mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185251 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1770 lines
		
	
	
		
			56 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1770 lines
		
	
	
		
			56 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| // This pass implements the Bottom Up SLP vectorizer. It detects consecutive
 | |
| // stores that can be put together into vector-stores. Next, it attempts to
 | |
| // construct vectorizable tree using the use-def chains. If a profitable tree
 | |
| // was found, the SLP vectorizer performs vectorization on the tree.
 | |
| //
 | |
| // The pass is inspired by the work described in the paper:
 | |
| //  "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| #define SV_NAME "slp-vectorizer"
 | |
| #define DEBUG_TYPE "SLP"
 | |
| 
 | |
| #include "llvm/Transforms/Vectorize.h"
 | |
| #include "llvm/ADT/MapVector.h"
 | |
| #include "llvm/ADT/PostOrderIterator.h"
 | |
| #include "llvm/ADT/SetVector.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/ScalarEvolution.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/TargetTransformInfo.h"
 | |
| #include "llvm/Analysis/Verifier.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/IR/Type.h"
 | |
| #include "llvm/IR/Value.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <algorithm>
 | |
| #include <map>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| static cl::opt<int>
 | |
|     SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
 | |
|                      cl::desc("Only vectorize if you gain more than this "
 | |
|                               "number "));
 | |
| namespace {
 | |
| 
 | |
| static const unsigned MinVecRegSize = 128;
 | |
| 
 | |
| static const unsigned RecursionMaxDepth = 12;
 | |
| 
 | |
| /// RAII pattern to save the insertion point of the IR builder.
 | |
| class BuilderLocGuard {
 | |
| public:
 | |
|   BuilderLocGuard(IRBuilder<> &B) : Builder(B), Loc(B.GetInsertPoint()) {}
 | |
|   ~BuilderLocGuard() { Builder.SetInsertPoint(Loc); }
 | |
| 
 | |
| private:
 | |
|   // Prevent copying.
 | |
|   BuilderLocGuard(const BuilderLocGuard &);
 | |
|   BuilderLocGuard &operator=(const BuilderLocGuard &);
 | |
|   IRBuilder<> &Builder;
 | |
|   BasicBlock::iterator Loc;
 | |
| };
 | |
| 
 | |
| /// A helper class for numbering instructions in multible blocks.
 | |
| /// Numbers starts at zero for each basic block.
 | |
| struct BlockNumbering {
 | |
| 
 | |
|   BlockNumbering(BasicBlock *Bb) : BB(Bb), Valid(false) {}
 | |
| 
 | |
|   BlockNumbering() : BB(0), Valid(false) {}
 | |
| 
 | |
|   void numberInstructions() {
 | |
|     unsigned Loc = 0;
 | |
|     InstrIdx.clear();
 | |
|     InstrVec.clear();
 | |
|     // Number the instructions in the block.
 | |
|     for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
 | |
|       InstrIdx[it] = Loc++;
 | |
|       InstrVec.push_back(it);
 | |
|       assert(InstrVec[InstrIdx[it]] == it && "Invalid allocation");
 | |
|     }
 | |
|     Valid = true;
 | |
|   }
 | |
| 
 | |
|   int getIndex(Instruction *I) {
 | |
|     if (!Valid)
 | |
|       numberInstructions();
 | |
|     assert(InstrIdx.count(I) && "Unknown instruction");
 | |
|     return InstrIdx[I];
 | |
|   }
 | |
| 
 | |
|   Instruction *getInstruction(unsigned loc) {
 | |
|     if (!Valid)
 | |
|       numberInstructions();
 | |
|     assert(InstrVec.size() > loc && "Invalid Index");
 | |
|     return InstrVec[loc];
 | |
|   }
 | |
| 
 | |
|   void forget() { Valid = false; }
 | |
| 
 | |
| private:
 | |
|   /// The block we are numbering.
 | |
|   BasicBlock *BB;
 | |
|   /// Is the block numbered.
 | |
|   bool Valid;
 | |
|   /// Maps instructions to numbers and back.
 | |
|   SmallDenseMap<Instruction *, int> InstrIdx;
 | |
|   /// Maps integers to Instructions.
 | |
|   std::vector<Instruction *> InstrVec;
 | |
| };
 | |
| 
 | |
| class FuncSLP {
 | |
|   typedef SmallVector<Value *, 8> ValueList;
 | |
|   typedef SmallVector<Instruction *, 16> InstrList;
 | |
|   typedef SmallPtrSet<Value *, 16> ValueSet;
 | |
|   typedef SmallVector<StoreInst *, 8> StoreList;
 | |
| 
 | |
| public:
 | |
|   static const int MAX_COST = INT_MIN;
 | |
| 
 | |
|   FuncSLP(Function *Func, ScalarEvolution *Se, DataLayout *Dl,
 | |
|           TargetTransformInfo *Tti, AliasAnalysis *Aa, LoopInfo *Li, 
 | |
|           DominatorTree *Dt) :
 | |
|     F(Func), SE(Se), DL(Dl), TTI(Tti), AA(Aa), LI(Li), DT(Dt),
 | |
|     Builder(Se->getContext()) {
 | |
|     for (Function::iterator it = F->begin(), e = F->end(); it != e; ++it) {
 | |
|       BasicBlock *BB = it;
 | |
|       BlocksNumbers[BB] = BlockNumbering(BB);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /// \brief Take the pointer operand from the Load/Store instruction.
 | |
|   /// \returns NULL if this is not a valid Load/Store instruction.
 | |
|   static Value *getPointerOperand(Value *I);
 | |
| 
 | |
|   /// \brief Take the address space operand from the Load/Store instruction.
 | |
|   /// \returns -1 if this is not a valid Load/Store instruction.
 | |
|   static unsigned getAddressSpaceOperand(Value *I);
 | |
| 
 | |
|   /// \returns true if the memory operations A and B are consecutive.
 | |
|   bool isConsecutiveAccess(Value *A, Value *B);
 | |
| 
 | |
|   /// \brief Vectorize the tree that starts with the elements in \p VL.
 | |
|   /// \returns the vectorized value.
 | |
|   Value *vectorizeTree(ArrayRef<Value *> VL);
 | |
| 
 | |
|   /// \returns the vectorization cost of the subtree that starts at \p VL.
 | |
|   /// A negative number means that this is profitable.
 | |
|   int getTreeCost(ArrayRef<Value *> VL);
 | |
| 
 | |
|   /// \returns the scalarization cost for this list of values. Assuming that
 | |
|   /// this subtree gets vectorized, we may need to extract the values from the
 | |
|   /// roots. This method calculates the cost of extracting the values.
 | |
|   int getGatherCost(ArrayRef<Value *> VL);
 | |
| 
 | |
|   /// \brief Attempts to order and vectorize a sequence of stores. This
 | |
|   /// function does a quadratic scan of the given stores.
 | |
|   /// \returns true if the basic block was modified.
 | |
|   bool vectorizeStores(ArrayRef<StoreInst *> Stores, int costThreshold);
 | |
| 
 | |
|   /// \brief Vectorize a group of scalars into a vector tree.
 | |
|   /// \returns the vectorized value.
 | |
|   Value *vectorizeArith(ArrayRef<Value *> Operands);
 | |
| 
 | |
|   /// \brief This method contains the recursive part of getTreeCost.
 | |
|   int getTreeCost_rec(ArrayRef<Value *> VL, unsigned Depth);
 | |
| 
 | |
|   /// \brief This recursive method looks for vectorization hazards such as
 | |
|   /// values that are used by multiple users and checks that values are used
 | |
|   /// by only one vector lane. It updates the variables LaneMap, MultiUserVals.
 | |
|   void getTreeUses_rec(ArrayRef<Value *> VL, unsigned Depth);
 | |
| 
 | |
|   /// \brief This method contains the recursive part of vectorizeTree.
 | |
|   Value *vectorizeTree_rec(ArrayRef<Value *> VL);
 | |
| 
 | |
|   ///  \brief Vectorize a sorted sequence of stores.
 | |
|   bool vectorizeStoreChain(ArrayRef<Value *> Chain, int CostThreshold);
 | |
| 
 | |
|   /// \returns the scalarization cost for this type. Scalarization in this
 | |
|   /// context means the creation of vectors from a group of scalars.
 | |
|   int getGatherCost(Type *Ty);
 | |
| 
 | |
|   /// \returns the AA location that is being access by the instruction.
 | |
|   AliasAnalysis::Location getLocation(Instruction *I);
 | |
| 
 | |
|   /// \brief Checks if it is possible to sink an instruction from
 | |
|   /// \p Src to \p Dst.
 | |
|   /// \returns the pointer to the barrier instruction if we can't sink.
 | |
|   Value *getSinkBarrier(Instruction *Src, Instruction *Dst);
 | |
| 
 | |
|   /// \returns the index of the last instrucion in the BB from \p VL.
 | |
|   int getLastIndex(ArrayRef<Value *> VL);
 | |
| 
 | |
|   /// \returns the Instrucion in the bundle \p VL.
 | |
|   Instruction *getLastInstruction(ArrayRef<Value *> VL);
 | |
| 
 | |
|   /// \returns the Instruction at index \p Index which is in Block \p BB.
 | |
|   Instruction *getInstructionForIndex(unsigned Index, BasicBlock *BB);
 | |
| 
 | |
|   /// \returns the index of the first User of \p VL.
 | |
|   int getFirstUserIndex(ArrayRef<Value *> VL);
 | |
| 
 | |
|   /// \returns a vector from a collection of scalars in \p VL.
 | |
|   Value *Gather(ArrayRef<Value *> VL, VectorType *Ty);
 | |
| 
 | |
|   /// \brief Perform LICM and CSE on the newly generated gather sequences.
 | |
|   void optimizeGatherSequence();
 | |
| 
 | |
|   bool needToGatherAny(ArrayRef<Value *> VL) {
 | |
|     for (int i = 0, e = VL.size(); i < e; ++i)
 | |
|       if (MustGather.count(VL[i]))
 | |
|         return true;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   void forgetNumbering() {
 | |
|     for (Function::iterator it = F->begin(), e = F->end(); it != e; ++it)
 | |
|       BlocksNumbers[it].forget();
 | |
|   }
 | |
| 
 | |
|   /// -- Vectorization State --
 | |
| 
 | |
|   /// Maps values in the tree to the vector lanes that uses them. This map must
 | |
|   /// be reset between runs of getCost.
 | |
|   std::map<Value *, int> LaneMap;
 | |
|   /// A list of instructions to ignore while sinking
 | |
|   /// memory instructions. This map must be reset between runs of getCost.
 | |
|   ValueSet MemBarrierIgnoreList;
 | |
| 
 | |
|   /// Maps between the first scalar to the vector. This map must be reset
 | |
|   /// between runs.
 | |
|   DenseMap<Value *, Value *> VectorizedValues;
 | |
| 
 | |
|   /// Contains values that must be gathered because they are used
 | |
|   /// by multiple lanes, or by users outside the tree.
 | |
|   /// NOTICE: The vectorization methods also use this set.
 | |
|   ValueSet MustGather;
 | |
| 
 | |
|   /// Contains PHINodes that are being processed. We use this data structure
 | |
|   /// to stop cycles in the graph.
 | |
|   ValueSet VisitedPHIs;
 | |
| 
 | |
|   /// Contains a list of values that are used outside the current tree, the
 | |
|   /// first element in the bundle and the insertion point for extracts. This
 | |
|   /// set must be reset between runs.
 | |
|   struct UseInfo{
 | |
|     UseInfo(Instruction *VL0, int I) :
 | |
|       Leader(VL0), LastIndex(I) {}
 | |
|     UseInfo() : Leader(0), LastIndex(0) {}
 | |
|     /// The first element in the bundle.
 | |
|     Instruction *Leader;
 | |
|     /// The insertion index.
 | |
|     int LastIndex;
 | |
|   };
 | |
|   MapVector<Instruction*, UseInfo> MultiUserVals;
 | |
|   SetVector<Instruction*> ExtractedLane;
 | |
| 
 | |
|   /// Holds all of the instructions that we gathered.
 | |
|   SetVector<Instruction *> GatherSeq;
 | |
| 
 | |
|   /// Numbers instructions in different blocks.
 | |
|   std::map<BasicBlock *, BlockNumbering> BlocksNumbers;
 | |
| 
 | |
|   // Analysis and block reference.
 | |
|   Function *F;
 | |
|   ScalarEvolution *SE;
 | |
|   DataLayout *DL;
 | |
|   TargetTransformInfo *TTI;
 | |
|   AliasAnalysis *AA;
 | |
|   LoopInfo *LI;
 | |
|   DominatorTree *DT;
 | |
|   /// Instruction builder to construct the vectorized tree.
 | |
|   IRBuilder<> Builder;
 | |
| };
 | |
| 
 | |
| int FuncSLP::getGatherCost(Type *Ty) {
 | |
|   int Cost = 0;
 | |
|   for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i)
 | |
|     Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
 | |
|   return Cost;
 | |
| }
 | |
| 
 | |
| int FuncSLP::getGatherCost(ArrayRef<Value *> VL) {
 | |
|   // Find the type of the operands in VL.
 | |
|   Type *ScalarTy = VL[0]->getType();
 | |
|   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
 | |
|     ScalarTy = SI->getValueOperand()->getType();
 | |
|   VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
 | |
|   // Find the cost of inserting/extracting values from the vector.
 | |
|   return getGatherCost(VecTy);
 | |
| }
 | |
| 
 | |
| AliasAnalysis::Location FuncSLP::getLocation(Instruction *I) {
 | |
|   if (StoreInst *SI = dyn_cast<StoreInst>(I))
 | |
|     return AA->getLocation(SI);
 | |
|   if (LoadInst *LI = dyn_cast<LoadInst>(I))
 | |
|     return AA->getLocation(LI);
 | |
|   return AliasAnalysis::Location();
 | |
| }
 | |
| 
 | |
| Value *FuncSLP::getPointerOperand(Value *I) {
 | |
|   if (LoadInst *LI = dyn_cast<LoadInst>(I))
 | |
|     return LI->getPointerOperand();
 | |
|   if (StoreInst *SI = dyn_cast<StoreInst>(I))
 | |
|     return SI->getPointerOperand();
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| unsigned FuncSLP::getAddressSpaceOperand(Value *I) {
 | |
|   if (LoadInst *L = dyn_cast<LoadInst>(I))
 | |
|     return L->getPointerAddressSpace();
 | |
|   if (StoreInst *S = dyn_cast<StoreInst>(I))
 | |
|     return S->getPointerAddressSpace();
 | |
|   return -1;
 | |
| }
 | |
| 
 | |
| bool FuncSLP::isConsecutiveAccess(Value *A, Value *B) {
 | |
|   Value *PtrA = getPointerOperand(A);
 | |
|   Value *PtrB = getPointerOperand(B);
 | |
|   unsigned ASA = getAddressSpaceOperand(A);
 | |
|   unsigned ASB = getAddressSpaceOperand(B);
 | |
| 
 | |
|   // Check that the address spaces match and that the pointers are valid.
 | |
|   if (!PtrA || !PtrB || (ASA != ASB))
 | |
|     return false;
 | |
| 
 | |
|   // Check that A and B are of the same type.
 | |
|   if (PtrA->getType() != PtrB->getType())
 | |
|     return false;
 | |
| 
 | |
|   // Calculate the distance.
 | |
|   const SCEV *PtrSCEVA = SE->getSCEV(PtrA);
 | |
|   const SCEV *PtrSCEVB = SE->getSCEV(PtrB);
 | |
|   const SCEV *OffsetSCEV = SE->getMinusSCEV(PtrSCEVA, PtrSCEVB);
 | |
|   const SCEVConstant *ConstOffSCEV = dyn_cast<SCEVConstant>(OffsetSCEV);
 | |
| 
 | |
|   // Non constant distance.
 | |
|   if (!ConstOffSCEV)
 | |
|     return false;
 | |
| 
 | |
|   int64_t Offset = ConstOffSCEV->getValue()->getSExtValue();
 | |
|   Type *Ty = cast<PointerType>(PtrA->getType())->getElementType();
 | |
|   // The Instructions are connsecutive if the size of the first load/store is
 | |
|   // the same as the offset.
 | |
|   int64_t Sz = DL->getTypeStoreSize(Ty);
 | |
|   return ((-Offset) == Sz);
 | |
| }
 | |
| 
 | |
| Value *FuncSLP::getSinkBarrier(Instruction *Src, Instruction *Dst) {
 | |
|   assert(Src->getParent() == Dst->getParent() && "Not the same BB");
 | |
|   BasicBlock::iterator I = Src, E = Dst;
 | |
|   /// Scan all of the instruction from SRC to DST and check if
 | |
|   /// the source may alias.
 | |
|   for (++I; I != E; ++I) {
 | |
|     // Ignore store instructions that are marked as 'ignore'.
 | |
|     if (MemBarrierIgnoreList.count(I))
 | |
|       continue;
 | |
|     if (Src->mayWriteToMemory()) /* Write */ {
 | |
|       if (!I->mayReadOrWriteMemory())
 | |
|         continue;
 | |
|     } else /* Read */ {
 | |
|       if (!I->mayWriteToMemory())
 | |
|         continue;
 | |
|     }
 | |
|     AliasAnalysis::Location A = getLocation(&*I);
 | |
|     AliasAnalysis::Location B = getLocation(Src);
 | |
| 
 | |
|     if (!A.Ptr || !B.Ptr || AA->alias(A, B))
 | |
|       return I;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| static BasicBlock *getSameBlock(ArrayRef<Value *> VL) {
 | |
|   BasicBlock *BB = 0;
 | |
|   for (int i = 0, e = VL.size(); i < e; i++) {
 | |
|     Instruction *I = dyn_cast<Instruction>(VL[i]);
 | |
|     if (!I)
 | |
|       return 0;
 | |
| 
 | |
|     if (!BB) {
 | |
|       BB = I->getParent();
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (BB != I->getParent())
 | |
|       return 0;
 | |
|   }
 | |
|   return BB;
 | |
| }
 | |
| 
 | |
| static bool allConstant(ArrayRef<Value *> VL) {
 | |
|   for (unsigned i = 0, e = VL.size(); i < e; ++i)
 | |
|     if (!isa<Constant>(VL[i]))
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool isSplat(ArrayRef<Value *> VL) {
 | |
|   for (unsigned i = 1, e = VL.size(); i < e; ++i)
 | |
|     if (VL[i] != VL[0])
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static unsigned getSameOpcode(ArrayRef<Value *> VL) {
 | |
|   unsigned Opcode = 0;
 | |
|   for (int i = 0, e = VL.size(); i < e; i++) {
 | |
|     if (Instruction *I = dyn_cast<Instruction>(VL[i])) {
 | |
|       if (!Opcode) {
 | |
|         Opcode = I->getOpcode();
 | |
|         continue;
 | |
|       }
 | |
|       if (Opcode != I->getOpcode())
 | |
|         return 0;
 | |
|     }
 | |
|   }
 | |
|   return Opcode;
 | |
| }
 | |
| 
 | |
| static bool CanReuseExtract(ArrayRef<Value *> VL, unsigned VF,
 | |
|                             VectorType *VecTy) {
 | |
|   assert(Instruction::ExtractElement == getSameOpcode(VL) && "Invalid opcode");
 | |
|   // Check if all of the extracts come from the same vector and from the
 | |
|   // correct offset.
 | |
|   Value *VL0 = VL[0];
 | |
|   ExtractElementInst *E0 = cast<ExtractElementInst>(VL0);
 | |
|   Value *Vec = E0->getOperand(0);
 | |
| 
 | |
|   // We have to extract from the same vector type.
 | |
|   if (Vec->getType() != VecTy)
 | |
|     return false;
 | |
| 
 | |
|   // Check that all of the indices extract from the correct offset.
 | |
|   ConstantInt *CI = dyn_cast<ConstantInt>(E0->getOperand(1));
 | |
|   if (!CI || CI->getZExtValue())
 | |
|     return false;
 | |
| 
 | |
|   for (unsigned i = 1, e = VF; i < e; ++i) {
 | |
|     ExtractElementInst *E = cast<ExtractElementInst>(VL[i]);
 | |
|     ConstantInt *CI = dyn_cast<ConstantInt>(E->getOperand(1));
 | |
| 
 | |
|     if (!CI || CI->getZExtValue() != i || E->getOperand(0) != Vec)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void FuncSLP::getTreeUses_rec(ArrayRef<Value *> VL, unsigned Depth) {
 | |
|   if (Depth == RecursionMaxDepth)
 | |
|     return MustGather.insert(VL.begin(), VL.end());
 | |
| 
 | |
|   // Don't handle vectors.
 | |
|   if (VL[0]->getType()->isVectorTy())
 | |
|     return;
 | |
| 
 | |
|   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
 | |
|     if (SI->getValueOperand()->getType()->isVectorTy())
 | |
|       return;
 | |
| 
 | |
|   // If all of the operands are identical or constant we have a simple solution.
 | |
|   if (allConstant(VL) || isSplat(VL) || !getSameBlock(VL))
 | |
|     return MustGather.insert(VL.begin(), VL.end());
 | |
| 
 | |
|   // Stop the scan at unknown IR.
 | |
|   Instruction *VL0 = dyn_cast<Instruction>(VL[0]);
 | |
|   assert(VL0 && "Invalid instruction");
 | |
| 
 | |
|   // Mark instructions with multiple users.
 | |
|   int LastIndex = getLastIndex(VL);
 | |
|   for (unsigned i = 0, e = VL.size(); i < e; ++i) {
 | |
|     if (PHINode *PN = dyn_cast<PHINode>(VL[i])) {
 | |
|       unsigned NumUses = 0;
 | |
|       // Check that PHINodes have only one external (non-self) use.
 | |
|       for (Value::use_iterator U = VL[i]->use_begin(), UE = VL[i]->use_end();
 | |
|            U != UE; ++U) {
 | |
|         // Don't count self uses.
 | |
|         if (*U == PN)
 | |
|           continue;
 | |
|         NumUses++;
 | |
|       }
 | |
|       if (NumUses > 1) {
 | |
|         DEBUG(dbgs() << "SLP: Adding PHI to MultiUserVals "
 | |
|               "because it has " << NumUses << " users:" << *PN << " \n");
 | |
|         UseInfo UI(VL0, 0);
 | |
|         MultiUserVals[PN] = UI;
 | |
|       }
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     Instruction *I = dyn_cast<Instruction>(VL[i]);
 | |
|     // Remember to check if all of the users of this instruction are vectorized
 | |
|     // within our tree. At depth zero we have no local users, only external
 | |
|     // users that we don't care about.
 | |
|     if (Depth && I && I->getNumUses() > 1) {
 | |
|       DEBUG(dbgs() << "SLP: Adding to MultiUserVals "
 | |
|             "because it has " << I->getNumUses() << " users:" << *I << " \n");
 | |
|       UseInfo UI(VL0, LastIndex);
 | |
|       MultiUserVals[I] = UI;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check that the instruction is only used within one lane.
 | |
|   for (int i = 0, e = VL.size(); i < e; ++i) {
 | |
|     if (LaneMap.count(VL[i]) && LaneMap[VL[i]] != i) {
 | |
|       DEBUG(dbgs() << "SLP: Value used by multiple lanes:" << *VL[i] << "\n");
 | |
|       return MustGather.insert(VL.begin(), VL.end());
 | |
|     }
 | |
|     // Make this instruction as 'seen' and remember the lane.
 | |
|     LaneMap[VL[i]] = i;
 | |
|   }
 | |
| 
 | |
|   unsigned Opcode = getSameOpcode(VL);
 | |
|   if (!Opcode)
 | |
|     return MustGather.insert(VL.begin(), VL.end());
 | |
| 
 | |
|   switch (Opcode) {
 | |
|   case Instruction::PHI: {
 | |
|     PHINode *PH = dyn_cast<PHINode>(VL0);
 | |
| 
 | |
|     // Stop self cycles.
 | |
|     if (VisitedPHIs.count(PH))
 | |
|         return;
 | |
| 
 | |
|     VisitedPHIs.insert(PH);
 | |
|     for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
 | |
|       ValueList Operands;
 | |
|       // Prepare the operand vector.
 | |
|       for (unsigned j = 0; j < VL.size(); ++j)
 | |
|         Operands.push_back(cast<PHINode>(VL[j])->getIncomingValue(i));
 | |
| 
 | |
|       getTreeUses_rec(Operands, Depth + 1);
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
|   case Instruction::ExtractElement: {
 | |
|     VectorType *VecTy = VectorType::get(VL[0]->getType(), VL.size());
 | |
|     // No need to follow ExtractElements that are going to be optimized away.
 | |
|     if (CanReuseExtract(VL, VL.size(), VecTy))
 | |
|       return;
 | |
|     // Fall through.
 | |
|   }
 | |
|   case Instruction::Load:
 | |
|     return;
 | |
|   case Instruction::ZExt:
 | |
|   case Instruction::SExt:
 | |
|   case Instruction::FPToUI:
 | |
|   case Instruction::FPToSI:
 | |
|   case Instruction::FPExt:
 | |
|   case Instruction::PtrToInt:
 | |
|   case Instruction::IntToPtr:
 | |
|   case Instruction::SIToFP:
 | |
|   case Instruction::UIToFP:
 | |
|   case Instruction::Trunc:
 | |
|   case Instruction::FPTrunc:
 | |
|   case Instruction::BitCast:
 | |
|   case Instruction::Select:
 | |
|   case Instruction::ICmp:
 | |
|   case Instruction::FCmp:
 | |
|   case Instruction::Add:
 | |
|   case Instruction::FAdd:
 | |
|   case Instruction::Sub:
 | |
|   case Instruction::FSub:
 | |
|   case Instruction::Mul:
 | |
|   case Instruction::FMul:
 | |
|   case Instruction::UDiv:
 | |
|   case Instruction::SDiv:
 | |
|   case Instruction::FDiv:
 | |
|   case Instruction::URem:
 | |
|   case Instruction::SRem:
 | |
|   case Instruction::FRem:
 | |
|   case Instruction::Shl:
 | |
|   case Instruction::LShr:
 | |
|   case Instruction::AShr:
 | |
|   case Instruction::And:
 | |
|   case Instruction::Or:
 | |
|   case Instruction::Xor: {
 | |
|     for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
 | |
|       ValueList Operands;
 | |
|       // Prepare the operand vector.
 | |
|       for (unsigned j = 0; j < VL.size(); ++j)
 | |
|         Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
 | |
| 
 | |
|       getTreeUses_rec(Operands, Depth + 1);
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
|   case Instruction::Store: {
 | |
|     ValueList Operands;
 | |
|     for (unsigned j = 0; j < VL.size(); ++j)
 | |
|       Operands.push_back(cast<Instruction>(VL[j])->getOperand(0));
 | |
|     getTreeUses_rec(Operands, Depth + 1);
 | |
|     return;
 | |
|   }
 | |
|   default:
 | |
|     return MustGather.insert(VL.begin(), VL.end());
 | |
|   }
 | |
| }
 | |
| 
 | |
| int FuncSLP::getLastIndex(ArrayRef<Value *> VL) {
 | |
|   BasicBlock *BB = cast<Instruction>(VL[0])->getParent();
 | |
|   assert(BB == getSameBlock(VL) && BlocksNumbers.count(BB) && "Invalid block");
 | |
|   BlockNumbering &BN = BlocksNumbers[BB];
 | |
| 
 | |
|   int MaxIdx = BN.getIndex(BB->getFirstNonPHI());
 | |
|   for (unsigned i = 0, e = VL.size(); i < e; ++i)
 | |
|     MaxIdx = std::max(MaxIdx, BN.getIndex(cast<Instruction>(VL[i])));
 | |
|   return MaxIdx;
 | |
| }
 | |
| 
 | |
| Instruction *FuncSLP::getLastInstruction(ArrayRef<Value *> VL) {
 | |
|   BasicBlock *BB = cast<Instruction>(VL[0])->getParent();
 | |
|   assert(BB == getSameBlock(VL) && BlocksNumbers.count(BB) && "Invalid block");
 | |
|   BlockNumbering &BN = BlocksNumbers[BB];
 | |
| 
 | |
|   int MaxIdx = BN.getIndex(cast<Instruction>(VL[0]));
 | |
|   for (unsigned i = 1, e = VL.size(); i < e; ++i)
 | |
|     MaxIdx = std::max(MaxIdx, BN.getIndex(cast<Instruction>(VL[i])));
 | |
|   return BN.getInstruction(MaxIdx);
 | |
| }
 | |
| 
 | |
| Instruction *FuncSLP::getInstructionForIndex(unsigned Index, BasicBlock *BB) {
 | |
|   BlockNumbering &BN = BlocksNumbers[BB];
 | |
|   return BN.getInstruction(Index);
 | |
| }
 | |
| 
 | |
| int FuncSLP::getFirstUserIndex(ArrayRef<Value *> VL) {
 | |
|   BasicBlock *BB = getSameBlock(VL);
 | |
|   assert(BB && "All instructions must come from the same block");
 | |
|   BlockNumbering &BN = BlocksNumbers[BB];
 | |
| 
 | |
|   // Find the first user of the values.
 | |
|   int FirstUser = BN.getIndex(BB->getTerminator());
 | |
|   for (unsigned i = 0, e = VL.size(); i < e; ++i) {
 | |
|     for (Value::use_iterator U = VL[i]->use_begin(), UE = VL[i]->use_end();
 | |
|          U != UE; ++U) {
 | |
|       Instruction *Instr = dyn_cast<Instruction>(*U);
 | |
| 
 | |
|       if (!Instr || Instr->getParent() != BB)
 | |
|         continue;
 | |
| 
 | |
|       FirstUser = std::min(FirstUser, BN.getIndex(Instr));
 | |
|     }
 | |
|   }
 | |
|   return FirstUser;
 | |
| }
 | |
| 
 | |
| int FuncSLP::getTreeCost_rec(ArrayRef<Value *> VL, unsigned Depth) {
 | |
|   Type *ScalarTy = VL[0]->getType();
 | |
| 
 | |
|   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
 | |
|     ScalarTy = SI->getValueOperand()->getType();
 | |
| 
 | |
|   /// Don't mess with vectors.
 | |
|   if (ScalarTy->isVectorTy())
 | |
|     return FuncSLP::MAX_COST;
 | |
| 
 | |
|   if (allConstant(VL))
 | |
|     return 0;
 | |
| 
 | |
|   VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
 | |
| 
 | |
|   if (isSplat(VL))
 | |
|     return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0);
 | |
| 
 | |
|   int GatherCost = getGatherCost(VecTy);
 | |
|   if (Depth == RecursionMaxDepth || needToGatherAny(VL))
 | |
|     return GatherCost;
 | |
| 
 | |
|   BasicBlock *BB = getSameBlock(VL);
 | |
|   unsigned Opcode = getSameOpcode(VL);
 | |
|   assert(Opcode && BB && "Invalid Instruction Value");
 | |
| 
 | |
|   // Check if it is safe to sink the loads or the stores.
 | |
|   if (Opcode == Instruction::Load || Opcode == Instruction::Store) {
 | |
|     int MaxIdx = getLastIndex(VL);
 | |
|     Instruction *Last = getInstructionForIndex(MaxIdx, BB);
 | |
| 
 | |
|     for (unsigned i = 0, e = VL.size(); i < e; ++i) {
 | |
|       if (VL[i] == Last)
 | |
|         continue;
 | |
|       Value *Barrier = getSinkBarrier(cast<Instruction>(VL[i]), Last);
 | |
|       if (Barrier) {
 | |
|         DEBUG(dbgs() << "SLP: Can't sink " << *VL[i] << "\n down to " << *Last
 | |
|                      << "\n because of " << *Barrier << "\n");
 | |
|         return MAX_COST;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Calculate the extract cost.
 | |
|   unsigned ExternalUserExtractCost = 0;
 | |
|   for (unsigned i = 0, e = VL.size(); i < e; ++i)
 | |
|     if (ExtractedLane.count(cast<Instruction>(VL[i])))
 | |
|       ExternalUserExtractCost +=
 | |
|         TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i);
 | |
| 
 | |
|   Instruction *VL0 = cast<Instruction>(VL[0]);
 | |
|   switch (Opcode) {
 | |
|   case Instruction::PHI: {
 | |
|     PHINode *PH = dyn_cast<PHINode>(VL0);
 | |
| 
 | |
|     // Stop self cycles.
 | |
|     if (VisitedPHIs.count(PH))
 | |
|         return 0;
 | |
| 
 | |
|     VisitedPHIs.insert(PH);
 | |
|     int TotalCost = 0;
 | |
|     // Calculate the cost of all of the operands.
 | |
|     for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {      
 | |
|       ValueList Operands;
 | |
|       // Prepare the operand vector.
 | |
|       for (unsigned j = 0; j < VL.size(); ++j)
 | |
|         Operands.push_back(cast<PHINode>(VL[j])->getIncomingValue(i));
 | |
| 
 | |
|       int Cost = getTreeCost_rec(Operands, Depth + 1);
 | |
|       if (Cost == MAX_COST)
 | |
|         return MAX_COST;
 | |
|       TotalCost += TotalCost;
 | |
|     }
 | |
| 
 | |
|     if (TotalCost > GatherCost) {
 | |
|       MustGather.insert(VL.begin(), VL.end());
 | |
|       return GatherCost;
 | |
|     }
 | |
| 
 | |
|     return TotalCost + ExternalUserExtractCost;
 | |
|   }
 | |
|   case Instruction::ExtractElement: {
 | |
|     if (CanReuseExtract(VL, VL.size(), VecTy))
 | |
|       return 0;
 | |
|     return getGatherCost(VecTy);
 | |
|   }
 | |
|   case Instruction::ZExt:
 | |
|   case Instruction::SExt:
 | |
|   case Instruction::FPToUI:
 | |
|   case Instruction::FPToSI:
 | |
|   case Instruction::FPExt:
 | |
|   case Instruction::PtrToInt:
 | |
|   case Instruction::IntToPtr:
 | |
|   case Instruction::SIToFP:
 | |
|   case Instruction::UIToFP:
 | |
|   case Instruction::Trunc:
 | |
|   case Instruction::FPTrunc:
 | |
|   case Instruction::BitCast: {
 | |
|     ValueList Operands;
 | |
|     Type *SrcTy = VL0->getOperand(0)->getType();
 | |
|     // Prepare the operand vector.
 | |
|     for (unsigned j = 0; j < VL.size(); ++j) {
 | |
|       Operands.push_back(cast<Instruction>(VL[j])->getOperand(0));
 | |
|       // Check that the casted type is the same for all users.
 | |
|       if (cast<Instruction>(VL[j])->getOperand(0)->getType() != SrcTy)
 | |
|         return getGatherCost(VecTy);
 | |
|     }
 | |
| 
 | |
|     int Cost = getTreeCost_rec(Operands, Depth + 1);
 | |
|     if (Cost == MAX_COST)
 | |
|       return MAX_COST;
 | |
| 
 | |
|     // Calculate the cost of this instruction.
 | |
|     int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(),
 | |
|                                                        VL0->getType(), SrcTy);
 | |
| 
 | |
|     VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size());
 | |
|     int VecCost = TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy);
 | |
|     Cost += (VecCost - ScalarCost);
 | |
| 
 | |
|     if (Cost > GatherCost) {
 | |
|       MustGather.insert(VL.begin(), VL.end());
 | |
|       return GatherCost;
 | |
|     }
 | |
| 
 | |
|     return Cost + ExternalUserExtractCost;
 | |
|   }
 | |
|   case Instruction::FCmp:
 | |
|   case Instruction::ICmp: {
 | |
|     // Check that all of the compares have the same predicate.
 | |
|     CmpInst::Predicate P0 = dyn_cast<CmpInst>(VL0)->getPredicate();
 | |
|     for (unsigned i = 1, e = VL.size(); i < e; ++i) {
 | |
|       CmpInst *Cmp = cast<CmpInst>(VL[i]);
 | |
|       if (Cmp->getPredicate() != P0)
 | |
|         return getGatherCost(VecTy);
 | |
|     }
 | |
|     // Fall through.
 | |
|   }
 | |
|   case Instruction::Select:
 | |
|   case Instruction::Add:
 | |
|   case Instruction::FAdd:
 | |
|   case Instruction::Sub:
 | |
|   case Instruction::FSub:
 | |
|   case Instruction::Mul:
 | |
|   case Instruction::FMul:
 | |
|   case Instruction::UDiv:
 | |
|   case Instruction::SDiv:
 | |
|   case Instruction::FDiv:
 | |
|   case Instruction::URem:
 | |
|   case Instruction::SRem:
 | |
|   case Instruction::FRem:
 | |
|   case Instruction::Shl:
 | |
|   case Instruction::LShr:
 | |
|   case Instruction::AShr:
 | |
|   case Instruction::And:
 | |
|   case Instruction::Or:
 | |
|   case Instruction::Xor: {
 | |
|     int TotalCost = 0;
 | |
|     // Calculate the cost of all of the operands.
 | |
|     for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
 | |
|       ValueList Operands;
 | |
|       // Prepare the operand vector.
 | |
|       for (unsigned j = 0; j < VL.size(); ++j)
 | |
|         Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
 | |
| 
 | |
|       int Cost = getTreeCost_rec(Operands, Depth + 1);
 | |
|       if (Cost == MAX_COST)
 | |
|         return MAX_COST;
 | |
|       TotalCost += Cost;
 | |
|     }
 | |
| 
 | |
|     // Calculate the cost of this instruction.
 | |
|     int ScalarCost = 0;
 | |
|     int VecCost = 0;
 | |
|     if (Opcode == Instruction::FCmp || Opcode == Instruction::ICmp ||
 | |
|         Opcode == Instruction::Select) {
 | |
|       VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size());
 | |
|       ScalarCost =
 | |
|           VecTy->getNumElements() *
 | |
|           TTI->getCmpSelInstrCost(Opcode, ScalarTy, Builder.getInt1Ty());
 | |
|       VecCost = TTI->getCmpSelInstrCost(Opcode, VecTy, MaskTy);
 | |
|     } else {
 | |
|       ScalarCost = VecTy->getNumElements() *
 | |
|                    TTI->getArithmeticInstrCost(Opcode, ScalarTy);
 | |
|       VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy);
 | |
|     }
 | |
|     TotalCost += (VecCost - ScalarCost);
 | |
| 
 | |
|     if (TotalCost > GatherCost) {
 | |
|       MustGather.insert(VL.begin(), VL.end());
 | |
|       return GatherCost;
 | |
|     }
 | |
| 
 | |
|     return TotalCost + ExternalUserExtractCost;
 | |
|   }
 | |
|   case Instruction::Load: {
 | |
|     // If we are scalarize the loads, add the cost of forming the vector.
 | |
|     for (unsigned i = 0, e = VL.size() - 1; i < e; ++i)
 | |
|       if (!isConsecutiveAccess(VL[i], VL[i + 1]))
 | |
|         return getGatherCost(VecTy);
 | |
| 
 | |
|     // Cost of wide load - cost of scalar loads.
 | |
|     int ScalarLdCost = VecTy->getNumElements() *
 | |
|                        TTI->getMemoryOpCost(Instruction::Load, ScalarTy, 1, 0);
 | |
|     int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, ScalarTy, 1, 0);
 | |
|     int TotalCost = VecLdCost - ScalarLdCost;
 | |
| 
 | |
|     if (TotalCost > GatherCost) {
 | |
|       MustGather.insert(VL.begin(), VL.end());
 | |
|       return GatherCost;
 | |
|     }
 | |
| 
 | |
|     return TotalCost + ExternalUserExtractCost;
 | |
|   }
 | |
|   case Instruction::Store: {
 | |
|     // We know that we can merge the stores. Calculate the cost.
 | |
|     int ScalarStCost = VecTy->getNumElements() *
 | |
|                        TTI->getMemoryOpCost(Instruction::Store, ScalarTy, 1, 0);
 | |
|     int VecStCost = TTI->getMemoryOpCost(Instruction::Store, ScalarTy, 1, 0);
 | |
|     int StoreCost = VecStCost - ScalarStCost;
 | |
| 
 | |
|     ValueList Operands;
 | |
|     for (unsigned j = 0; j < VL.size(); ++j) {
 | |
|       Operands.push_back(cast<Instruction>(VL[j])->getOperand(0));
 | |
|       MemBarrierIgnoreList.insert(VL[j]);
 | |
|     }
 | |
| 
 | |
|     int Cost = getTreeCost_rec(Operands, Depth + 1);
 | |
|     if (Cost == MAX_COST)
 | |
|       return MAX_COST;
 | |
| 
 | |
|     int TotalCost = StoreCost + Cost;
 | |
|     return TotalCost + ExternalUserExtractCost;
 | |
|   }
 | |
|   default:
 | |
|     // Unable to vectorize unknown instructions.
 | |
|     return getGatherCost(VecTy);
 | |
|   }
 | |
| }
 | |
| 
 | |
| int FuncSLP::getTreeCost(ArrayRef<Value *> VL) {
 | |
|   // Get rid of the list of stores that were removed, and from the
 | |
|   // lists of instructions with multiple users.
 | |
|   MemBarrierIgnoreList.clear();
 | |
|   LaneMap.clear();
 | |
|   MultiUserVals.clear();
 | |
|   ExtractedLane.clear();
 | |
|   MustGather.clear();
 | |
|   VisitedPHIs.clear();
 | |
| 
 | |
|   if (!getSameBlock(VL))
 | |
|     return MAX_COST;
 | |
| 
 | |
|   // Find the location of the last root.
 | |
|   int LastRootIndex = getLastIndex(VL);
 | |
|   int FirstUserIndex = getFirstUserIndex(VL);
 | |
| 
 | |
|   // Don't vectorize if there are users of the tree roots inside the tree
 | |
|   // itself.
 | |
|   if (LastRootIndex > FirstUserIndex)
 | |
|     return MAX_COST;
 | |
| 
 | |
|   // Scan the tree and find which value is used by which lane, and which values
 | |
|   // must be scalarized.
 | |
|   getTreeUses_rec(VL, 0);
 | |
| 
 | |
|   // Check that instructions with multiple users can be vectorized. Mark
 | |
|   // unsafe instructions.
 | |
|   for (MapVector<Instruction *, UseInfo>::iterator UI = MultiUserVals.begin(),
 | |
|        e = MultiUserVals.end(); UI != e; ++UI) {
 | |
|     Instruction *Scalar = UI->first;
 | |
| 
 | |
|     if (MustGather.count(Scalar))
 | |
|       continue;
 | |
| 
 | |
|     assert(LaneMap.count(Scalar) && "Unknown scalar");
 | |
|     int ScalarLane = LaneMap[Scalar];
 | |
| 
 | |
|     bool ExternalUse = false;
 | |
|     // Check that all of the users of this instr are within the tree.
 | |
|     for (Value::use_iterator Usr = Scalar->use_begin(),
 | |
|          UE = Scalar->use_end(); Usr != UE; ++Usr) {
 | |
|       // If this user is within the tree, make sure it is from the same lane.
 | |
|       // Notice that we have both in-tree and out-of-tree users.
 | |
|       if (LaneMap.count(*Usr)) {
 | |
|         if (LaneMap[*Usr] != ScalarLane) {
 | |
|           DEBUG(dbgs() << "SLP: Adding to MustExtract "
 | |
|                 "because of an out-of-lane usage.\n");
 | |
|           MustGather.insert(Scalar);
 | |
|           break;
 | |
|         }
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // We have an out-of-tree user. Check if we can place an 'extract'.
 | |
|       Instruction *User = cast<Instruction>(*Usr);
 | |
|       // We care about the order only if the user is in the same block.
 | |
|       if (User->getParent() == Scalar->getParent()) {
 | |
|         int LastLoc = UI->second.LastIndex;
 | |
|         BlockNumbering &BN = BlocksNumbers[User->getParent()];
 | |
|         int UserIdx = BN.getIndex(User);
 | |
|         if (UserIdx <= LastLoc) {
 | |
|           DEBUG(dbgs() << "SLP: Adding to MustExtract because of an external "
 | |
|                 "user that we can't schedule.\n");
 | |
|           MustGather.insert(Scalar);
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       // We have an external user.
 | |
|       ExternalUse = true;
 | |
|     }
 | |
| 
 | |
|     if (ExternalUse) {
 | |
|       // Items that are left in MultiUserVals are to be extracted.
 | |
|       // ExtractLane is used for the lookup.
 | |
|       ExtractedLane.insert(Scalar);
 | |
|     }
 | |
| 
 | |
|   }
 | |
| 
 | |
|   // Now calculate the cost of vectorizing the tree.
 | |
|   return getTreeCost_rec(VL, 0);
 | |
| }
 | |
| bool FuncSLP::vectorizeStoreChain(ArrayRef<Value *> Chain, int CostThreshold) {
 | |
|   unsigned ChainLen = Chain.size();
 | |
|   DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen
 | |
|                << "\n");
 | |
|   Type *StoreTy = cast<StoreInst>(Chain[0])->getValueOperand()->getType();
 | |
|   unsigned Sz = DL->getTypeSizeInBits(StoreTy);
 | |
|   unsigned VF = MinVecRegSize / Sz;
 | |
| 
 | |
|   if (!isPowerOf2_32(Sz) || VF < 2)
 | |
|     return false;
 | |
| 
 | |
|   bool Changed = false;
 | |
|   // Look for profitable vectorizable trees at all offsets, starting at zero.
 | |
|   for (unsigned i = 0, e = ChainLen; i < e; ++i) {
 | |
|     if (i + VF > e)
 | |
|       break;
 | |
|     DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i
 | |
|                  << "\n");
 | |
|     ArrayRef<Value *> Operands = Chain.slice(i, VF);
 | |
| 
 | |
|     int Cost = getTreeCost(Operands);
 | |
|     if (Cost == FuncSLP::MAX_COST)
 | |
|       continue;
 | |
|     DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n");
 | |
|     if (Cost < CostThreshold) {
 | |
|       DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n");
 | |
|       vectorizeTree(Operands);
 | |
| 
 | |
|       // Remove the scalar stores.
 | |
|       for (int j = 0, e = VF; j < e; ++j)
 | |
|         cast<Instruction>(Operands[j])->eraseFromParent();
 | |
| 
 | |
|       // Move to the next bundle.
 | |
|       i += VF - 1;
 | |
|       Changed = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Changed || ChainLen > VF)
 | |
|     return Changed;
 | |
| 
 | |
|   // Handle short chains. This helps us catch types such as <3 x float> that
 | |
|   // are smaller than vector size.
 | |
|   int Cost = getTreeCost(Chain);
 | |
|   if (Cost == FuncSLP::MAX_COST)
 | |
|     return false;
 | |
|   if (Cost < CostThreshold) {
 | |
|     DEBUG(dbgs() << "SLP: Found store chain cost = " << Cost
 | |
|                  << " for size = " << ChainLen << "\n");
 | |
|     vectorizeTree(Chain);
 | |
| 
 | |
|     // Remove all of the scalar stores.
 | |
|     for (int i = 0, e = Chain.size(); i < e; ++i)
 | |
|       cast<Instruction>(Chain[i])->eraseFromParent();
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool FuncSLP::vectorizeStores(ArrayRef<StoreInst *> Stores, int costThreshold) {
 | |
|   SetVector<Value *> Heads, Tails;
 | |
|   SmallDenseMap<Value *, Value *> ConsecutiveChain;
 | |
| 
 | |
|   // We may run into multiple chains that merge into a single chain. We mark the
 | |
|   // stores that we vectorized so that we don't visit the same store twice.
 | |
|   ValueSet VectorizedStores;
 | |
|   bool Changed = false;
 | |
| 
 | |
|   // Do a quadratic search on all of the given stores and find
 | |
|   // all of the pairs of loads that follow each other.
 | |
|   for (unsigned i = 0, e = Stores.size(); i < e; ++i)
 | |
|     for (unsigned j = 0; j < e; ++j) {
 | |
|       if (i == j)
 | |
|         continue;
 | |
| 
 | |
|       if (isConsecutiveAccess(Stores[i], Stores[j])) {
 | |
|         Tails.insert(Stores[j]);
 | |
|         Heads.insert(Stores[i]);
 | |
|         ConsecutiveChain[Stores[i]] = Stores[j];
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   // For stores that start but don't end a link in the chain:
 | |
|   for (SetVector<Value *>::iterator it = Heads.begin(), e = Heads.end();
 | |
|        it != e; ++it) {
 | |
|     if (Tails.count(*it))
 | |
|       continue;
 | |
| 
 | |
|     // We found a store instr that starts a chain. Now follow the chain and try
 | |
|     // to vectorize it.
 | |
|     ValueList Operands;
 | |
|     Value *I = *it;
 | |
|     // Collect the chain into a list.
 | |
|     while (Tails.count(I) || Heads.count(I)) {
 | |
|       if (VectorizedStores.count(I))
 | |
|         break;
 | |
|       Operands.push_back(I);
 | |
|       // Move to the next value in the chain.
 | |
|       I = ConsecutiveChain[I];
 | |
|     }
 | |
| 
 | |
|     bool Vectorized = vectorizeStoreChain(Operands, costThreshold);
 | |
| 
 | |
|     // Mark the vectorized stores so that we don't vectorize them again.
 | |
|     if (Vectorized)
 | |
|       VectorizedStores.insert(Operands.begin(), Operands.end());
 | |
|     Changed |= Vectorized;
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| Value *FuncSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) {
 | |
|   Value *Vec = UndefValue::get(Ty);
 | |
|   // Generate the 'InsertElement' instruction.
 | |
|   for (unsigned i = 0; i < Ty->getNumElements(); ++i) {
 | |
|     Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i));
 | |
|     if (Instruction *I = dyn_cast<Instruction>(Vec))
 | |
|       GatherSeq.insert(I);
 | |
|   }
 | |
| 
 | |
|   return Vec;
 | |
| }
 | |
| 
 | |
| Value *FuncSLP::vectorizeTree_rec(ArrayRef<Value *> VL) {
 | |
|   BuilderLocGuard Guard(Builder);
 | |
| 
 | |
|   Type *ScalarTy = VL[0]->getType();
 | |
|   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
 | |
|     ScalarTy = SI->getValueOperand()->getType();
 | |
|   VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
 | |
| 
 | |
|   if (needToGatherAny(VL))
 | |
|     return Gather(VL, VecTy);
 | |
| 
 | |
|   if (VectorizedValues.count(VL[0])) {
 | |
|     DEBUG(dbgs() << "SLP: Diamond merged at depth.\n");
 | |
|     return VectorizedValues[VL[0]];
 | |
|   }
 | |
| 
 | |
|   Instruction *VL0 = cast<Instruction>(VL[0]);
 | |
|   unsigned Opcode = VL0->getOpcode();
 | |
|   assert(Opcode == getSameOpcode(VL) && "Invalid opcode");
 | |
| 
 | |
|   switch (Opcode) {
 | |
|   case Instruction::PHI: {
 | |
|     PHINode *PH = dyn_cast<PHINode>(VL0);
 | |
|     Builder.SetInsertPoint(PH->getParent()->getFirstInsertionPt());
 | |
|     PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
 | |
|     VectorizedValues[VL0] = NewPhi;
 | |
| 
 | |
|     for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
 | |
|       ValueList Operands;
 | |
|       BasicBlock *IBB = PH->getIncomingBlock(i);
 | |
| 
 | |
|       // Prepare the operand vector.
 | |
|       for (unsigned j = 0; j < VL.size(); ++j)
 | |
|         Operands.push_back(cast<PHINode>(VL[j])->getIncomingValueForBlock(IBB));
 | |
| 
 | |
|       Builder.SetInsertPoint(IBB->getTerminator());
 | |
|       Value *Vec = vectorizeTree_rec(Operands);
 | |
|       NewPhi->addIncoming(Vec, IBB);
 | |
|     }
 | |
| 
 | |
|     assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&
 | |
|            "Invalid number of incoming values");
 | |
|     return NewPhi;
 | |
|   }
 | |
| 
 | |
|   case Instruction::ExtractElement: {
 | |
|     if (CanReuseExtract(VL, VL.size(), VecTy))
 | |
|       return VL0->getOperand(0);
 | |
|     return Gather(VL, VecTy);
 | |
|   }
 | |
|   case Instruction::ZExt:
 | |
|   case Instruction::SExt:
 | |
|   case Instruction::FPToUI:
 | |
|   case Instruction::FPToSI:
 | |
|   case Instruction::FPExt:
 | |
|   case Instruction::PtrToInt:
 | |
|   case Instruction::IntToPtr:
 | |
|   case Instruction::SIToFP:
 | |
|   case Instruction::UIToFP:
 | |
|   case Instruction::Trunc:
 | |
|   case Instruction::FPTrunc:
 | |
|   case Instruction::BitCast: {
 | |
|     ValueList INVL;
 | |
|     for (int i = 0, e = VL.size(); i < e; ++i)
 | |
|       INVL.push_back(cast<Instruction>(VL[i])->getOperand(0));
 | |
| 
 | |
|     Builder.SetInsertPoint(getLastInstruction(VL));
 | |
|     Value *InVec = vectorizeTree_rec(INVL);
 | |
|     CastInst *CI = dyn_cast<CastInst>(VL0);
 | |
|     Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
 | |
|     VectorizedValues[VL0] = V;
 | |
|     return V;
 | |
|   }
 | |
|   case Instruction::FCmp:
 | |
|   case Instruction::ICmp: {
 | |
|     // Check that all of the compares have the same predicate.
 | |
|     CmpInst::Predicate P0 = dyn_cast<CmpInst>(VL0)->getPredicate();
 | |
|     for (unsigned i = 1, e = VL.size(); i < e; ++i) {
 | |
|       CmpInst *Cmp = cast<CmpInst>(VL[i]);
 | |
|       if (Cmp->getPredicate() != P0)
 | |
|         return Gather(VL, VecTy);
 | |
|     }
 | |
| 
 | |
|     ValueList LHSV, RHSV;
 | |
|     for (int i = 0, e = VL.size(); i < e; ++i) {
 | |
|       LHSV.push_back(cast<Instruction>(VL[i])->getOperand(0));
 | |
|       RHSV.push_back(cast<Instruction>(VL[i])->getOperand(1));
 | |
|     }
 | |
| 
 | |
|     Builder.SetInsertPoint(getLastInstruction(VL));
 | |
|     Value *L = vectorizeTree_rec(LHSV);
 | |
|     Value *R = vectorizeTree_rec(RHSV);
 | |
|     Value *V;
 | |
| 
 | |
|     if (Opcode == Instruction::FCmp)
 | |
|       V = Builder.CreateFCmp(P0, L, R);
 | |
|     else
 | |
|       V = Builder.CreateICmp(P0, L, R);
 | |
| 
 | |
|     VectorizedValues[VL0] = V;
 | |
|     return V;
 | |
|   }
 | |
|   case Instruction::Select: {
 | |
|     ValueList TrueVec, FalseVec, CondVec;
 | |
|     for (int i = 0, e = VL.size(); i < e; ++i) {
 | |
|       CondVec.push_back(cast<Instruction>(VL[i])->getOperand(0));
 | |
|       TrueVec.push_back(cast<Instruction>(VL[i])->getOperand(1));
 | |
|       FalseVec.push_back(cast<Instruction>(VL[i])->getOperand(2));
 | |
|     }
 | |
| 
 | |
|     Builder.SetInsertPoint(getLastInstruction(VL));
 | |
|     Value *True = vectorizeTree_rec(TrueVec);
 | |
|     Value *False = vectorizeTree_rec(FalseVec);
 | |
|     Value *Cond = vectorizeTree_rec(CondVec);
 | |
|     Value *V = Builder.CreateSelect(Cond, True, False);
 | |
|     VectorizedValues[VL0] = V;
 | |
|     return V;
 | |
|   }
 | |
|   case Instruction::Add:
 | |
|   case Instruction::FAdd:
 | |
|   case Instruction::Sub:
 | |
|   case Instruction::FSub:
 | |
|   case Instruction::Mul:
 | |
|   case Instruction::FMul:
 | |
|   case Instruction::UDiv:
 | |
|   case Instruction::SDiv:
 | |
|   case Instruction::FDiv:
 | |
|   case Instruction::URem:
 | |
|   case Instruction::SRem:
 | |
|   case Instruction::FRem:
 | |
|   case Instruction::Shl:
 | |
|   case Instruction::LShr:
 | |
|   case Instruction::AShr:
 | |
|   case Instruction::And:
 | |
|   case Instruction::Or:
 | |
|   case Instruction::Xor: {
 | |
|     ValueList LHSVL, RHSVL;
 | |
|     for (int i = 0, e = VL.size(); i < e; ++i) {
 | |
|       LHSVL.push_back(cast<Instruction>(VL[i])->getOperand(0));
 | |
|       RHSVL.push_back(cast<Instruction>(VL[i])->getOperand(1));
 | |
|     }
 | |
| 
 | |
|     Builder.SetInsertPoint(getLastInstruction(VL));
 | |
|     Value *LHS = vectorizeTree_rec(LHSVL);
 | |
|     Value *RHS = vectorizeTree_rec(RHSVL);
 | |
| 
 | |
|     if (LHS == RHS) {
 | |
|       assert((VL0->getOperand(0) == VL0->getOperand(1)) && "Invalid order");
 | |
|     }
 | |
| 
 | |
|     BinaryOperator *BinOp = cast<BinaryOperator>(VL0);
 | |
|     Value *V = Builder.CreateBinOp(BinOp->getOpcode(), LHS, RHS);
 | |
|     VectorizedValues[VL0] = V;
 | |
|     return V;
 | |
|   }
 | |
|   case Instruction::Load: {
 | |
|     // Check if all of the loads are consecutive.
 | |
|     for (unsigned i = 1, e = VL.size(); i < e; ++i)
 | |
|       if (!isConsecutiveAccess(VL[i - 1], VL[i]))
 | |
|         return Gather(VL, VecTy);
 | |
| 
 | |
|     // Loads are inserted at the head of the tree because we don't want to
 | |
|     // sink them all the way down past store instructions.
 | |
|     Builder.SetInsertPoint(getLastInstruction(VL));
 | |
|     LoadInst *LI = cast<LoadInst>(VL0);
 | |
|     Value *VecPtr =
 | |
|         Builder.CreateBitCast(LI->getPointerOperand(), VecTy->getPointerTo());
 | |
|     unsigned Alignment = LI->getAlignment();
 | |
|     LI = Builder.CreateLoad(VecPtr);
 | |
|     LI->setAlignment(Alignment);
 | |
| 
 | |
|     VectorizedValues[VL0] = LI;
 | |
|     return LI;
 | |
|   }
 | |
|   case Instruction::Store: {
 | |
|     StoreInst *SI = cast<StoreInst>(VL0);
 | |
|     unsigned Alignment = SI->getAlignment();
 | |
| 
 | |
|     ValueList ValueOp;
 | |
|     for (int i = 0, e = VL.size(); i < e; ++i)
 | |
|       ValueOp.push_back(cast<StoreInst>(VL[i])->getValueOperand());
 | |
| 
 | |
|     Value *VecValue = vectorizeTree_rec(ValueOp);
 | |
| 
 | |
|     Builder.SetInsertPoint(getLastInstruction(VL));
 | |
|     Value *VecPtr =
 | |
|         Builder.CreateBitCast(SI->getPointerOperand(), VecTy->getPointerTo());
 | |
|     Builder.CreateStore(VecValue, VecPtr)->setAlignment(Alignment);
 | |
|     return 0;
 | |
|   }
 | |
|   default:
 | |
|     return Gather(VL, VecTy);
 | |
|   }
 | |
| }
 | |
| 
 | |
| Value *FuncSLP::vectorizeTree(ArrayRef<Value *> VL) {
 | |
|   Builder.SetInsertPoint(getLastInstruction(VL));
 | |
|   Value *V = vectorizeTree_rec(VL);
 | |
| 
 | |
|   DEBUG(dbgs() << "SLP: Placing 'extracts'\n");
 | |
|   for (SetVector<Instruction*>::iterator it = ExtractedLane.begin(), e =
 | |
|        ExtractedLane.end(); it != e; ++it) {
 | |
|     Instruction *Scalar = *it;
 | |
|     DEBUG(dbgs() << "SLP: Looking at " << *Scalar);
 | |
| 
 | |
|     if (!Scalar)
 | |
|       continue;
 | |
| 
 | |
|     Instruction *Loc = 0;
 | |
| 
 | |
|     assert(MultiUserVals.count(Scalar) && "Can't find the lane to extract");
 | |
|     Instruction *Leader = MultiUserVals[Scalar].Leader;
 | |
| 
 | |
|     // This value is gathered so we don't need to extract from anywhere.
 | |
|     if (!VectorizedValues.count(Leader))
 | |
|       continue;
 | |
| 
 | |
|     Value *Vec = VectorizedValues[Leader];
 | |
|     if (PHINode *PN = dyn_cast<PHINode>(Vec)) {
 | |
|       Loc = PN->getParent()->getFirstInsertionPt();
 | |
|     } else {
 | |
|       Instruction *I = cast<Instruction>(Vec);
 | |
|       BasicBlock::iterator L = *I;
 | |
|       Loc = ++L;
 | |
|     }
 | |
| 
 | |
|     Builder.SetInsertPoint(Loc);
 | |
|     assert(LaneMap.count(Scalar) && "Can't find the extracted lane.");
 | |
|     int Lane = LaneMap[Scalar];
 | |
|     Value *Idx = Builder.getInt32(Lane);
 | |
|     Value *Extract = Builder.CreateExtractElement(Vec, Idx);
 | |
| 
 | |
|     bool Replaced = false;;
 | |
|     for (Value::use_iterator U = Scalar->use_begin(), UE = Scalar->use_end();
 | |
|          U != UE; ++U) {
 | |
|       Instruction *UI = cast<Instruction>(*U);
 | |
|       // No need to replace instructions that are inside our lane map.
 | |
|       if (LaneMap.count(UI))
 | |
|         continue;
 | |
| 
 | |
|       UI->replaceUsesOfWith(Scalar ,Extract);
 | |
|       Replaced = true;
 | |
|     }
 | |
|     assert(Replaced && "Must replace at least one outside user");
 | |
|     (void)Replaced;
 | |
|   }
 | |
| 
 | |
|   // We moved some instructions around. We have to number them again
 | |
|   // before we can do any analysis.
 | |
|   forgetNumbering();
 | |
| 
 | |
|   // Clear the state.
 | |
|   MustGather.clear();
 | |
|   VisitedPHIs.clear();
 | |
|   VectorizedValues.clear();
 | |
|   MemBarrierIgnoreList.clear();
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| Value *FuncSLP::vectorizeArith(ArrayRef<Value *> Operands) {
 | |
|   Instruction *LastInst = getLastInstruction(Operands);
 | |
|   Value *Vec = vectorizeTree(Operands);
 | |
|   // After vectorizing the operands we need to generate extractelement
 | |
|   // instructions and replace all of the uses of the scalar values with
 | |
|   // the values that we extracted from the vectorized tree.
 | |
|   Builder.SetInsertPoint(LastInst);
 | |
|   for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
 | |
|     Value *S = Builder.CreateExtractElement(Vec, Builder.getInt32(i));
 | |
|     Operands[i]->replaceAllUsesWith(S);
 | |
|   }
 | |
| 
 | |
|   forgetNumbering();
 | |
|   return Vec;
 | |
| }
 | |
| 
 | |
| void FuncSLP::optimizeGatherSequence() {
 | |
|   // LICM InsertElementInst sequences.
 | |
|   for (SetVector<Instruction *>::iterator it = GatherSeq.begin(),
 | |
|        e = GatherSeq.end(); it != e; ++it) {
 | |
|     InsertElementInst *Insert = dyn_cast<InsertElementInst>(*it);
 | |
| 
 | |
|     if (!Insert)
 | |
|       continue;
 | |
| 
 | |
|     // Check if this block is inside a loop.
 | |
|     Loop *L = LI->getLoopFor(Insert->getParent());
 | |
|     if (!L)
 | |
|       continue;
 | |
| 
 | |
|     // Check if it has a preheader.
 | |
|     BasicBlock *PreHeader = L->getLoopPreheader();
 | |
|     if (!PreHeader)
 | |
|       continue;
 | |
| 
 | |
|     // If the vector or the element that we insert into it are
 | |
|     // instructions that are defined in this basic block then we can't
 | |
|     // hoist this instruction.
 | |
|     Instruction *CurrVec = dyn_cast<Instruction>(Insert->getOperand(0));
 | |
|     Instruction *NewElem = dyn_cast<Instruction>(Insert->getOperand(1));
 | |
|     if (CurrVec && L->contains(CurrVec))
 | |
|       continue;
 | |
|     if (NewElem && L->contains(NewElem))
 | |
|       continue;
 | |
| 
 | |
|     // We can hoist this instruction. Move it to the pre-header.
 | |
|     Insert->moveBefore(PreHeader->getTerminator());
 | |
|   }
 | |
| 
 | |
|   // Perform O(N^2) search over the gather sequences and merge identical
 | |
|   // instructions. TODO: We can further optimize this scan if we split the
 | |
|   // instructions into different buckets based on the insert lane.
 | |
|   SmallPtrSet<Instruction*, 16> Visited;
 | |
|   SmallVector<Instruction*, 16> ToRemove;
 | |
|   ReversePostOrderTraversal<Function*> RPOT(F);
 | |
|   for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
 | |
|        E = RPOT.end(); I != E; ++I) {
 | |
|     BasicBlock *BB = *I;
 | |
|     // For all instructions in the function:
 | |
|     for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
 | |
|       InsertElementInst *Insert = dyn_cast<InsertElementInst>(it);
 | |
|       if (!Insert || !GatherSeq.count(Insert))
 | |
|         continue;
 | |
| 
 | |
|       // Check if we can replace this instruction with any of the
 | |
|       // visited instructions.
 | |
|       for (SmallPtrSet<Instruction*, 16>::iterator v = Visited.begin(),
 | |
|            ve = Visited.end(); v != ve; ++v) {
 | |
|         if (Insert->isIdenticalTo(*v) &&
 | |
|             DT->dominates((*v)->getParent(), Insert->getParent())) {
 | |
|           Insert->replaceAllUsesWith(*v);
 | |
|           ToRemove.push_back(Insert);
 | |
|           Insert = 0;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       if (Insert)
 | |
|         Visited.insert(Insert);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Erase all of the instructions that we RAUWed.
 | |
|   for (SmallVector<Instruction*, 16>::iterator v = ToRemove.begin(),
 | |
|        ve = ToRemove.end(); v != ve; ++v) {
 | |
|     assert((*v)->getNumUses() == 0 && "Can't remove instructions with uses");
 | |
|     (*v)->eraseFromParent();
 | |
|   }
 | |
| 
 | |
|   forgetNumbering();
 | |
| }
 | |
| 
 | |
| /// The SLPVectorizer Pass.
 | |
| struct SLPVectorizer : public FunctionPass {
 | |
|   typedef SmallVector<StoreInst *, 8> StoreList;
 | |
|   typedef MapVector<Value *, StoreList> StoreListMap;
 | |
| 
 | |
|   /// Pass identification, replacement for typeid
 | |
|   static char ID;
 | |
| 
 | |
|   explicit SLPVectorizer() : FunctionPass(ID) {
 | |
|     initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
 | |
|   }
 | |
| 
 | |
|   ScalarEvolution *SE;
 | |
|   DataLayout *DL;
 | |
|   TargetTransformInfo *TTI;
 | |
|   AliasAnalysis *AA;
 | |
|   LoopInfo *LI;
 | |
|   DominatorTree *DT;
 | |
| 
 | |
|   virtual bool runOnFunction(Function &F) {
 | |
|     SE = &getAnalysis<ScalarEvolution>();
 | |
|     DL = getAnalysisIfAvailable<DataLayout>();
 | |
|     TTI = &getAnalysis<TargetTransformInfo>();
 | |
|     AA = &getAnalysis<AliasAnalysis>();
 | |
|     LI = &getAnalysis<LoopInfo>();
 | |
|     DT = &getAnalysis<DominatorTree>();
 | |
| 
 | |
|     StoreRefs.clear();
 | |
|     bool Changed = false;
 | |
| 
 | |
|     // Must have DataLayout. We can't require it because some tests run w/o
 | |
|     // triple.
 | |
|     if (!DL)
 | |
|       return false;
 | |
| 
 | |
|     DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n");
 | |
| 
 | |
|     // Use the bollom up slp vectorizer to construct chains that start with
 | |
|     // he store instructions.
 | |
|     FuncSLP R(&F, SE, DL, TTI, AA, LI, DT);
 | |
| 
 | |
|     // Scan the blocks in the function in post order.
 | |
|     for (po_iterator<BasicBlock*> it = po_begin(&F.getEntryBlock()),
 | |
|          e = po_end(&F.getEntryBlock()); it != e; ++it) {
 | |
|       BasicBlock *BB = *it;
 | |
| 
 | |
|       // Vectorize trees that end at reductions.
 | |
|       Changed |= vectorizeChainsInBlock(BB, R);
 | |
| 
 | |
|       // Vectorize trees that end at stores.
 | |
|       if (unsigned count = collectStores(BB, R)) {
 | |
|         (void)count;
 | |
|         DEBUG(dbgs() << "SLP: Found " << count << " stores to vectorize.\n");
 | |
|         Changed |= vectorizeStoreChains(R);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (Changed) {
 | |
|       R.optimizeGatherSequence();
 | |
|       DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n");
 | |
|       DEBUG(verifyFunction(F));
 | |
|     }
 | |
|     return Changed;
 | |
|   }
 | |
| 
 | |
|   virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|     FunctionPass::getAnalysisUsage(AU);
 | |
|     AU.addRequired<ScalarEvolution>();
 | |
|     AU.addRequired<AliasAnalysis>();
 | |
|     AU.addRequired<TargetTransformInfo>();
 | |
|     AU.addRequired<LoopInfo>();
 | |
|     AU.addRequired<DominatorTree>();
 | |
|     AU.addPreserved<LoopInfo>();
 | |
|     AU.addPreserved<DominatorTree>();
 | |
|     AU.setPreservesCFG();
 | |
|   }
 | |
| 
 | |
| private:
 | |
| 
 | |
|   /// \brief Collect memory references and sort them according to their base
 | |
|   /// object. We sort the stores to their base objects to reduce the cost of the
 | |
|   /// quadratic search on the stores. TODO: We can further reduce this cost
 | |
|   /// if we flush the chain creation every time we run into a memory barrier.
 | |
|   unsigned collectStores(BasicBlock *BB, FuncSLP &R);
 | |
| 
 | |
|   /// \brief Try to vectorize a chain that starts at two arithmetic instrs.
 | |
|   bool tryToVectorizePair(Value *A, Value *B, FuncSLP &R);
 | |
| 
 | |
|   /// \brief Try to vectorize a list of operands. If \p NeedExtracts is true
 | |
|   /// then we calculate the cost of extracting the scalars from the vector.
 | |
|   /// \returns true if a value was vectorized.
 | |
|   bool tryToVectorizeList(ArrayRef<Value *> VL, FuncSLP &R, bool NeedExtracts);
 | |
| 
 | |
|   /// \brief Try to vectorize a chain that may start at the operands of \V;
 | |
|   bool tryToVectorize(BinaryOperator *V, FuncSLP &R);
 | |
| 
 | |
|   /// \brief Vectorize the stores that were collected in StoreRefs.
 | |
|   bool vectorizeStoreChains(FuncSLP &R);
 | |
| 
 | |
|   /// \brief Scan the basic block and look for patterns that are likely to start
 | |
|   /// a vectorization chain.
 | |
|   bool vectorizeChainsInBlock(BasicBlock *BB, FuncSLP &R);
 | |
| 
 | |
| private:
 | |
|   StoreListMap StoreRefs;
 | |
| };
 | |
| 
 | |
| unsigned SLPVectorizer::collectStores(BasicBlock *BB, FuncSLP &R) {
 | |
|   unsigned count = 0;
 | |
|   StoreRefs.clear();
 | |
|   for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
 | |
|     StoreInst *SI = dyn_cast<StoreInst>(it);
 | |
|     if (!SI)
 | |
|       continue;
 | |
| 
 | |
|     // Check that the pointer points to scalars.
 | |
|     Type *Ty = SI->getValueOperand()->getType();
 | |
|     if (Ty->isAggregateType() || Ty->isVectorTy())
 | |
|       return 0;
 | |
| 
 | |
|     // Find the base of the GEP.
 | |
|     Value *Ptr = SI->getPointerOperand();
 | |
|     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
 | |
|       Ptr = GEP->getPointerOperand();
 | |
| 
 | |
|     // Save the store locations.
 | |
|     StoreRefs[Ptr].push_back(SI);
 | |
|     count++;
 | |
|   }
 | |
|   return count;
 | |
| }
 | |
| 
 | |
| bool SLPVectorizer::tryToVectorizePair(Value *A, Value *B, FuncSLP &R) {
 | |
|   if (!A || !B)
 | |
|     return false;
 | |
|   Value *VL[] = { A, B };
 | |
|   return tryToVectorizeList(VL, R, true);
 | |
| }
 | |
| 
 | |
| bool SLPVectorizer::tryToVectorizeList(ArrayRef<Value *> VL, FuncSLP &R,
 | |
|                                        bool NeedExtracts) {
 | |
|   if (VL.size() < 2)
 | |
|     return false;
 | |
| 
 | |
|   DEBUG(dbgs() << "SLP: Vectorizing a list of length = " << VL.size() << ".\n");
 | |
| 
 | |
|   // Check that all of the parts are scalar instructions of the same type.
 | |
|   Instruction *I0 = dyn_cast<Instruction>(VL[0]);
 | |
|   if (!I0)
 | |
|     return 0;
 | |
| 
 | |
|   unsigned Opcode0 = I0->getOpcode();
 | |
| 
 | |
|   for (int i = 0, e = VL.size(); i < e; ++i) {
 | |
|     Type *Ty = VL[i]->getType();
 | |
|     if (Ty->isAggregateType() || Ty->isVectorTy())
 | |
|       return 0;
 | |
|     Instruction *Inst = dyn_cast<Instruction>(VL[i]);
 | |
|     if (!Inst || Inst->getOpcode() != Opcode0)
 | |
|       return 0;
 | |
|   }
 | |
| 
 | |
|   int Cost = R.getTreeCost(VL);
 | |
|   if (Cost == FuncSLP::MAX_COST)
 | |
|     return false;
 | |
| 
 | |
|   int ExtrCost = NeedExtracts ? R.getGatherCost(VL) : 0;
 | |
|   DEBUG(dbgs() << "SLP: Cost of pair:" << Cost
 | |
|                << " Cost of extract:" << ExtrCost << ".\n");
 | |
|   if ((Cost + ExtrCost) >= -SLPCostThreshold)
 | |
|     return false;
 | |
|   DEBUG(dbgs() << "SLP: Vectorizing pair.\n");
 | |
|   R.vectorizeArith(VL);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool SLPVectorizer::tryToVectorize(BinaryOperator *V, FuncSLP &R) {
 | |
|   if (!V)
 | |
|     return false;
 | |
| 
 | |
|   // Try to vectorize V.
 | |
|   if (tryToVectorizePair(V->getOperand(0), V->getOperand(1), R))
 | |
|     return true;
 | |
| 
 | |
|   BinaryOperator *A = dyn_cast<BinaryOperator>(V->getOperand(0));
 | |
|   BinaryOperator *B = dyn_cast<BinaryOperator>(V->getOperand(1));
 | |
|   // Try to skip B.
 | |
|   if (B && B->hasOneUse()) {
 | |
|     BinaryOperator *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
 | |
|     BinaryOperator *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
 | |
|     if (tryToVectorizePair(A, B0, R)) {
 | |
|       B->moveBefore(V);
 | |
|       return true;
 | |
|     }
 | |
|     if (tryToVectorizePair(A, B1, R)) {
 | |
|       B->moveBefore(V);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Try to skip A.
 | |
|   if (A && A->hasOneUse()) {
 | |
|     BinaryOperator *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
 | |
|     BinaryOperator *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
 | |
|     if (tryToVectorizePair(A0, B, R)) {
 | |
|       A->moveBefore(V);
 | |
|       return true;
 | |
|     }
 | |
|     if (tryToVectorizePair(A1, B, R)) {
 | |
|       A->moveBefore(V);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| bool SLPVectorizer::vectorizeChainsInBlock(BasicBlock *BB, FuncSLP &R) {
 | |
|   bool Changed = false;
 | |
|   for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
 | |
|     if (isa<DbgInfoIntrinsic>(it))
 | |
|       continue;
 | |
| 
 | |
|     // Try to vectorize reductions that use PHINodes.
 | |
|     if (PHINode *P = dyn_cast<PHINode>(it)) {
 | |
|       // Check that the PHI is a reduction PHI.
 | |
|       if (P->getNumIncomingValues() != 2)
 | |
|         return Changed;
 | |
|       Value *Rdx =
 | |
|           (P->getIncomingBlock(0) == BB
 | |
|                ? (P->getIncomingValue(0))
 | |
|                : (P->getIncomingBlock(1) == BB ? P->getIncomingValue(1) : 0));
 | |
|       // Check if this is a Binary Operator.
 | |
|       BinaryOperator *BI = dyn_cast_or_null<BinaryOperator>(Rdx);
 | |
|       if (!BI)
 | |
|         continue;
 | |
| 
 | |
|       Value *Inst = BI->getOperand(0);
 | |
|       if (Inst == P)
 | |
|         Inst = BI->getOperand(1);
 | |
| 
 | |
|       Changed |= tryToVectorize(dyn_cast<BinaryOperator>(Inst), R);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Try to vectorize trees that start at compare instructions.
 | |
|     if (CmpInst *CI = dyn_cast<CmpInst>(it)) {
 | |
|       if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) {
 | |
|         Changed |= true;
 | |
|         continue;
 | |
|       }
 | |
|       for (int i = 0; i < 2; ++i)
 | |
|         if (BinaryOperator *BI = dyn_cast<BinaryOperator>(CI->getOperand(i)))
 | |
|           Changed |=
 | |
|               tryToVectorizePair(BI->getOperand(0), BI->getOperand(1), R);
 | |
|       continue;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Scan the PHINodes in our successors in search for pairing hints.
 | |
|   for (succ_iterator it = succ_begin(BB), e = succ_end(BB); it != e; ++it) {
 | |
|     BasicBlock *Succ = *it;
 | |
|     SmallVector<Value *, 4> Incoming;
 | |
| 
 | |
|     // Collect the incoming values from the PHIs.
 | |
|     for (BasicBlock::iterator instr = Succ->begin(), ie = Succ->end();
 | |
|          instr != ie; ++instr) {
 | |
|       PHINode *P = dyn_cast<PHINode>(instr);
 | |
| 
 | |
|       if (!P)
 | |
|         break;
 | |
| 
 | |
|       Value *V = P->getIncomingValueForBlock(BB);
 | |
|       if (Instruction *I = dyn_cast<Instruction>(V))
 | |
|         if (I->getParent() == BB)
 | |
|           Incoming.push_back(I);
 | |
|     }
 | |
| 
 | |
|     if (Incoming.size() > 1)
 | |
|       Changed |= tryToVectorizeList(Incoming, R, true);
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| bool SLPVectorizer::vectorizeStoreChains(FuncSLP &R) {
 | |
|   bool Changed = false;
 | |
|   // Attempt to sort and vectorize each of the store-groups.
 | |
|   for (StoreListMap::iterator it = StoreRefs.begin(), e = StoreRefs.end();
 | |
|        it != e; ++it) {
 | |
|     if (it->second.size() < 2)
 | |
|       continue;
 | |
| 
 | |
|     DEBUG(dbgs() << "SLP: Analyzing a store chain of length "
 | |
|                  << it->second.size() << ".\n");
 | |
| 
 | |
|     Changed |= R.vectorizeStores(it->second, -SLPCostThreshold);
 | |
|   }
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| char SLPVectorizer::ID = 0;
 | |
| static const char lv_name[] = "SLP Vectorizer";
 | |
| INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)
 | |
| INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
 | |
| INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
 | |
| INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
 | |
| INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
 | |
| INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)
 | |
| 
 | |
| namespace llvm {
 | |
| Pass *createSLPVectorizerPass() { return new SLPVectorizer(); }
 | |
| }
 |