 | 
						|
                                          unsigned SrcAlign, bool IsMemset,
 | 
						|
                                          bool ZeroMemset,
 | 
						|
                                          bool MemcpyStrSrc,
 | 
						|
                                          MachineFunction &MF) const {
 | 
						|
  // FIXME: Should account for address space here.
 | 
						|
 | 
						|
  // The default fallback uses the private pointer size as a guess for a type to
 | 
						|
  // use. Make sure we switch these to 64-bit accesses.
 | 
						|
 | 
						|
  if (Size >= 16 && DstAlign >= 4) // XXX: Should only do for global
 | 
						|
    return MVT::v4i32;
 | 
						|
 | 
						|
  if (Size >= 8 && DstAlign >= 4)
 | 
						|
    return MVT::v2i32;
 | 
						|
 | 
						|
  // Use the default.
 | 
						|
  return MVT::Other;
 | 
						|
}
 | 
						|
 | 
						|
TargetLoweringBase::LegalizeTypeAction
 | 
						|
SITargetLowering::getPreferredVectorAction(EVT VT) const {
 | 
						|
  if (VT.getVectorNumElements() != 1 && VT.getScalarType().bitsLE(MVT::i16))
 | 
						|
    return TypeSplitVector;
 | 
						|
 | 
						|
  return TargetLoweringBase::getPreferredVectorAction(VT);
 | 
						|
}
 | 
						|
 | 
						|
bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
 | 
						|
                                                         Type *Ty) const {
 | 
						|
  const SIInstrInfo *TII =
 | 
						|
      static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
 | 
						|
  return TII->isInlineConstant(Imm);
 | 
						|
}
 | 
						|
 | 
						|
SDValue SITargetLowering::LowerParameter(SelectionDAG &DAG, EVT VT, EVT MemVT,
 | 
						|
                                         SDLoc SL, SDValue Chain,
 | 
						|
                                         unsigned Offset, bool Signed) const {
 | 
						|
  const DataLayout *DL = getDataLayout();
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  const SIRegisterInfo *TRI =
 | 
						|
      static_cast<const SIRegisterInfo*>(Subtarget->getRegisterInfo());
 | 
						|
  unsigned InputPtrReg = TRI->getPreloadedValue(MF, SIRegisterInfo::INPUT_PTR);
 | 
						|
 | 
						|
  Type *Ty = VT.getTypeForEVT(*DAG.getContext());
 | 
						|
 | 
						|
  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
 | 
						|
  PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS);
 | 
						|
  SDValue BasePtr =  DAG.getCopyFromReg(Chain, SL,
 | 
						|
                           MRI.getLiveInVirtReg(InputPtrReg), MVT::i64);
 | 
						|
  SDValue Ptr = DAG.getNode(ISD::ADD, SL, MVT::i64, BasePtr,
 | 
						|
                            DAG.getConstant(Offset, SL, MVT::i64));
 | 
						|
  SDValue PtrOffset = DAG.getUNDEF(getPointerTy(AMDGPUAS::CONSTANT_ADDRESS));
 | 
						|
  MachinePointerInfo PtrInfo(UndefValue::get(PtrTy));
 | 
						|
 | 
						|
  return DAG.getLoad(ISD::UNINDEXED, Signed ? ISD::SEXTLOAD : ISD::ZEXTLOAD,
 | 
						|
                     VT, SL, Chain, Ptr, PtrOffset, PtrInfo, MemVT,
 | 
						|
                     false, // isVolatile
 | 
						|
                     true, // isNonTemporal
 | 
						|
                     true, // isInvariant
 | 
						|
                     DL->getABITypeAlignment(Ty)); // Alignment
 | 
						|
}
 | 
						|
 | 
						|
SDValue SITargetLowering::LowerFormalArguments(
 | 
						|
    SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
 | 
						|
    const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG,
 | 
						|
    SmallVectorImpl<SDValue> &InVals) const {
 | 
						|
  const SIRegisterInfo *TRI =
 | 
						|
      static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo());
 | 
						|
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  FunctionType *FType = MF.getFunction()->getFunctionType();
 | 
						|
  SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
 | 
						|
 | 
						|
  assert(CallConv == CallingConv::C);
 | 
						|
 | 
						|
  SmallVector<ISD::InputArg, 16> Splits;
 | 
						|
  BitVector Skipped(Ins.size());
 | 
						|
 | 
						|
  for (unsigned i = 0, e = Ins.size(), PSInputNum = 0; i != e; ++i) {
 | 
						|
    const ISD::InputArg &Arg = Ins[i];
 | 
						|
 | 
						|
    // First check if it's a PS input addr
 | 
						|
    if (Info->getShaderType() == ShaderType::PIXEL && !Arg.Flags.isInReg() &&
 | 
						|
        !Arg.Flags.isByVal()) {
 | 
						|
 | 
						|
      assert((PSInputNum <= 15) && "Too many PS inputs!");
 | 
						|
 | 
						|
      if (!Arg.Used) {
 | 
						|
        // We can savely skip PS inputs
 | 
						|
        Skipped.set(i);
 | 
						|
        ++PSInputNum;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      Info->PSInputAddr |= 1 << PSInputNum++;
 | 
						|
    }
 | 
						|
 | 
						|
    // Second split vertices into their elements
 | 
						|
    if (Info->getShaderType() != ShaderType::COMPUTE && Arg.VT.isVector()) {
 | 
						|
      ISD::InputArg NewArg = Arg;
 | 
						|
      NewArg.Flags.setSplit();
 | 
						|
      NewArg.VT = Arg.VT.getVectorElementType();
 | 
						|
 | 
						|
      // We REALLY want the ORIGINAL number of vertex elements here, e.g. a
 | 
						|
      // three or five element vertex only needs three or five registers,
 | 
						|
      // NOT four or eigth.
 | 
						|
      Type *ParamType = FType->getParamType(Arg.getOrigArgIndex());
 | 
						|
      unsigned NumElements = ParamType->getVectorNumElements();
 | 
						|
 | 
						|
      for (unsigned j = 0; j != NumElements; ++j) {
 | 
						|
        Splits.push_back(NewArg);
 | 
						|
        NewArg.PartOffset += NewArg.VT.getStoreSize();
 | 
						|
      }
 | 
						|
 | 
						|
    } else if (Info->getShaderType() != ShaderType::COMPUTE) {
 | 
						|
      Splits.push_back(Arg);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  SmallVector<CCValAssign, 16> ArgLocs;
 | 
						|
  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
 | 
						|
                 *DAG.getContext());
 | 
						|
 | 
						|
  // At least one interpolation mode must be enabled or else the GPU will hang.
 | 
						|
  if (Info->getShaderType() == ShaderType::PIXEL &&
 | 
						|
      (Info->PSInputAddr & 0x7F) == 0) {
 | 
						|
    Info->PSInputAddr |= 1;
 | 
						|
    CCInfo.AllocateReg(AMDGPU::VGPR0);
 | 
						|
    CCInfo.AllocateReg(AMDGPU::VGPR1);
 | 
						|
  }
 | 
						|
 | 
						|
  // The pointer to the list of arguments is stored in SGPR0, SGPR1
 | 
						|
	// The pointer to the scratch buffer is stored in SGPR2, SGPR3
 | 
						|
  if (Info->getShaderType() == ShaderType::COMPUTE) {
 | 
						|
    if (Subtarget->isAmdHsaOS())
 | 
						|
      Info->NumUserSGPRs = 2;  // FIXME: Need to support scratch buffers.
 | 
						|
    else
 | 
						|
      Info->NumUserSGPRs = 4;
 | 
						|
 | 
						|
    unsigned InputPtrReg =
 | 
						|
        TRI->getPreloadedValue(MF, SIRegisterInfo::INPUT_PTR);
 | 
						|
    unsigned InputPtrRegLo =
 | 
						|
        TRI->getPhysRegSubReg(InputPtrReg, &AMDGPU::SReg_32RegClass, 0);
 | 
						|
    unsigned InputPtrRegHi =
 | 
						|
        TRI->getPhysRegSubReg(InputPtrReg, &AMDGPU::SReg_32RegClass, 1);
 | 
						|
 | 
						|
    unsigned ScratchPtrReg =
 | 
						|
        TRI->getPreloadedValue(MF, SIRegisterInfo::SCRATCH_PTR);
 | 
						|
    unsigned ScratchPtrRegLo =
 | 
						|
        TRI->getPhysRegSubReg(ScratchPtrReg, &AMDGPU::SReg_32RegClass, 0);
 | 
						|
    unsigned ScratchPtrRegHi =
 | 
						|
        TRI->getPhysRegSubReg(ScratchPtrReg, &AMDGPU::SReg_32RegClass, 1);
 | 
						|
 | 
						|
    CCInfo.AllocateReg(InputPtrRegLo);
 | 
						|
    CCInfo.AllocateReg(InputPtrRegHi);
 | 
						|
    CCInfo.AllocateReg(ScratchPtrRegLo);
 | 
						|
    CCInfo.AllocateReg(ScratchPtrRegHi);
 | 
						|
    MF.addLiveIn(InputPtrReg, &AMDGPU::SReg_64RegClass);
 | 
						|
    MF.addLiveIn(ScratchPtrReg, &AMDGPU::SReg_64RegClass);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Info->getShaderType() == ShaderType::COMPUTE) {
 | 
						|
    getOriginalFunctionArgs(DAG, DAG.getMachineFunction().getFunction(), Ins,
 | 
						|
                            Splits);
 | 
						|
  }
 | 
						|
 | 
						|
  AnalyzeFormalArguments(CCInfo, Splits);
 | 
						|
 | 
						|
  for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) {
 | 
						|
 | 
						|
    const ISD::InputArg &Arg = Ins[i];
 | 
						|
    if (Skipped[i]) {
 | 
						|
      InVals.push_back(DAG.getUNDEF(Arg.VT));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    CCValAssign &VA = ArgLocs[ArgIdx++];
 | 
						|
    MVT VT = VA.getLocVT();
 | 
						|
 | 
						|
    if (VA.isMemLoc()) {
 | 
						|
      VT = Ins[i].VT;
 | 
						|
      EVT MemVT = Splits[i].VT;
 | 
						|
      const unsigned Offset = 36 + VA.getLocMemOffset();
 | 
						|
      // The first 36 bytes of the input buffer contains information about
 | 
						|
      // thread group and global sizes.
 | 
						|
      SDValue Arg = LowerParameter(DAG, VT, MemVT,  DL, DAG.getRoot(),
 | 
						|
                                   Offset, Ins[i].Flags.isSExt());
 | 
						|
 | 
						|
      const PointerType *ParamTy =
 | 
						|
        dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex()));
 | 
						|
      if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
 | 
						|
          ParamTy && ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
 | 
						|
        // On SI local pointers are just offsets into LDS, so they are always
 | 
						|
        // less than 16-bits.  On CI and newer they could potentially be
 | 
						|
        // real pointers, so we can't guarantee their size.
 | 
						|
        Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg,
 | 
						|
                          DAG.getValueType(MVT::i16));
 | 
						|
      }
 | 
						|
 | 
						|
      InVals.push_back(Arg);
 | 
						|
      Info->ABIArgOffset = Offset + MemVT.getStoreSize();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    assert(VA.isRegLoc() && "Parameter must be in a register!");
 | 
						|
 | 
						|
    unsigned Reg = VA.getLocReg();
 | 
						|
 | 
						|
    if (VT == MVT::i64) {
 | 
						|
      // For now assume it is a pointer
 | 
						|
      Reg = TRI->getMatchingSuperReg(Reg, AMDGPU::sub0,
 | 
						|
                                     &AMDGPU::SReg_64RegClass);
 | 
						|
      Reg = MF.addLiveIn(Reg, &AMDGPU::SReg_64RegClass);
 | 
						|
      InVals.push_back(DAG.getCopyFromReg(Chain, DL, Reg, VT));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
 | 
						|
 | 
						|
    Reg = MF.addLiveIn(Reg, RC);
 | 
						|
    SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT);
 | 
						|
 | 
						|
    if (Arg.VT.isVector()) {
 | 
						|
 | 
						|
      // Build a vector from the registers
 | 
						|
      Type *ParamType = FType->getParamType(Arg.getOrigArgIndex());
 | 
						|
      unsigned NumElements = ParamType->getVectorNumElements();
 | 
						|
 | 
						|
      SmallVector<SDValue, 4> Regs;
 | 
						|
      Regs.push_back(Val);
 | 
						|
      for (unsigned j = 1; j != NumElements; ++j) {
 | 
						|
        Reg = ArgLocs[ArgIdx++].getLocReg();
 | 
						|
        Reg = MF.addLiveIn(Reg, RC);
 | 
						|
        Regs.push_back(DAG.getCopyFromReg(Chain, DL, Reg, VT));
 | 
						|
      }
 | 
						|
 | 
						|
      // Fill up the missing vector elements
 | 
						|
      NumElements = Arg.VT.getVectorNumElements() - NumElements;
 | 
						|
      Regs.append(NumElements, DAG.getUNDEF(VT));
 | 
						|
 | 
						|
      InVals.push_back(DAG.getNode(ISD::BUILD_VECTOR, DL, Arg.VT, Regs));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    InVals.push_back(Val);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Info->getShaderType() != ShaderType::COMPUTE) {
 | 
						|
    unsigned ScratchIdx = CCInfo.getFirstUnallocated(ArrayRef<MCPhysReg>(
 | 
						|
        AMDGPU::SGPR_32RegClass.begin(), AMDGPU::SGPR_32RegClass.getNumRegs()));
 | 
						|
    Info->ScratchOffsetReg = AMDGPU::SGPR_32RegClass.getRegister(ScratchIdx);
 | 
						|
  }
 | 
						|
  return Chain;
 | 
						|
}
 | 
						|
 | 
						|
MachineBasicBlock * SITargetLowering::EmitInstrWithCustomInserter(
 | 
						|
    MachineInstr * MI, MachineBasicBlock * BB) const {
 | 
						|
 | 
						|
  MachineBasicBlock::iterator I = *MI;
 | 
						|
  const SIInstrInfo *TII =
 | 
						|
      static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
 | 
						|
 | 
						|
  switch (MI->getOpcode()) {
 | 
						|
  default:
 | 
						|
    return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
 | 
						|
  case AMDGPU::BRANCH:
 | 
						|
    return BB;
 | 
						|
  case AMDGPU::SI_RegisterStorePseudo: {
 | 
						|
    MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
 | 
						|
    unsigned Reg = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
 | 
						|
    MachineInstrBuilder MIB =
 | 
						|
        BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::SI_RegisterStore),
 | 
						|
                Reg);
 | 
						|
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i)
 | 
						|
      MIB.addOperand(MI->getOperand(i));
 | 
						|
 | 
						|
    MI->eraseFromParent();
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  }
 | 
						|
  return BB;
 | 
						|
}
 | 
						|
 | 
						|
bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const {
 | 
						|
  // This currently forces unfolding various combinations of fsub into fma with
 | 
						|
  // free fneg'd operands. As long as we have fast FMA (controlled by
 | 
						|
  // isFMAFasterThanFMulAndFAdd), we should perform these.
 | 
						|
 | 
						|
  // When fma is quarter rate, for f64 where add / sub are at best half rate,
 | 
						|
  // most of these combines appear to be cycle neutral but save on instruction
 | 
						|
  // count / code size.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
EVT SITargetLowering::getSetCCResultType(LLVMContext &Ctx, EVT VT) const {
 | 
						|
  if (!VT.isVector()) {
 | 
						|
    return MVT::i1;
 | 
						|
  }
 | 
						|
  return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements());
 | 
						|
}
 | 
						|
 | 
						|
MVT SITargetLowering::getScalarShiftAmountTy(EVT VT) const {
 | 
						|
  return MVT::i32;
 | 
						|
}
 | 
						|
 | 
						|
// Answering this is somewhat tricky and depends on the specific device which
 | 
						|
// have different rates for fma or all f64 operations.
 | 
						|
//
 | 
						|
// v_fma_f64 and v_mul_f64 always take the same number of cycles as each other
 | 
						|
// regardless of which device (although the number of cycles differs between
 | 
						|
// devices), so it is always profitable for f64.
 | 
						|
//
 | 
						|
// v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable
 | 
						|
// only on full rate devices. Normally, we should prefer selecting v_mad_f32
 | 
						|
// which we can always do even without fused FP ops since it returns the same
 | 
						|
// result as the separate operations and since it is always full
 | 
						|
// rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32
 | 
						|
// however does not support denormals, so we do report fma as faster if we have
 | 
						|
// a fast fma device and require denormals.
 | 
						|
//
 | 
						|
bool SITargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
 | 
						|
  VT = VT.getScalarType();
 | 
						|
 | 
						|
  if (!VT.isSimple())
 | 
						|
    return false;
 | 
						|
 | 
						|
  switch (VT.getSimpleVT().SimpleTy) {
 | 
						|
  case MVT::f32:
 | 
						|
    // This is as fast on some subtargets. However, we always have full rate f32
 | 
						|
    // mad available which returns the same result as the separate operations
 | 
						|
    // which we should prefer over fma. We can't use this if we want to support
 | 
						|
    // denormals, so only report this in these cases.
 | 
						|
    return Subtarget->hasFP32Denormals() && Subtarget->hasFastFMAF32();
 | 
						|
  case MVT::f64:
 | 
						|
    return true;
 | 
						|
  default:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Custom DAG Lowering Operations
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  switch (Op.getOpcode()) {
 | 
						|
  default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
 | 
						|
  case ISD::FrameIndex: return LowerFrameIndex(Op, DAG);
 | 
						|
  case ISD::BRCOND: return LowerBRCOND(Op, DAG);
 | 
						|
  case ISD::LOAD: {
 | 
						|
    SDValue Result = LowerLOAD(Op, DAG);
 | 
						|
    assert((!Result.getNode() ||
 | 
						|
            Result.getNode()->getNumValues() == 2) &&
 | 
						|
           "Load should return a value and a chain");
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
 | 
						|
  case ISD::FSIN:
 | 
						|
  case ISD::FCOS:
 | 
						|
    return LowerTrig(Op, DAG);
 | 
						|
  case ISD::SELECT: return LowerSELECT(Op, DAG);
 | 
						|
  case ISD::FDIV: return LowerFDIV(Op, DAG);
 | 
						|
  case ISD::STORE: return LowerSTORE(Op, DAG);
 | 
						|
  case ISD::GlobalAddress: {
 | 
						|
    MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
    SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
 | 
						|
    return LowerGlobalAddress(MFI, Op, DAG);
 | 
						|
  }
 | 
						|
  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
 | 
						|
  case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG);
 | 
						|
  }
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Helper function for LowerBRCOND
 | 
						|
static SDNode *findUser(SDValue Value, unsigned Opcode) {
 | 
						|
 | 
						|
  SDNode *Parent = Value.getNode();
 | 
						|
  for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end();
 | 
						|
       I != E; ++I) {
 | 
						|
 | 
						|
    if (I.getUse().get() != Value)
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (I->getOpcode() == Opcode)
 | 
						|
      return *I;
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
SDValue SITargetLowering::LowerFrameIndex(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
 | 
						|
  FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Op);
 | 
						|
  unsigned FrameIndex = FINode->getIndex();
 | 
						|
 | 
						|
  return DAG.getTargetFrameIndex(FrameIndex, MVT::i32);
 | 
						|
}
 | 
						|
 | 
						|
/// This transforms the control flow intrinsics to get the branch destination as
 | 
						|
/// last parameter, also switches branch target with BR if the need arise
 | 
						|
SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND,
 | 
						|
                                      SelectionDAG &DAG) const {
 | 
						|
 | 
						|
  SDLoc DL(BRCOND);
 | 
						|
 | 
						|
  SDNode *Intr = BRCOND.getOperand(1).getNode();
 | 
						|
  SDValue Target = BRCOND.getOperand(2);
 | 
						|
  SDNode *BR = nullptr;
 | 
						|
 | 
						|
  if (Intr->getOpcode() == ISD::SETCC) {
 | 
						|
    // As long as we negate the condition everything is fine
 | 
						|
    SDNode *SetCC = Intr;
 | 
						|
    assert(SetCC->getConstantOperandVal(1) == 1);
 | 
						|
    assert(cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() ==
 | 
						|
           ISD::SETNE);
 | 
						|
    Intr = SetCC->getOperand(0).getNode();
 | 
						|
 | 
						|
  } else {
 | 
						|
    // Get the target from BR if we don't negate the condition
 | 
						|
    BR = findUser(BRCOND, ISD::BR);
 | 
						|
    Target = BR->getOperand(1);
 | 
						|
  }
 | 
						|
 | 
						|
  assert(Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN);
 | 
						|
 | 
						|
  // Build the result and
 | 
						|
  ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end());
 | 
						|
 | 
						|
  // operands of the new intrinsic call
 | 
						|
  SmallVector<SDValue, 4> Ops;
 | 
						|
  Ops.push_back(BRCOND.getOperand(0));
 | 
						|
  Ops.append(Intr->op_begin() + 1, Intr->op_end());
 | 
						|
  Ops.push_back(Target);
 | 
						|
 | 
						|
  // build the new intrinsic call
 | 
						|
  SDNode *Result = DAG.getNode(
 | 
						|
    Res.size() > 1 ? ISD::INTRINSIC_W_CHAIN : ISD::INTRINSIC_VOID, DL,
 | 
						|
    DAG.getVTList(Res), Ops).getNode();
 | 
						|
 | 
						|
  if (BR) {
 | 
						|
    // Give the branch instruction our target
 | 
						|
    SDValue Ops[] = {
 | 
						|
      BR->getOperand(0),
 | 
						|
      BRCOND.getOperand(2)
 | 
						|
    };
 | 
						|
    SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops);
 | 
						|
    DAG.ReplaceAllUsesWith(BR, NewBR.getNode());
 | 
						|
    BR = NewBR.getNode();
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue Chain = SDValue(Result, Result->getNumValues() - 1);
 | 
						|
 | 
						|
  // Copy the intrinsic results to registers
 | 
						|
  for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) {
 | 
						|
    SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg);
 | 
						|
    if (!CopyToReg)
 | 
						|
      continue;
 | 
						|
 | 
						|
    Chain = DAG.getCopyToReg(
 | 
						|
      Chain, DL,
 | 
						|
      CopyToReg->getOperand(1),
 | 
						|
      SDValue(Result, i - 1),
 | 
						|
      SDValue());
 | 
						|
 | 
						|
    DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0));
 | 
						|
  }
 | 
						|
 | 
						|
  // Remove the old intrinsic from the chain
 | 
						|
  DAG.ReplaceAllUsesOfValueWith(
 | 
						|
    SDValue(Intr, Intr->getNumValues() - 1),
 | 
						|
    Intr->getOperand(0));
 | 
						|
 | 
						|
  return Chain;
 | 
						|
}
 | 
						|
 | 
						|
SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
 | 
						|
                                             SDValue Op,
 | 
						|
                                             SelectionDAG &DAG) const {
 | 
						|
  GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op);
 | 
						|
 | 
						|
  if (GSD->getAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS)
 | 
						|
    return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG);
 | 
						|
 | 
						|
  SDLoc DL(GSD);
 | 
						|
  const GlobalValue *GV = GSD->getGlobal();
 | 
						|
  MVT PtrVT = getPointerTy(GSD->getAddressSpace());
 | 
						|
 | 
						|
  SDValue Ptr = DAG.getNode(AMDGPUISD::CONST_DATA_PTR, DL, PtrVT);
 | 
						|
  SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32);
 | 
						|
 | 
						|
  SDValue PtrLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Ptr,
 | 
						|
                              DAG.getConstant(0, DL, MVT::i32));
 | 
						|
  SDValue PtrHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Ptr,
 | 
						|
                              DAG.getConstant(1, DL, MVT::i32));
 | 
						|
 | 
						|
  SDValue Lo = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i32, MVT::Glue),
 | 
						|
                           PtrLo, GA);
 | 
						|
  SDValue Hi = DAG.getNode(ISD::ADDE, DL, DAG.getVTList(MVT::i32, MVT::Glue),
 | 
						|
                           PtrHi, DAG.getConstant(0, DL, MVT::i32),
 | 
						|
                           SDValue(Lo.getNode(), 1));
 | 
						|
  return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Lo, Hi);
 | 
						|
}
 | 
						|
 | 
						|
SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain, SDLoc DL,
 | 
						|
                                   SDValue V) const {
 | 
						|
  // We can't use CopyToReg, because MachineCSE won't combine COPY instructions,
 | 
						|
  // so we will end up with redundant moves to m0.
 | 
						|
  //
 | 
						|
  // We can't use S_MOV_B32, because there is no way to specify m0 as the
 | 
						|
  // destination register.
 | 
						|
  //
 | 
						|
  // We have to use them both.  Machine cse will combine all the S_MOV_B32
 | 
						|
  // instructions and the register coalescer eliminate the extra copies.
 | 
						|
  SDNode *M0 = DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, V.getValueType(), V);
 | 
						|
  return DAG.getCopyToReg(Chain, DL, DAG.getRegister(AMDGPU::M0, MVT::i32),
 | 
						|
                          SDValue(M0, 0), SDValue()); // Glue
 | 
						|
                                                      // A Null SDValue creates
 | 
						|
                                                      // a glue result.
 | 
						|
}
 | 
						|
 | 
						|
SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
 | 
						|
                                                  SelectionDAG &DAG) const {
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  const SIRegisterInfo *TRI =
 | 
						|
      static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo());
 | 
						|
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
  SDLoc DL(Op);
 | 
						|
  unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
 | 
						|
 | 
						|
  switch (IntrinsicID) {
 | 
						|
  case Intrinsic::r600_read_ngroups_x:
 | 
						|
    return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
 | 
						|
                          SI::KernelInputOffsets::NGROUPS_X, false);
 | 
						|
  case Intrinsic::r600_read_ngroups_y:
 | 
						|
    return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
 | 
						|
                          SI::KernelInputOffsets::NGROUPS_Y, false);
 | 
						|
  case Intrinsic::r600_read_ngroups_z:
 | 
						|
    return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
 | 
						|
                          SI::KernelInputOffsets::NGROUPS_Z, false);
 | 
						|
  case Intrinsic::r600_read_global_size_x:
 | 
						|
    return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
 | 
						|
                          SI::KernelInputOffsets::GLOBAL_SIZE_X, false);
 | 
						|
  case Intrinsic::r600_read_global_size_y:
 | 
						|
    return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
 | 
						|
                          SI::KernelInputOffsets::GLOBAL_SIZE_Y, false);
 | 
						|
  case Intrinsic::r600_read_global_size_z:
 | 
						|
    return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
 | 
						|
                          SI::KernelInputOffsets::GLOBAL_SIZE_Z, false);
 | 
						|
  case Intrinsic::r600_read_local_size_x:
 | 
						|
    return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
 | 
						|
                          SI::KernelInputOffsets::LOCAL_SIZE_X, false);
 | 
						|
  case Intrinsic::r600_read_local_size_y:
 | 
						|
    return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
 | 
						|
                          SI::KernelInputOffsets::LOCAL_SIZE_Y, false);
 | 
						|
  case Intrinsic::r600_read_local_size_z:
 | 
						|
    return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
 | 
						|
                          SI::KernelInputOffsets::LOCAL_SIZE_Z, false);
 | 
						|
 | 
						|
  case Intrinsic::AMDGPU_read_workdim:
 | 
						|
    return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
 | 
						|
                          MF.getInfo<SIMachineFunctionInfo>()->ABIArgOffset,
 | 
						|
                          false);
 | 
						|
 | 
						|
  case Intrinsic::r600_read_tgid_x:
 | 
						|
    return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
 | 
						|
      TRI->getPreloadedValue(MF, SIRegisterInfo::TGID_X), VT);
 | 
						|
  case Intrinsic::r600_read_tgid_y:
 | 
						|
    return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
 | 
						|
      TRI->getPreloadedValue(MF, SIRegisterInfo::TGID_Y), VT);
 | 
						|
  case Intrinsic::r600_read_tgid_z:
 | 
						|
    return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
 | 
						|
      TRI->getPreloadedValue(MF, SIRegisterInfo::TGID_Z), VT);
 | 
						|
  case Intrinsic::r600_read_tidig_x:
 | 
						|
    return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass,
 | 
						|
      TRI->getPreloadedValue(MF, SIRegisterInfo::TIDIG_X), VT);
 | 
						|
  case Intrinsic::r600_read_tidig_y:
 | 
						|
    return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass,
 | 
						|
      TRI->getPreloadedValue(MF, SIRegisterInfo::TIDIG_Y), VT);
 | 
						|
  case Intrinsic::r600_read_tidig_z:
 | 
						|
    return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass,
 | 
						|
      TRI->getPreloadedValue(MF, SIRegisterInfo::TIDIG_Z), VT);
 | 
						|
  case AMDGPUIntrinsic::SI_load_const: {
 | 
						|
    SDValue Ops[] = {
 | 
						|
      Op.getOperand(1),
 | 
						|
      Op.getOperand(2)
 | 
						|
    };
 | 
						|
 | 
						|
    MachineMemOperand *MMO = MF.getMachineMemOperand(
 | 
						|
      MachinePointerInfo(),
 | 
						|
      MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant,
 | 
						|
      VT.getStoreSize(), 4);
 | 
						|
    return DAG.getMemIntrinsicNode(AMDGPUISD::LOAD_CONSTANT, DL,
 | 
						|
                                   Op->getVTList(), Ops, VT, MMO);
 | 
						|
  }
 | 
						|
  case AMDGPUIntrinsic::SI_sample:
 | 
						|
    return LowerSampleIntrinsic(AMDGPUISD::SAMPLE, Op, DAG);
 | 
						|
  case AMDGPUIntrinsic::SI_sampleb:
 | 
						|
    return LowerSampleIntrinsic(AMDGPUISD::SAMPLEB, Op, DAG);
 | 
						|
  case AMDGPUIntrinsic::SI_sampled:
 | 
						|
    return LowerSampleIntrinsic(AMDGPUISD::SAMPLED, Op, DAG);
 | 
						|
  case AMDGPUIntrinsic::SI_samplel:
 | 
						|
    return LowerSampleIntrinsic(AMDGPUISD::SAMPLEL, Op, DAG);
 | 
						|
  case AMDGPUIntrinsic::SI_vs_load_input:
 | 
						|
    return DAG.getNode(AMDGPUISD::LOAD_INPUT, DL, VT,
 | 
						|
                       Op.getOperand(1),
 | 
						|
                       Op.getOperand(2),
 | 
						|
                       Op.getOperand(3));
 | 
						|
 | 
						|
  case AMDGPUIntrinsic::AMDGPU_fract:
 | 
						|
  case AMDGPUIntrinsic::AMDIL_fraction: // Legacy name.
 | 
						|
    return DAG.getNode(ISD::FSUB, DL, VT, Op.getOperand(1),
 | 
						|
                       DAG.getNode(ISD::FFLOOR, DL, VT, Op.getOperand(1)));
 | 
						|
  case AMDGPUIntrinsic::SI_fs_constant: {
 | 
						|
    SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(3));
 | 
						|
    SDValue Glue = M0.getValue(1);
 | 
						|
    return DAG.getNode(AMDGPUISD::INTERP_MOV, DL, MVT::f32,
 | 
						|
                       DAG.getConstant(2, DL, MVT::i32), // P0
 | 
						|
                       Op.getOperand(1), Op.getOperand(2), Glue);
 | 
						|
  }
 | 
						|
  case AMDGPUIntrinsic::SI_fs_interp: {
 | 
						|
    SDValue IJ = Op.getOperand(4);
 | 
						|
    SDValue I = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, IJ,
 | 
						|
                            DAG.getConstant(0, DL, MVT::i32));
 | 
						|
    SDValue J = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, IJ,
 | 
						|
                            DAG.getConstant(1, DL, MVT::i32));
 | 
						|
    SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(3));
 | 
						|
    SDValue Glue = M0.getValue(1);
 | 
						|
    SDValue P1 = DAG.getNode(AMDGPUISD::INTERP_P1, DL,
 | 
						|
                             DAG.getVTList(MVT::f32, MVT::Glue),
 | 
						|
                             I, Op.getOperand(1), Op.getOperand(2), Glue);
 | 
						|
    Glue = SDValue(P1.getNode(), 1);
 | 
						|
    return DAG.getNode(AMDGPUISD::INTERP_P2, DL, MVT::f32, P1, J,
 | 
						|
                             Op.getOperand(1), Op.getOperand(2), Glue);
 | 
						|
  }
 | 
						|
  default:
 | 
						|
    return AMDGPUTargetLowering::LowerOperation(Op, DAG);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op,
 | 
						|
                                              SelectionDAG &DAG) const {
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  SDLoc DL(Op);
 | 
						|
  SDValue Chain = Op.getOperand(0);
 | 
						|
  unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
 | 
						|
 | 
						|
  switch (IntrinsicID) {
 | 
						|
  case AMDGPUIntrinsic::SI_sendmsg: {
 | 
						|
    Chain = copyToM0(DAG, Chain, DL, Op.getOperand(3));
 | 
						|
    SDValue Glue = Chain.getValue(1);
 | 
						|
    return DAG.getNode(AMDGPUISD::SENDMSG, DL, MVT::Other, Chain,
 | 
						|
                       Op.getOperand(2), Glue);
 | 
						|
  }
 | 
						|
  case AMDGPUIntrinsic::SI_tbuffer_store: {
 | 
						|
    SDValue Ops[] = {
 | 
						|
      Chain,
 | 
						|
      Op.getOperand(2),
 | 
						|
      Op.getOperand(3),
 | 
						|
      Op.getOperand(4),
 | 
						|
      Op.getOperand(5),
 | 
						|
      Op.getOperand(6),
 | 
						|
      Op.getOperand(7),
 | 
						|
      Op.getOperand(8),
 | 
						|
      Op.getOperand(9),
 | 
						|
      Op.getOperand(10),
 | 
						|
      Op.getOperand(11),
 | 
						|
      Op.getOperand(12),
 | 
						|
      Op.getOperand(13),
 | 
						|
      Op.getOperand(14)
 | 
						|
    };
 | 
						|
 | 
						|
    EVT VT = Op.getOperand(3).getValueType();
 | 
						|
 | 
						|
    MachineMemOperand *MMO = MF.getMachineMemOperand(
 | 
						|
      MachinePointerInfo(),
 | 
						|
      MachineMemOperand::MOStore,
 | 
						|
      VT.getStoreSize(), 4);
 | 
						|
    return DAG.getMemIntrinsicNode(AMDGPUISD::TBUFFER_STORE_FORMAT, DL,
 | 
						|
                                   Op->getVTList(), Ops, VT, MMO);
 | 
						|
  }
 | 
						|
  default:
 | 
						|
    return SDValue();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  SDLoc DL(Op);
 | 
						|
  LoadSDNode *Load = cast<LoadSDNode>(Op);
 | 
						|
 | 
						|
  if (Op.getValueType().isVector()) {
 | 
						|
    assert(Op.getValueType().getVectorElementType() == MVT::i32 &&
 | 
						|
           "Custom lowering for non-i32 vectors hasn't been implemented.");
 | 
						|
    unsigned NumElements = Op.getValueType().getVectorNumElements();
 | 
						|
    assert(NumElements != 2 && "v2 loads are supported for all address spaces.");
 | 
						|
    switch (Load->getAddressSpace()) {
 | 
						|
      default: break;
 | 
						|
      case AMDGPUAS::GLOBAL_ADDRESS:
 | 
						|
      case AMDGPUAS::PRIVATE_ADDRESS:
 | 
						|
        // v4 loads are supported for private and global memory.
 | 
						|
        if (NumElements <= 4)
 | 
						|
          break;
 | 
						|
        // fall-through
 | 
						|
      case AMDGPUAS::LOCAL_ADDRESS:
 | 
						|
        return ScalarizeVectorLoad(Op, DAG);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return AMDGPUTargetLowering::LowerLOAD(Op, DAG);
 | 
						|
}
 | 
						|
 | 
						|
SDValue SITargetLowering::LowerSampleIntrinsic(unsigned Opcode,
 | 
						|
                                               const SDValue &Op,
 | 
						|
                                               SelectionDAG &DAG) const {
 | 
						|
  return DAG.getNode(Opcode, SDLoc(Op), Op.getValueType(), Op.getOperand(1),
 | 
						|
                     Op.getOperand(2),
 | 
						|
                     Op.getOperand(3),
 | 
						|
                     Op.getOperand(4));
 | 
						|
}
 | 
						|
 | 
						|
SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  if (Op.getValueType() != MVT::i64)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDLoc DL(Op);
 | 
						|
  SDValue Cond = Op.getOperand(0);
 | 
						|
 | 
						|
  SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
 | 
						|
  SDValue One = DAG.getConstant(1, DL, MVT::i32);
 | 
						|
 | 
						|
  SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1));
 | 
						|
  SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2));
 | 
						|
 | 
						|
  SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero);
 | 
						|
  SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero);
 | 
						|
 | 
						|
  SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1);
 | 
						|
 | 
						|
  SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One);
 | 
						|
  SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One);
 | 
						|
 | 
						|
  SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1);
 | 
						|
 | 
						|
  SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2i32, Lo, Hi);
 | 
						|
  return DAG.getNode(ISD::BITCAST, DL, MVT::i64, Res);
 | 
						|
}
 | 
						|
 | 
						|
// Catch division cases where we can use shortcuts with rcp and rsq
 | 
						|
// instructions.
 | 
						|
SDValue SITargetLowering::LowerFastFDIV(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  SDLoc SL(Op);
 | 
						|
  SDValue LHS = Op.getOperand(0);
 | 
						|
  SDValue RHS = Op.getOperand(1);
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
  bool Unsafe = DAG.getTarget().Options.UnsafeFPMath;
 | 
						|
 | 
						|
  if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) {
 | 
						|
    if ((Unsafe || (VT == MVT::f32 && !Subtarget->hasFP32Denormals())) &&
 | 
						|
        CLHS->isExactlyValue(1.0)) {
 | 
						|
      // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to
 | 
						|
      // the CI documentation has a worst case error of 1 ulp.
 | 
						|
      // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to
 | 
						|
      // use it as long as we aren't trying to use denormals.
 | 
						|
 | 
						|
      // 1.0 / sqrt(x) -> rsq(x)
 | 
						|
      //
 | 
						|
      // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP
 | 
						|
      // error seems really high at 2^29 ULP.
 | 
						|
      if (RHS.getOpcode() == ISD::FSQRT)
 | 
						|
        return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0));
 | 
						|
 | 
						|
      // 1.0 / x -> rcp(x)
 | 
						|
      return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Unsafe) {
 | 
						|
    // Turn into multiply by the reciprocal.
 | 
						|
    // x / y -> x * (1.0 / y)
 | 
						|
    SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
 | 
						|
    return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip);
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  SDValue FastLowered = LowerFastFDIV(Op, DAG);
 | 
						|
  if (FastLowered.getNode())
 | 
						|
    return FastLowered;
 | 
						|
 | 
						|
  // This uses v_rcp_f32 which does not handle denormals. Let this hit a
 | 
						|
  // selection error for now rather than do something incorrect.
 | 
						|
  if (Subtarget->hasFP32Denormals())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDLoc SL(Op);
 | 
						|
  SDValue LHS = Op.getOperand(0);
 | 
						|
  SDValue RHS = Op.getOperand(1);
 | 
						|
 | 
						|
  SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS);
 | 
						|
 | 
						|
  const APFloat K0Val(BitsToFloat(0x6f800000));
 | 
						|
  const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32);
 | 
						|
 | 
						|
  const APFloat K1Val(BitsToFloat(0x2f800000));
 | 
						|
  const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32);
 | 
						|
 | 
						|
  const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
 | 
						|
 | 
						|
  EVT SetCCVT = getSetCCResultType(*DAG.getContext(), MVT::f32);
 | 
						|
 | 
						|
  SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT);
 | 
						|
 | 
						|
  SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One);
 | 
						|
 | 
						|
  r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3);
 | 
						|
 | 
						|
  SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1);
 | 
						|
 | 
						|
  SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0);
 | 
						|
 | 
						|
  return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul);
 | 
						|
}
 | 
						|
 | 
						|
SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  if (DAG.getTarget().Options.UnsafeFPMath)
 | 
						|
    return LowerFastFDIV(Op, DAG);
 | 
						|
 | 
						|
  SDLoc SL(Op);
 | 
						|
  SDValue X = Op.getOperand(0);
 | 
						|
  SDValue Y = Op.getOperand(1);
 | 
						|
 | 
						|
  const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
 | 
						|
 | 
						|
  SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1);
 | 
						|
 | 
						|
  SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X);
 | 
						|
 | 
						|
  SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0);
 | 
						|
 | 
						|
  SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0);
 | 
						|
 | 
						|
  SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One);
 | 
						|
 | 
						|
  SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp);
 | 
						|
 | 
						|
  SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One);
 | 
						|
 | 
						|
  SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X);
 | 
						|
 | 
						|
  SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1);
 | 
						|
  SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3);
 | 
						|
 | 
						|
  SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64,
 | 
						|
                             NegDivScale0, Mul, DivScale1);
 | 
						|
 | 
						|
  SDValue Scale;
 | 
						|
 | 
						|
  if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) {
 | 
						|
    // Workaround a hardware bug on SI where the condition output from div_scale
 | 
						|
    // is not usable.
 | 
						|
 | 
						|
    const SDValue Hi = DAG.getConstant(1, SL, MVT::i32);
 | 
						|
 | 
						|
    // Figure out if the scale to use for div_fmas.
 | 
						|
    SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
 | 
						|
    SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y);
 | 
						|
    SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0);
 | 
						|
    SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1);
 | 
						|
 | 
						|
    SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi);
 | 
						|
    SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi);
 | 
						|
 | 
						|
    SDValue Scale0Hi
 | 
						|
      = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi);
 | 
						|
    SDValue Scale1Hi
 | 
						|
      = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi);
 | 
						|
 | 
						|
    SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ);
 | 
						|
    SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ);
 | 
						|
    Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen);
 | 
						|
  } else {
 | 
						|
    Scale = DivScale1.getValue(1);
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64,
 | 
						|
                             Fma4, Fma3, Mul, Scale);
 | 
						|
 | 
						|
  return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X);
 | 
						|
}
 | 
						|
 | 
						|
SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
 | 
						|
  if (VT == MVT::f32)
 | 
						|
    return LowerFDIV32(Op, DAG);
 | 
						|
 | 
						|
  if (VT == MVT::f64)
 | 
						|
    return LowerFDIV64(Op, DAG);
 | 
						|
 | 
						|
  llvm_unreachable("Unexpected type for fdiv");
 | 
						|
}
 | 
						|
 | 
						|
SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  SDLoc DL(Op);
 | 
						|
  StoreSDNode *Store = cast<StoreSDNode>(Op);
 | 
						|
  EVT VT = Store->getMemoryVT();
 | 
						|
 | 
						|
  // These stores are legal.
 | 
						|
  if (Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) {
 | 
						|
    if (VT.isVector() && VT.getVectorNumElements() > 4)
 | 
						|
      return ScalarizeVectorStore(Op, DAG);
 | 
						|
    return SDValue();
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue Ret = AMDGPUTargetLowering::LowerSTORE(Op, DAG);
 | 
						|
  if (Ret.getNode())
 | 
						|
    return Ret;
 | 
						|
 | 
						|
  if (VT.isVector() && VT.getVectorNumElements() >= 8)
 | 
						|
      return ScalarizeVectorStore(Op, DAG);
 | 
						|
 | 
						|
  if (VT == MVT::i1)
 | 
						|
    return DAG.getTruncStore(Store->getChain(), DL,
 | 
						|
                        DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32),
 | 
						|
                        Store->getBasePtr(), MVT::i1, Store->getMemOperand());
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  SDLoc DL(Op);
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
  SDValue Arg = Op.getOperand(0);
 | 
						|
  SDValue FractPart = DAG.getNode(AMDGPUISD::FRACT, DL, VT,
 | 
						|
                                  DAG.getNode(ISD::FMUL, DL, VT, Arg,
 | 
						|
                                              DAG.getConstantFP(0.5/M_PI, DL,
 | 
						|
                                                                VT)));
 | 
						|
 | 
						|
  switch (Op.getOpcode()) {
 | 
						|
  case ISD::FCOS:
 | 
						|
    return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, FractPart);
 | 
						|
  case ISD::FSIN:
 | 
						|
    return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, FractPart);
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Wrong trig opcode");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Custom DAG optimizations
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N,
 | 
						|
                                                     DAGCombinerInfo &DCI) const {
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
  EVT ScalarVT = VT.getScalarType();
 | 
						|
  if (ScalarVT != MVT::f32)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SelectionDAG &DAG = DCI.DAG;
 | 
						|
  SDLoc DL(N);
 | 
						|
 | 
						|
  SDValue Src = N->getOperand(0);
 | 
						|
  EVT SrcVT = Src.getValueType();
 | 
						|
 | 
						|
  // TODO: We could try to match extracting the higher bytes, which would be
 | 
						|
  // easier if i8 vectors weren't promoted to i32 vectors, particularly after
 | 
						|
  // types are legalized. v4i8 -> v4f32 is probably the only case to worry
 | 
						|
  // about in practice.
 | 
						|
  if (DCI.isAfterLegalizeVectorOps() && SrcVT == MVT::i32) {
 | 
						|
    if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) {
 | 
						|
      SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, VT, Src);
 | 
						|
      DCI.AddToWorklist(Cvt.getNode());
 | 
						|
      return Cvt;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // We are primarily trying to catch operations on illegal vector types
 | 
						|
  // before they are expanded.
 | 
						|
  // For scalars, we can use the more flexible method of checking masked bits
 | 
						|
  // after legalization.
 | 
						|
  if (!DCI.isBeforeLegalize() ||
 | 
						|
      !SrcVT.isVector() ||
 | 
						|
      SrcVT.getVectorElementType() != MVT::i8) {
 | 
						|
    return SDValue();
 | 
						|
  }
 | 
						|
 | 
						|
  assert(DCI.isBeforeLegalize() && "Unexpected legal type");
 | 
						|
 | 
						|
  // Weird sized vectors are a pain to handle, but we know 3 is really the same
 | 
						|
  // size as 4.
 | 
						|
  unsigned NElts = SrcVT.getVectorNumElements();
 | 
						|
  if (!SrcVT.isSimple() && NElts != 3)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Handle v4i8 -> v4f32 extload. Replace the v4i8 with a legal i32 load to
 | 
						|
  // prevent a mess from expanding to v4i32 and repacking.
 | 
						|
  if (ISD::isNormalLoad(Src.getNode()) && Src.hasOneUse()) {
 | 
						|
    EVT LoadVT = getEquivalentMemType(*DAG.getContext(), SrcVT);
 | 
						|
    EVT RegVT = getEquivalentLoadRegType(*DAG.getContext(), SrcVT);
 | 
						|
    EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f32, NElts);
 | 
						|
    LoadSDNode *Load = cast<LoadSDNode>(Src);
 | 
						|
 | 
						|
    unsigned AS = Load->getAddressSpace();
 | 
						|
    unsigned Align = Load->getAlignment();
 | 
						|
    Type *Ty = LoadVT.getTypeForEVT(*DAG.getContext());
 | 
						|
    unsigned ABIAlignment = getDataLayout()->getABITypeAlignment(Ty);
 | 
						|
 | 
						|
    // Don't try to replace the load if we have to expand it due to alignment
 | 
						|
    // problems. Otherwise we will end up scalarizing the load, and trying to
 | 
						|
    // repack into the vector for no real reason.
 | 
						|
    if (Align < ABIAlignment &&
 | 
						|
        !allowsMisalignedMemoryAccesses(LoadVT, AS, Align, nullptr)) {
 | 
						|
      return SDValue();
 | 
						|
    }
 | 
						|
 | 
						|
    SDValue NewLoad = DAG.getExtLoad(ISD::ZEXTLOAD, DL, RegVT,
 | 
						|
                                     Load->getChain(),
 | 
						|
                                     Load->getBasePtr(),
 | 
						|
                                     LoadVT,
 | 
						|
                                     Load->getMemOperand());
 | 
						|
 | 
						|
    // Make sure successors of the original load stay after it by updating
 | 
						|
    // them to use the new Chain.
 | 
						|
    DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), NewLoad.getValue(1));
 | 
						|
 | 
						|
    SmallVector<SDValue, 4> Elts;
 | 
						|
    if (RegVT.isVector())
 | 
						|
      DAG.ExtractVectorElements(NewLoad, Elts);
 | 
						|
    else
 | 
						|
      Elts.push_back(NewLoad);
 | 
						|
 | 
						|
    SmallVector<SDValue, 4> Ops;
 | 
						|
 | 
						|
    unsigned EltIdx = 0;
 | 
						|
    for (SDValue Elt : Elts) {
 | 
						|
      unsigned ComponentsInElt = std::min(4u, NElts - 4 * EltIdx);
 | 
						|
      for (unsigned I = 0; I < ComponentsInElt; ++I) {
 | 
						|
        unsigned Opc = AMDGPUISD::CVT_F32_UBYTE0 + I;
 | 
						|
        SDValue Cvt = DAG.getNode(Opc, DL, MVT::f32, Elt);
 | 
						|
        DCI.AddToWorklist(Cvt.getNode());
 | 
						|
        Ops.push_back(Cvt);
 | 
						|
      }
 | 
						|
 | 
						|
      ++EltIdx;
 | 
						|
    }
 | 
						|
 | 
						|
    assert(Ops.size() == NElts);
 | 
						|
 | 
						|
    return DAG.getNode(ISD::BUILD_VECTOR, DL, FloatVT, Ops);
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Return true if the given offset Size in bytes can be folded into
 | 
						|
/// the immediate offsets of a memory instruction for the given address space.
 | 
						|
static bool canFoldOffset(unsigned OffsetSize, unsigned AS,
 | 
						|
                          const AMDGPUSubtarget &STI) {
 | 
						|
  switch (AS) {
 | 
						|
  case AMDGPUAS::GLOBAL_ADDRESS: {
 | 
						|
    // MUBUF instructions a 12-bit offset in bytes.
 | 
						|
    return isUInt<12>(OffsetSize);
 | 
						|
  }
 | 
						|
  case AMDGPUAS::CONSTANT_ADDRESS: {
 | 
						|
    // SMRD instructions have an 8-bit offset in dwords on SI and
 | 
						|
    // a 20-bit offset in bytes on VI.
 | 
						|
    if (STI.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
 | 
						|
      return isUInt<20>(OffsetSize);
 | 
						|
    else
 | 
						|
      return (OffsetSize % 4 == 0) && isUInt<8>(OffsetSize / 4);
 | 
						|
  }
 | 
						|
  case AMDGPUAS::LOCAL_ADDRESS:
 | 
						|
  case AMDGPUAS::REGION_ADDRESS: {
 | 
						|
    // The single offset versions have a 16-bit offset in bytes.
 | 
						|
    return isUInt<16>(OffsetSize);
 | 
						|
  }
 | 
						|
  case AMDGPUAS::PRIVATE_ADDRESS:
 | 
						|
  // Indirect register addressing does not use any offsets.
 | 
						|
  default:
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2)
 | 
						|
 | 
						|
// This is a variant of
 | 
						|
// (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2),
 | 
						|
//
 | 
						|
// The normal DAG combiner will do this, but only if the add has one use since
 | 
						|
// that would increase the number of instructions.
 | 
						|
//
 | 
						|
// This prevents us from seeing a constant offset that can be folded into a
 | 
						|
// memory instruction's addressing mode. If we know the resulting add offset of
 | 
						|
// a pointer can be folded into an addressing offset, we can replace the pointer
 | 
						|
// operand with the add of new constant offset. This eliminates one of the uses,
 | 
						|
// and may allow the remaining use to also be simplified.
 | 
						|
//
 | 
						|
SDValue SITargetLowering::performSHLPtrCombine(SDNode *N,
 | 
						|
                                               unsigned AddrSpace,
 | 
						|
                                               DAGCombinerInfo &DCI) const {
 | 
						|
  SDValue N0 = N->getOperand(0);
 | 
						|
  SDValue N1 = N->getOperand(1);
 | 
						|
 | 
						|
  if (N0.getOpcode() != ISD::ADD)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1);
 | 
						|
  if (!CN1)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1));
 | 
						|
  if (!CAdd)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // If the resulting offset is too large, we can't fold it into the addressing
 | 
						|
  // mode offset.
 | 
						|
  APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue();
 | 
						|
  if (!canFoldOffset(Offset.getZExtValue(), AddrSpace, *Subtarget))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SelectionDAG &DAG = DCI.DAG;
 | 
						|
  SDLoc SL(N);
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
 | 
						|
  SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1);
 | 
						|
  SDValue COffset = DAG.getConstant(Offset, SL, MVT::i32);
 | 
						|
 | 
						|
  return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset);
 | 
						|
}
 | 
						|
 | 
						|
SDValue SITargetLowering::performAndCombine(SDNode *N,
 | 
						|
                                            DAGCombinerInfo &DCI) const {
 | 
						|
  if (DCI.isBeforeLegalize())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SelectionDAG &DAG = DCI.DAG;
 | 
						|
 | 
						|
  // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) ->
 | 
						|
  // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity)
 | 
						|
  SDValue LHS = N->getOperand(0);
 | 
						|
  SDValue RHS = N->getOperand(1);
 | 
						|
 | 
						|
  if (LHS.getOpcode() == ISD::SETCC &&
 | 
						|
      RHS.getOpcode() == ISD::SETCC) {
 | 
						|
    ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
 | 
						|
    ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get();
 | 
						|
 | 
						|
    SDValue X = LHS.getOperand(0);
 | 
						|
    SDValue Y = RHS.getOperand(0);
 | 
						|
    if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X)
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    if (LCC == ISD::SETO) {
 | 
						|
      if (X != LHS.getOperand(1))
 | 
						|
        return SDValue();
 | 
						|
 | 
						|
      if (RCC == ISD::SETUNE) {
 | 
						|
        const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1));
 | 
						|
        if (!C1 || !C1->isInfinity() || C1->isNegative())
 | 
						|
          return SDValue();
 | 
						|
 | 
						|
        const uint32_t Mask = SIInstrFlags::N_NORMAL |
 | 
						|
                              SIInstrFlags::N_SUBNORMAL |
 | 
						|
                              SIInstrFlags::N_ZERO |
 | 
						|
                              SIInstrFlags::P_ZERO |
 | 
						|
                              SIInstrFlags::P_SUBNORMAL |
 | 
						|
                              SIInstrFlags::P_NORMAL;
 | 
						|
 | 
						|
        static_assert(((~(SIInstrFlags::S_NAN |
 | 
						|
                          SIInstrFlags::Q_NAN |
 | 
						|
                          SIInstrFlags::N_INFINITY |
 | 
						|
                          SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask,
 | 
						|
                      "mask not equal");
 | 
						|
 | 
						|
        SDLoc DL(N);
 | 
						|
        return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
 | 
						|
                           X, DAG.getConstant(Mask, DL, MVT::i32));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
SDValue SITargetLowering::performOrCombine(SDNode *N,
 | 
						|
                                           DAGCombinerInfo &DCI) const {
 | 
						|
  SelectionDAG &DAG = DCI.DAG;
 | 
						|
  SDValue LHS = N->getOperand(0);
 | 
						|
  SDValue RHS = N->getOperand(1);
 | 
						|
 | 
						|
  // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2)
 | 
						|
  if (LHS.getOpcode() == AMDGPUISD::FP_CLASS &&
 | 
						|
      RHS.getOpcode() == AMDGPUISD::FP_CLASS) {
 | 
						|
    SDValue Src = LHS.getOperand(0);
 | 
						|
    if (Src != RHS.getOperand(0))
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
 | 
						|
    const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
 | 
						|
    if (!CLHS || !CRHS)
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    // Only 10 bits are used.
 | 
						|
    static const uint32_t MaxMask = 0x3ff;
 | 
						|
 | 
						|
    uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask;
 | 
						|
    SDLoc DL(N);
 | 
						|
    return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
 | 
						|
                       Src, DAG.getConstant(NewMask, DL, MVT::i32));
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
SDValue SITargetLowering::performClassCombine(SDNode *N,
 | 
						|
                                              DAGCombinerInfo &DCI) const {
 | 
						|
  SelectionDAG &DAG = DCI.DAG;
 | 
						|
  SDValue Mask = N->getOperand(1);
 | 
						|
 | 
						|
  // fp_class x, 0 -> false
 | 
						|
  if (const ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Mask)) {
 | 
						|
    if (CMask->isNullValue())
 | 
						|
      return DAG.getConstant(0, SDLoc(N), MVT::i1);
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) {
 | 
						|
  switch (Opc) {
 | 
						|
  case ISD::FMAXNUM:
 | 
						|
    return AMDGPUISD::FMAX3;
 | 
						|
  case AMDGPUISD::SMAX:
 | 
						|
    return AMDGPUISD::SMAX3;
 | 
						|
  case AMDGPUISD::UMAX:
 | 
						|
    return AMDGPUISD::UMAX3;
 | 
						|
  case ISD::FMINNUM:
 | 
						|
    return AMDGPUISD::FMIN3;
 | 
						|
  case AMDGPUISD::SMIN:
 | 
						|
    return AMDGPUISD::SMIN3;
 | 
						|
  case AMDGPUISD::UMIN:
 | 
						|
    return AMDGPUISD::UMIN3;
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Not a min/max opcode");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
SDValue SITargetLowering::performMin3Max3Combine(SDNode *N,
 | 
						|
                                                 DAGCombinerInfo &DCI) const {
 | 
						|
  SelectionDAG &DAG = DCI.DAG;
 | 
						|
 | 
						|
  unsigned Opc = N->getOpcode();
 | 
						|
  SDValue Op0 = N->getOperand(0);
 | 
						|
  SDValue Op1 = N->getOperand(1);
 | 
						|
 | 
						|
  // Only do this if the inner op has one use since this will just increases
 | 
						|
  // register pressure for no benefit.
 | 
						|
 | 
						|
  // max(max(a, b), c)
 | 
						|
  if (Op0.getOpcode() == Opc && Op0.hasOneUse()) {
 | 
						|
    SDLoc DL(N);
 | 
						|
    return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
 | 
						|
                       DL,
 | 
						|
                       N->getValueType(0),
 | 
						|
                       Op0.getOperand(0),
 | 
						|
                       Op0.getOperand(1),
 | 
						|
                       Op1);
 | 
						|
  }
 | 
						|
 | 
						|
  // max(a, max(b, c))
 | 
						|
  if (Op1.getOpcode() == Opc && Op1.hasOneUse()) {
 | 
						|
    SDLoc DL(N);
 | 
						|
    return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
 | 
						|
                       DL,
 | 
						|
                       N->getValueType(0),
 | 
						|
                       Op0,
 | 
						|
                       Op1.getOperand(0),
 | 
						|
                       Op1.getOperand(1));
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
SDValue SITargetLowering::performSetCCCombine(SDNode *N,
 | 
						|
                                              DAGCombinerInfo &DCI) const {
 | 
						|
  SelectionDAG &DAG = DCI.DAG;
 | 
						|
  SDLoc SL(N);
 | 
						|
 | 
						|
  SDValue LHS = N->getOperand(0);
 | 
						|
  SDValue RHS = N->getOperand(1);
 | 
						|
  EVT VT = LHS.getValueType();
 | 
						|
 | 
						|
  if (VT != MVT::f32 && VT != MVT::f64)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Match isinf pattern
 | 
						|
  // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity))
 | 
						|
  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
 | 
						|
  if (CC == ISD::SETOEQ && LHS.getOpcode() == ISD::FABS) {
 | 
						|
    const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
 | 
						|
    if (!CRHS)
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    const APFloat &APF = CRHS->getValueAPF();
 | 
						|
    if (APF.isInfinity() && !APF.isNegative()) {
 | 
						|
      unsigned Mask = SIInstrFlags::P_INFINITY | SIInstrFlags::N_INFINITY;
 | 
						|
      return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0),
 | 
						|
                         DAG.getConstant(Mask, SL, MVT::i32));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
SDValue SITargetLowering::PerformDAGCombine(SDNode *N,
 | 
						|
                                            DAGCombinerInfo &DCI) const {
 | 
						|
  SelectionDAG &DAG = DCI.DAG;
 | 
						|
  SDLoc DL(N);
 | 
						|
 | 
						|
  switch (N->getOpcode()) {
 | 
						|
  default:
 | 
						|
    return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
 | 
						|
  case ISD::SETCC:
 | 
						|
    return performSetCCCombine(N, DCI);
 | 
						|
  case ISD::FMAXNUM: // TODO: What about fmax_legacy?
 | 
						|
  case ISD::FMINNUM:
 | 
						|
  case AMDGPUISD::SMAX:
 | 
						|
  case AMDGPUISD::SMIN:
 | 
						|
  case AMDGPUISD::UMAX:
 | 
						|
  case AMDGPUISD::UMIN: {
 | 
						|
    if (DCI.getDAGCombineLevel() >= AfterLegalizeDAG &&
 | 
						|
        N->getValueType(0) != MVT::f64 &&
 | 
						|
        getTargetMachine().getOptLevel() > CodeGenOpt::None)
 | 
						|
      return performMin3Max3Combine(N, DCI);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case AMDGPUISD::CVT_F32_UBYTE0:
 | 
						|
  case AMDGPUISD::CVT_F32_UBYTE1:
 | 
						|
  case AMDGPUISD::CVT_F32_UBYTE2:
 | 
						|
  case AMDGPUISD::CVT_F32_UBYTE3: {
 | 
						|
    unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0;
 | 
						|
 | 
						|
    SDValue Src = N->getOperand(0);
 | 
						|
    APInt Demanded = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8);
 | 
						|
 | 
						|
    APInt KnownZero, KnownOne;
 | 
						|
    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
 | 
						|
                                          !DCI.isBeforeLegalizeOps());
 | 
						|
    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | 
						|
    if (TLO.ShrinkDemandedConstant(Src, Demanded) ||
 | 
						|
        TLI.SimplifyDemandedBits(Src, Demanded, KnownZero, KnownOne, TLO)) {
 | 
						|
      DCI.CommitTargetLoweringOpt(TLO);
 | 
						|
    }
 | 
						|
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case ISD::UINT_TO_FP: {
 | 
						|
    return performUCharToFloatCombine(N, DCI);
 | 
						|
 | 
						|
  case ISD::FADD: {
 | 
						|
    if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
 | 
						|
      break;
 | 
						|
 | 
						|
    EVT VT = N->getValueType(0);
 | 
						|
    if (VT != MVT::f32)
 | 
						|
      break;
 | 
						|
 | 
						|
    // Only do this if we are not trying to support denormals. v_mad_f32 does
 | 
						|
    // not support denormals ever.
 | 
						|
    if (Subtarget->hasFP32Denormals())
 | 
						|
      break;
 | 
						|
 | 
						|
    SDValue LHS = N->getOperand(0);
 | 
						|
    SDValue RHS = N->getOperand(1);
 | 
						|
 | 
						|
    // These should really be instruction patterns, but writing patterns with
 | 
						|
    // source modiifiers is a pain.
 | 
						|
 | 
						|
    // fadd (fadd (a, a), b) -> mad 2.0, a, b
 | 
						|
    if (LHS.getOpcode() == ISD::FADD) {
 | 
						|
      SDValue A = LHS.getOperand(0);
 | 
						|
      if (A == LHS.getOperand(1)) {
 | 
						|
        const SDValue Two = DAG.getConstantFP(2.0, DL, MVT::f32);
 | 
						|
        return DAG.getNode(ISD::FMAD, DL, VT, Two, A, RHS);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // fadd (b, fadd (a, a)) -> mad 2.0, a, b
 | 
						|
    if (RHS.getOpcode() == ISD::FADD) {
 | 
						|
      SDValue A = RHS.getOperand(0);
 | 
						|
      if (A == RHS.getOperand(1)) {
 | 
						|
        const SDValue Two = DAG.getConstantFP(2.0, DL, MVT::f32);
 | 
						|
        return DAG.getNode(ISD::FMAD, DL, VT, Two, A, LHS);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    return SDValue();
 | 
						|
  }
 | 
						|
  case ISD::FSUB: {
 | 
						|
    if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
 | 
						|
      break;
 | 
						|
 | 
						|
    EVT VT = N->getValueType(0);
 | 
						|
 | 
						|
    // Try to get the fneg to fold into the source modifier. This undoes generic
 | 
						|
    // DAG combines and folds them into the mad.
 | 
						|
    //
 | 
						|
    // Only do this if we are not trying to support denormals. v_mad_f32 does
 | 
						|
    // not support denormals ever.
 | 
						|
    if (VT == MVT::f32 &&
 | 
						|
        !Subtarget->hasFP32Denormals()) {
 | 
						|
      SDValue LHS = N->getOperand(0);
 | 
						|
      SDValue RHS = N->getOperand(1);
 | 
						|
      if (LHS.getOpcode() == ISD::FADD) {
 | 
						|
        // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c)
 | 
						|
 | 
						|
        SDValue A = LHS.getOperand(0);
 | 
						|
        if (A == LHS.getOperand(1)) {
 | 
						|
          const SDValue Two = DAG.getConstantFP(2.0, DL, MVT::f32);
 | 
						|
          SDValue NegRHS = DAG.getNode(ISD::FNEG, DL, VT, RHS);
 | 
						|
 | 
						|
          return DAG.getNode(ISD::FMAD, DL, VT, Two, A, NegRHS);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      if (RHS.getOpcode() == ISD::FADD) {
 | 
						|
        // (fsub c, (fadd a, a)) -> mad -2.0, a, c
 | 
						|
 | 
						|
        SDValue A = RHS.getOperand(0);
 | 
						|
        if (A == RHS.getOperand(1)) {
 | 
						|
          const SDValue NegTwo = DAG.getConstantFP(-2.0, DL, MVT::f32);
 | 
						|
          return DAG.getNode(ISD::FMAD, DL, VT, NegTwo, A, LHS);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      return SDValue();
 | 
						|
    }
 | 
						|
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  }
 | 
						|
  case ISD::LOAD:
 | 
						|
  case ISD::STORE:
 | 
						|
  case ISD::ATOMIC_LOAD:
 | 
						|
  case ISD::ATOMIC_STORE:
 | 
						|
  case ISD::ATOMIC_CMP_SWAP:
 | 
						|
  case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
 | 
						|
  case ISD::ATOMIC_SWAP:
 | 
						|
  case ISD::ATOMIC_LOAD_ADD:
 | 
						|
  case ISD::ATOMIC_LOAD_SUB:
 | 
						|
  case ISD::ATOMIC_LOAD_AND:
 | 
						|
  case ISD::ATOMIC_LOAD_OR:
 | 
						|
  case ISD::ATOMIC_LOAD_XOR:
 | 
						|
  case ISD::ATOMIC_LOAD_NAND:
 | 
						|
  case ISD::ATOMIC_LOAD_MIN:
 | 
						|
  case ISD::ATOMIC_LOAD_MAX:
 | 
						|
  case ISD::ATOMIC_LOAD_UMIN:
 | 
						|
  case ISD::ATOMIC_LOAD_UMAX: { // TODO: Target mem intrinsics.
 | 
						|
    if (DCI.isBeforeLegalize())
 | 
						|
      break;
 | 
						|
 | 
						|
    MemSDNode *MemNode = cast<MemSDNode>(N);
 | 
						|
    SDValue Ptr = MemNode->getBasePtr();
 | 
						|
 | 
						|
    // TODO: We could also do this for multiplies.
 | 
						|
    unsigned AS = MemNode->getAddressSpace();
 | 
						|
    if (Ptr.getOpcode() == ISD::SHL && AS != AMDGPUAS::PRIVATE_ADDRESS) {
 | 
						|
      SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(), AS, DCI);
 | 
						|
      if (NewPtr) {
 | 
						|
        SmallVector<SDValue, 8> NewOps(MemNode->op_begin(), MemNode->op_end());
 | 
						|
 | 
						|
        NewOps[N->getOpcode() == ISD::STORE ? 2 : 1] = NewPtr;
 | 
						|
        return SDValue(DAG.UpdateNodeOperands(MemNode, NewOps), 0);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ISD::AND:
 | 
						|
    return performAndCombine(N, DCI);
 | 
						|
  case ISD::OR:
 | 
						|
    return performOrCombine(N, DCI);
 | 
						|
  case AMDGPUISD::FP_CLASS:
 | 
						|
    return performClassCombine(N, DCI);
 | 
						|
  }
 | 
						|
  return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Analyze the possible immediate value Op
 | 
						|
///
 | 
						|
/// Returns -1 if it isn't an immediate, 0 if it's and inline immediate
 | 
						|
/// and the immediate value if it's a literal immediate
 | 
						|
int32_t SITargetLowering::analyzeImmediate(const SDNode *N) const {
 | 
						|
 | 
						|
  const SIInstrInfo *TII =
 | 
						|
      static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
 | 
						|
 | 
						|
  if (const ConstantSDNode *Node = dyn_cast<ConstantSDNode>(N)) {
 | 
						|
    if (TII->isInlineConstant(Node->getAPIntValue()))
 | 
						|
      return 0;
 | 
						|
 | 
						|
    uint64_t Val = Node->getZExtValue();
 | 
						|
    return isUInt<32>(Val) ? Val : -1;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const ConstantFPSDNode *Node = dyn_cast<ConstantFPSDNode>(N)) {
 | 
						|
    if (TII->isInlineConstant(Node->getValueAPF().bitcastToAPInt()))
 | 
						|
      return 0;
 | 
						|
 | 
						|
    if (Node->getValueType(0) == MVT::f32)
 | 
						|
      return FloatToBits(Node->getValueAPF().convertToFloat());
 | 
						|
 | 
						|
    return -1;
 | 
						|
  }
 | 
						|
 | 
						|
  return -1;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Helper function for adjustWritemask
 | 
						|
static unsigned SubIdx2Lane(unsigned Idx) {
 | 
						|
  switch (Idx) {
 | 
						|
  default: return 0;
 | 
						|
  case AMDGPU::sub0: return 0;
 | 
						|
  case AMDGPU::sub1: return 1;
 | 
						|
  case AMDGPU::sub2: return 2;
 | 
						|
  case AMDGPU::sub3: return 3;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Adjust the writemask of MIMG instructions
 | 
						|
void SITargetLowering::adjustWritemask(MachineSDNode *&Node,
 | 
						|
                                       SelectionDAG &DAG) const {
 | 
						|
  SDNode *Users[4] = { };
 | 
						|
  unsigned Lane = 0;
 | 
						|
  unsigned OldDmask = Node->getConstantOperandVal(0);
 | 
						|
  unsigned NewDmask = 0;
 | 
						|
 | 
						|
  // Try to figure out the used register components
 | 
						|
  for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end();
 | 
						|
       I != E; ++I) {
 | 
						|
 | 
						|
    // Abort if we can't understand the usage
 | 
						|
    if (!I->isMachineOpcode() ||
 | 
						|
        I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG)
 | 
						|
      return;
 | 
						|
 | 
						|
    // Lane means which subreg of %VGPRa_VGPRb_VGPRc_VGPRd is used.
 | 
						|
    // Note that subregs are packed, i.e. Lane==0 is the first bit set
 | 
						|
    // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit
 | 
						|
    // set, etc.
 | 
						|
    Lane = SubIdx2Lane(I->getConstantOperandVal(1));
 | 
						|
 | 
						|
    // Set which texture component corresponds to the lane.
 | 
						|
    unsigned Comp;
 | 
						|
    for (unsigned i = 0, Dmask = OldDmask; i <= Lane; i++) {
 | 
						|
      assert(Dmask);
 | 
						|
      Comp = countTrailingZeros(Dmask);
 | 
						|
      Dmask &= ~(1 << Comp);
 | 
						|
    }
 | 
						|
 | 
						|
    // Abort if we have more than one user per component
 | 
						|
    if (Users[Lane])
 | 
						|
      return;
 | 
						|
 | 
						|
    Users[Lane] = *I;
 | 
						|
    NewDmask |= 1 << Comp;
 | 
						|
  }
 | 
						|
 | 
						|
  // Abort if there's no change
 | 
						|
  if (NewDmask == OldDmask)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Adjust the writemask in the node
 | 
						|
  std::vector<SDValue> Ops;
 | 
						|
  Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32));
 | 
						|
  Ops.insert(Ops.end(), Node->op_begin() + 1, Node->op_end());
 | 
						|
  Node = (MachineSDNode*)DAG.UpdateNodeOperands(Node, Ops);
 | 
						|
 | 
						|
  // If we only got one lane, replace it with a copy
 | 
						|
  // (if NewDmask has only one bit set...)
 | 
						|
  if (NewDmask && (NewDmask & (NewDmask-1)) == 0) {
 | 
						|
    SDValue RC = DAG.getTargetConstant(AMDGPU::VGPR_32RegClassID, SDLoc(),
 | 
						|
                                       MVT::i32);
 | 
						|
    SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
 | 
						|
                                      SDLoc(), Users[Lane]->getValueType(0),
 | 
						|
                                      SDValue(Node, 0), RC);
 | 
						|
    DAG.ReplaceAllUsesWith(Users[Lane], Copy);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Update the users of the node with the new indices
 | 
						|
  for (unsigned i = 0, Idx = AMDGPU::sub0; i < 4; ++i) {
 | 
						|
 | 
						|
    SDNode *User = Users[i];
 | 
						|
    if (!User)
 | 
						|
      continue;
 | 
						|
 | 
						|
    SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32);
 | 
						|
    DAG.UpdateNodeOperands(User, User->getOperand(0), Op);
 | 
						|
 | 
						|
    switch (Idx) {
 | 
						|
    default: break;
 | 
						|
    case AMDGPU::sub0: Idx = AMDGPU::sub1; break;
 | 
						|
    case AMDGPU::sub1: Idx = AMDGPU::sub2; break;
 | 
						|
    case AMDGPU::sub2: Idx = AMDGPU::sub3; break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Legalize target independent instructions (e.g. INSERT_SUBREG)
 | 
						|
/// with frame index operands.
 | 
						|
/// LLVM assumes that inputs are to these instructions are registers.
 | 
						|
void SITargetLowering::legalizeTargetIndependentNode(SDNode *Node,
 | 
						|
                                                     SelectionDAG &DAG) const {
 | 
						|
 | 
						|
  SmallVector<SDValue, 8> Ops;
 | 
						|
  for (unsigned i = 0; i < Node->getNumOperands(); ++i) {
 | 
						|
    if (!isa<FrameIndexSDNode>(Node->getOperand(i))) {
 | 
						|
      Ops.push_back(Node->getOperand(i));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    SDLoc DL(Node);
 | 
						|
    Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL,
 | 
						|
                                     Node->getOperand(i).getValueType(),
 | 
						|
                                     Node->getOperand(i)), 0));
 | 
						|
  }
 | 
						|
 | 
						|
  DAG.UpdateNodeOperands(Node, Ops);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Fold the instructions after selecting them.
 | 
						|
SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node,
 | 
						|
                                          SelectionDAG &DAG) const {
 | 
						|
  const SIInstrInfo *TII =
 | 
						|
      static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
 | 
						|
 | 
						|
  if (TII->isMIMG(Node->getMachineOpcode()))
 | 
						|
    adjustWritemask(Node, DAG);
 | 
						|
 | 
						|
  if (Node->getMachineOpcode() == AMDGPU::INSERT_SUBREG ||
 | 
						|
      Node->getMachineOpcode() == AMDGPU::REG_SEQUENCE) {
 | 
						|
    legalizeTargetIndependentNode(Node, DAG);
 | 
						|
    return Node;
 | 
						|
  }
 | 
						|
  return Node;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Assign the register class depending on the number of
 | 
						|
/// bits set in the writemask
 | 
						|
void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
 | 
						|
                                                     SDNode *Node) const {
 | 
						|
  const SIInstrInfo *TII =
 | 
						|
      static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
 | 
						|
 | 
						|
  MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
 | 
						|
  TII->legalizeOperands(MI);
 | 
						|
 | 
						|
  if (TII->isMIMG(MI->getOpcode())) {
 | 
						|
    unsigned VReg = MI->getOperand(0).getReg();
 | 
						|
    unsigned Writemask = MI->getOperand(1).getImm();
 | 
						|
    unsigned BitsSet = 0;
 | 
						|
    for (unsigned i = 0; i < 4; ++i)
 | 
						|
      BitsSet += Writemask & (1 << i) ? 1 : 0;
 | 
						|
 | 
						|
    const TargetRegisterClass *RC;
 | 
						|
    switch (BitsSet) {
 | 
						|
    default: return;
 | 
						|
    case 1:  RC = &AMDGPU::VGPR_32RegClass; break;
 | 
						|
    case 2:  RC = &AMDGPU::VReg_64RegClass; break;
 | 
						|
    case 3:  RC = &AMDGPU::VReg_96RegClass; break;
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned NewOpcode = TII->getMaskedMIMGOp(MI->getOpcode(), BitsSet);
 | 
						|
    MI->setDesc(TII->get(NewOpcode));
 | 
						|
    MRI.setRegClass(VReg, RC);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Replace unused atomics with the no return version.
 | 
						|
  int NoRetAtomicOp = AMDGPU::getAtomicNoRetOp(MI->getOpcode());
 | 
						|
  if (NoRetAtomicOp != -1) {
 | 
						|
    if (!Node->hasAnyUseOfValue(0)) {
 | 
						|
      MI->setDesc(TII->get(NoRetAtomicOp));
 | 
						|
      MI->RemoveOperand(0);
 | 
						|
    }
 | 
						|
 | 
						|
    return;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static SDValue buildSMovImm32(SelectionDAG &DAG, SDLoc DL, uint64_t Val) {
 | 
						|
  SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32);
 | 
						|
  return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0);
 | 
						|
}
 | 
						|
 | 
						|
MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG,
 | 
						|
                                                SDLoc DL,
 | 
						|
                                                SDValue Ptr) const {
 | 
						|
  const SIInstrInfo *TII =
 | 
						|
      static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
 | 
						|
#if 1
 | 
						|
    // XXX - Workaround for moveToVALU not handling different register class
 | 
						|
    // inserts for REG_SEQUENCE.
 | 
						|
 | 
						|
    // Build the half of the subregister with the constants.
 | 
						|
    const SDValue Ops0[] = {
 | 
						|
      DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32),
 | 
						|
      buildSMovImm32(DAG, DL, 0),
 | 
						|
      DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
 | 
						|
      buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32),
 | 
						|
      DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32)
 | 
						|
    };
 | 
						|
 | 
						|
    SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL,
 | 
						|
                                                  MVT::v2i32, Ops0), 0);
 | 
						|
 | 
						|
    // Combine the constants and the pointer.
 | 
						|
    const SDValue Ops1[] = {
 | 
						|
      DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, DL, MVT::i32),
 | 
						|
      Ptr,
 | 
						|
      DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32),
 | 
						|
      SubRegHi,
 | 
						|
      DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32)
 | 
						|
    };
 | 
						|
 | 
						|
    return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1);
 | 
						|
#else
 | 
						|
    const SDValue Ops[] = {
 | 
						|
      DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, MVT::i32),
 | 
						|
      Ptr,
 | 
						|
      DAG.getTargetConstant(AMDGPU::sub0_sub1, MVT::i32),
 | 
						|
      buildSMovImm32(DAG, DL, 0),
 | 
						|
      DAG.getTargetConstant(AMDGPU::sub2, MVT::i32),
 | 
						|
      buildSMovImm32(DAG, DL, TII->getDefaultRsrcFormat() >> 32),
 | 
						|
      DAG.getTargetConstant(AMDGPU::sub3, MVT::i32)
 | 
						|
    };
 | 
						|
 | 
						|
    return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops);
 | 
						|
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Return a resource descriptor with the 'Add TID' bit enabled
 | 
						|
///        The TID (Thread ID) is multipled by the stride value (bits [61:48]
 | 
						|
///        of the resource descriptor) to create an offset, which is added to the
 | 
						|
///        resource ponter.
 | 
						|
MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG,
 | 
						|
                                           SDLoc DL,
 | 
						|
                                           SDValue Ptr,
 | 
						|
                                           uint32_t RsrcDword1,
 | 
						|
                                           uint64_t RsrcDword2And3) const {
 | 
						|
  SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr);
 | 
						|
  SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr);
 | 
						|
  if (RsrcDword1) {
 | 
						|
    PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi,
 | 
						|
                                     DAG.getConstant(RsrcDword1, DL, MVT::i32)),
 | 
						|
                    0);
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue DataLo = buildSMovImm32(DAG, DL,
 | 
						|
                                  RsrcDword2And3 & UINT64_C(0xFFFFFFFF));
 | 
						|
  SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32);
 | 
						|
 | 
						|
  const SDValue Ops[] = {
 | 
						|
    DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, DL, MVT::i32),
 | 
						|
    PtrLo,
 | 
						|
    DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
 | 
						|
    PtrHi,
 | 
						|
    DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32),
 | 
						|
    DataLo,
 | 
						|
    DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32),
 | 
						|
    DataHi,
 | 
						|
    DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32)
 | 
						|
  };
 | 
						|
 | 
						|
  return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops);
 | 
						|
}
 | 
						|
 | 
						|
MachineSDNode *SITargetLowering::buildScratchRSRC(SelectionDAG &DAG,
 | 
						|
                                                  SDLoc DL,
 | 
						|
                                                  SDValue Ptr) const {
 | 
						|
  const SIInstrInfo *TII =
 | 
						|
      static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
 | 
						|
  uint64_t Rsrc = TII->getDefaultRsrcDataFormat() | AMDGPU::RSRC_TID_ENABLE |
 | 
						|
                  0xffffffff; // Size
 | 
						|
 | 
						|
  return buildRSRC(DAG, DL, Ptr, 0, Rsrc);
 | 
						|
}
 | 
						|
 | 
						|
SDValue SITargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
 | 
						|
                                               const TargetRegisterClass *RC,
 | 
						|
                                               unsigned Reg, EVT VT) const {
 | 
						|
  SDValue VReg = AMDGPUTargetLowering::CreateLiveInRegister(DAG, RC, Reg, VT);
 | 
						|
 | 
						|
  return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(DAG.getEntryNode()),
 | 
						|
                            cast<RegisterSDNode>(VReg)->getReg(), VT);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                         SI Inline Assembly Support
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
std::pair<unsigned, const TargetRegisterClass *>
 | 
						|
SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
 | 
						|
                                               const std::string &Constraint,
 | 
						|
                                               MVT VT) const {
 | 
						|
  if (Constraint == "r") {
 | 
						|
    switch(VT.SimpleTy) {
 | 
						|
      default: llvm_unreachable("Unhandled type for 'r' inline asm constraint");
 | 
						|
      case MVT::i64:
 | 
						|
        return std::make_pair(0U, &AMDGPU::SGPR_64RegClass);
 | 
						|
      case MVT::i32:
 | 
						|
        return std::make_pair(0U, &AMDGPU::SGPR_32RegClass);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Constraint.size() > 1) {
 | 
						|
    const TargetRegisterClass *RC = nullptr;
 | 
						|
    if (Constraint[1] == 'v') {
 | 
						|
      RC = &AMDGPU::VGPR_32RegClass;
 | 
						|
    } else if (Constraint[1] == 's') {
 | 
						|
      RC = &AMDGPU::SGPR_32RegClass;
 | 
						|
    }
 | 
						|
 | 
						|
    if (RC) {
 | 
						|
      unsigned Idx = std::atoi(Constraint.substr(2).c_str());
 | 
						|
      if (Idx < RC->getNumRegs())
 | 
						|
        return std::make_pair(RC->getRegister(Idx), RC);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
 | 
						|
}
 |