mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185226 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			151 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			151 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //====--------------- lib/Support/BlockFrequency.cpp -----------*- C++ -*-====//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements Block Frequency class.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Support/BranchProbability.h"
 | |
| #include "llvm/Support/BlockFrequency.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <cassert>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| /// Multiply FREQ by N and store result in W array.
 | |
| static void mult96bit(uint64_t freq, uint32_t N, uint64_t W[2]) {
 | |
|   uint64_t u0 = freq & UINT32_MAX;
 | |
|   uint64_t u1 = freq >> 32;
 | |
| 
 | |
|   // Represent 96-bit value as w[2]:w[1]:w[0];
 | |
|   uint32_t w[3] = { 0, 0, 0 };
 | |
| 
 | |
|   uint64_t t = u0 * N;
 | |
|   uint64_t k = t >> 32;
 | |
|   w[0] = t;
 | |
|   t = u1 * N + k;
 | |
|   w[1] = t;
 | |
|   w[2] = t >> 32;
 | |
| 
 | |
|   // W[1] - higher bits.
 | |
|   // W[0] - lower bits.
 | |
|   W[0] = w[0] + ((uint64_t) w[1] << 32);
 | |
|   W[1] = w[2];
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Divide 96-bit value stored in W array by D.
 | |
| /// Return 64-bit quotient, saturated to UINT64_MAX on overflow.
 | |
| static uint64_t div96bit(uint64_t W[2], uint32_t D) {
 | |
|   uint64_t y = W[0];
 | |
|   uint64_t x = W[1];
 | |
|   unsigned i;
 | |
| 
 | |
|   assert(x != 0 && "This is really a 64-bit division");
 | |
| 
 | |
|   // This long division algorithm automatically saturates on overflow.
 | |
|   for (i = 0; i < 64 && x; ++i) {
 | |
|     uint32_t t = -((x >> 31) & 1); // Splat bit 31 to bits 0-31.
 | |
|     x = (x << 1) | (y >> 63);
 | |
|     y = y << 1;
 | |
|     if ((x | t) >= D) {
 | |
|       x -= D;
 | |
|       ++y;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return y << (64 - i);
 | |
| }
 | |
| 
 | |
| 
 | |
| void BlockFrequency::scale(uint32_t N, uint32_t D) {
 | |
|   assert(D != 0 && "Division by zero");
 | |
| 
 | |
|   // Calculate Frequency * N.
 | |
|   uint64_t MulLo = (Frequency & UINT32_MAX) * N;
 | |
|   uint64_t MulHi = (Frequency >> 32) * N;
 | |
|   uint64_t MulRes = (MulHi << 32) + MulLo;
 | |
| 
 | |
|   // If the product fits in 64 bits, just use built-in division.
 | |
|   if (MulHi <= UINT32_MAX && MulRes >= MulLo) {
 | |
|     Frequency = MulRes / D;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Product overflowed, use 96-bit operations.
 | |
|   // 96-bit value represented as W[1]:W[0].
 | |
|   uint64_t W[2];
 | |
|   mult96bit(Frequency, N, W);
 | |
|   Frequency = div96bit(W, D);
 | |
|   return;
 | |
| }
 | |
| 
 | |
| BlockFrequency &BlockFrequency::operator*=(const BranchProbability &Prob) {
 | |
|   scale(Prob.getNumerator(), Prob.getDenominator());
 | |
|   return *this;
 | |
| }
 | |
| 
 | |
| const BlockFrequency
 | |
| BlockFrequency::operator*(const BranchProbability &Prob) const {
 | |
|   BlockFrequency Freq(Frequency);
 | |
|   Freq *= Prob;
 | |
|   return Freq;
 | |
| }
 | |
| 
 | |
| BlockFrequency &BlockFrequency::operator/=(const BranchProbability &Prob) {
 | |
|   scale(Prob.getDenominator(), Prob.getNumerator());
 | |
|   return *this;
 | |
| }
 | |
| 
 | |
| BlockFrequency BlockFrequency::operator/(const BranchProbability &Prob) const {
 | |
|   BlockFrequency Freq(Frequency);
 | |
|   Freq /= Prob;
 | |
|   return Freq;
 | |
| }
 | |
| 
 | |
| BlockFrequency &BlockFrequency::operator+=(const BlockFrequency &Freq) {
 | |
|   uint64_t Before = Freq.Frequency;
 | |
|   Frequency += Freq.Frequency;
 | |
| 
 | |
|   // If overflow, set frequency to the maximum value.
 | |
|   if (Frequency < Before)
 | |
|     Frequency = UINT64_MAX;
 | |
| 
 | |
|   return *this;
 | |
| }
 | |
| 
 | |
| const BlockFrequency
 | |
| BlockFrequency::operator+(const BlockFrequency &Prob) const {
 | |
|   BlockFrequency Freq(Frequency);
 | |
|   Freq += Prob;
 | |
|   return Freq;
 | |
| }
 | |
| 
 | |
| void BlockFrequency::print(raw_ostream &OS) const {
 | |
|   // Convert fixed-point number to decimal.
 | |
|   OS << Frequency / getEntryFrequency() << ".";
 | |
|   uint64_t Rem = Frequency % getEntryFrequency();
 | |
|   uint64_t Eps = 1;
 | |
|   do {
 | |
|     Rem *= 10;
 | |
|     Eps *= 10;
 | |
|     OS << Rem / getEntryFrequency();
 | |
|     Rem = Rem % getEntryFrequency();
 | |
|   } while (Rem >= Eps/2);
 | |
| }
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| raw_ostream &operator<<(raw_ostream &OS, const BlockFrequency &Freq) {
 | |
|   Freq.print(OS);
 | |
|   return OS;
 | |
| }
 | |
| 
 | |
| }
 |