llvm-6502/include/llvm/CodeGen/SelectionDAGNodes.h
Andrew Lenharth 691ef2ba06 Implement count leading zeros (ctlz), count trailing zeros (cttz), and count
population (ctpop).  Generic lowering is implemented, however only promotion
is implemented for SelectionDAG at the moment.

More coming soon.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@21676 91177308-0d34-0410-b5e6-96231b3b80d8
2005-05-03 17:19:30 +00:00

920 lines
32 KiB
C++

//===-- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ---*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares the SDNode class and derived classes, which are used to
// represent the nodes and operations present in a SelectionDAG. These nodes
// and operations are machine code level operations, with some similarities to
// the GCC RTL representation.
//
// Clients should include the SelectionDAG.h file instead of this file directly.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
#define LLVM_CODEGEN_SELECTIONDAGNODES_H
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/Value.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/iterator"
#include "llvm/Support/DataTypes.h"
#include <cassert>
#include <vector>
namespace llvm {
class SelectionDAG;
class GlobalValue;
class MachineBasicBlock;
class SDNode;
template <typename T> struct simplify_type;
/// ISD namespace - This namespace contains an enum which represents all of the
/// SelectionDAG node types and value types.
///
namespace ISD {
//===--------------------------------------------------------------------===//
/// ISD::NodeType enum - This enum defines all of the operators valid in a
/// SelectionDAG.
///
enum NodeType {
// EntryToken - This is the marker used to indicate the start of the region.
EntryToken,
// Token factor - This node is takes multiple tokens as input and produces a
// single token result. This is used to represent the fact that the operand
// operators are independent of each other.
TokenFactor,
// Various leaf nodes.
Constant, ConstantFP, GlobalAddress, FrameIndex, ConstantPool,
BasicBlock, ExternalSymbol,
// CopyToReg - This node has chain and child nodes, and an associated
// register number. The instruction selector must guarantee that the value
// of the value node is available in the register stored in the RegSDNode
// object.
CopyToReg,
// CopyFromReg - This node indicates that the input value is a virtual or
// physical register that is defined outside of the scope of this
// SelectionDAG. The register is available from the RegSDNode object.
CopyFromReg,
// ImplicitDef - This node indicates that the specified register is
// implicitly defined by some operation (e.g. its a live-in argument). This
// register is indicated in the RegSDNode object. The only operand to this
// is the token chain coming in, the only result is the token chain going
// out.
ImplicitDef,
// UNDEF - An undefined node
UNDEF,
// EXTRACT_ELEMENT - This is used to get the first or second (determined by
// a Constant, which is required to be operand #1), element of the aggregate
// value specified as operand #0. This is only for use before legalization,
// for values that will be broken into multiple registers.
EXTRACT_ELEMENT,
// BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways. Given
// two values of the same integer value type, this produces a value twice as
// big. Like EXTRACT_ELEMENT, this can only be used before legalization.
BUILD_PAIR,
// Simple binary arithmetic operators.
ADD, SUB, MUL, SDIV, UDIV, SREM, UREM,
// MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing
// an unsigned/signed value of type i[2*n], then return the top part.
MULHU, MULHS,
// Bitwise operators.
AND, OR, XOR, SHL, SRA, SRL,
// Counting operators
CTTZ, CTLZ, CTPOP,
// Select operator.
SELECT,
// SetCC operator - This evaluates to a boolean (i1) true value if the
// condition is true. These nodes are instances of the
// SetCCSDNode class, which contains the condition code as extra
// state.
SETCC,
// ADD_PARTS/SUB_PARTS - These operators take two logical operands which are
// broken into a multiple pieces each, and return the resulting pieces of
// doing an atomic add/sub operation. This is used to handle add/sub of
// expanded types. The operation ordering is:
// [Lo,Hi] = op [LoLHS,HiLHS], [LoRHS,HiRHS]
ADD_PARTS, SUB_PARTS,
// SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded
// integer shift operations, just like ADD/SUB_PARTS. The operation
// ordering is:
// [Lo,Hi] = op [LoLHS,HiLHS], Amt
SHL_PARTS, SRA_PARTS, SRL_PARTS,
// Conversion operators. These are all single input single output
// operations. For all of these, the result type must be strictly
// wider or narrower (depending on the operation) than the source
// type.
// SIGN_EXTEND - Used for integer types, replicating the sign bit
// into new bits.
SIGN_EXTEND,
// ZERO_EXTEND - Used for integer types, zeroing the new bits.
ZERO_EXTEND,
// TRUNCATE - Completely drop the high bits.
TRUNCATE,
// [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
// depends on the first letter) to floating point.
SINT_TO_FP,
UINT_TO_FP,
// SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to
// sign extend a small value in a large integer register (e.g. sign
// extending the low 8 bits of a 32-bit register to fill the top 24 bits
// with the 7th bit). The size of the smaller type is indicated by the
// ExtraValueType in the MVTSDNode for the operator.
SIGN_EXTEND_INREG,
// FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
// integer.
FP_TO_SINT,
FP_TO_UINT,
// FP_ROUND - Perform a rounding operation from the current
// precision down to the specified precision (currently always 64->32).
FP_ROUND,
// FP_ROUND_INREG - This operator takes a floating point register, and
// rounds it to a floating point value. It then promotes it and returns it
// in a register of the same size. This operation effectively just discards
// excess precision. The type to round down to is specified by the
// ExtraValueType in the MVTSDNode (currently always 64->32->64).
FP_ROUND_INREG,
// FP_EXTEND - Extend a smaller FP type into a larger FP type.
FP_EXTEND,
// FNEG, FABS, FSQRT, FSIN, FCOS - Perform unary floating point negation,
// absolute value, square root, sine and cosine operations.
FNEG, FABS, FSQRT, FSIN, FCOS,
// Other operators. LOAD and STORE have token chains as their first
// operand, then the same operands as an LLVM load/store instruction.
LOAD, STORE,
// EXTLOAD, SEXTLOAD, ZEXTLOAD - These three operators are instances of the
// MVTSDNode. All of these load a value from memory and extend them to a
// larger value (e.g. load a byte into a word register). All three of these
// have two operands, a chain and a pointer to load from. The extra value
// type is the source type being loaded.
//
// SEXTLOAD loads the integer operand and sign extends it to a larger
// integer result type.
// ZEXTLOAD loads the integer operand and zero extends it to a larger
// integer result type.
// EXTLOAD is used for two things: floating point extending loads, and
// integer extending loads where it doesn't matter what the high
// bits are set to. The code generator is allowed to codegen this
// into whichever operation is more efficient.
EXTLOAD, SEXTLOAD, ZEXTLOAD,
// TRUNCSTORE - This operators truncates (for integer) or rounds (for FP) a
// value and stores it to memory in one operation. This can be used for
// either integer or floating point operands, and the stored type
// represented as the 'extra' value type in the MVTSDNode representing the
// operator. This node has the same three operands as a standard store.
TRUNCSTORE,
// DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
// to a specified boundary. The first operand is the token chain, the
// second is the number of bytes to allocate, and the third is the alignment
// boundary.
DYNAMIC_STACKALLOC,
// Control flow instructions. These all have token chains.
// BR - Unconditional branch. The first operand is the chain
// operand, the second is the MBB to branch to.
BR,
// BRCOND - Conditional branch. The first operand is the chain,
// the second is the condition, the third is the block to branch
// to if the condition is true.
BRCOND,
// BRCONDTWOWAY - Two-way conditional branch. The first operand is the
// chain, the second is the condition, the third is the block to branch to
// if true, and the forth is the block to branch to if false. Targets
// usually do not implement this, preferring to have legalize demote the
// operation to BRCOND/BR pairs when necessary.
BRCONDTWOWAY,
// RET - Return from function. The first operand is the chain,
// and any subsequent operands are the return values for the
// function. This operation can have variable number of operands.
RET,
// CALL - Call to a function pointer. The first operand is the chain, the
// second is the destination function pointer (a GlobalAddress for a direct
// call). Arguments have already been lowered to explicit DAGs according to
// the calling convention in effect here.
CALL,
// MEMSET/MEMCPY/MEMMOVE - The first operand is the chain, and the rest
// correspond to the operands of the LLVM intrinsic functions. The only
// result is a token chain. The alignment argument is guaranteed to be a
// Constant node.
MEMSET,
MEMMOVE,
MEMCPY,
// ADJCALLSTACKDOWN/ADJCALLSTACKUP - These operators mark the beginning and
// end of a call sequence and indicate how much the stack pointer needs to
// be adjusted for that particular call. The first operand is a chain, the
// second is a ConstantSDNode of intptr type.
ADJCALLSTACKDOWN, // Beginning of a call sequence
ADJCALLSTACKUP, // End of a call sequence
// PCMARKER - This corresponds to the pcmarker intrinsic.
PCMARKER,
// SRCVALUE - This corresponds to a Value*, and is used to carry associate
// memory operations with their corrosponding load. This lets one use the
// pointer analysis information in the backend
SRCVALUE,
// BUILTIN_OP_END - This must be the last enum value in this list.
BUILTIN_OP_END,
};
//===--------------------------------------------------------------------===//
/// ISD::CondCode enum - These are ordered carefully to make the bitfields
/// below work out, when considering SETFALSE (something that never exists
/// dynamically) as 0. "U" -> Unsigned (for integer operands) or Unordered
/// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
/// to. If the "N" column is 1, the result of the comparison is undefined if
/// the input is a NAN.
///
/// All of these (except for the 'always folded ops') should be handled for
/// floating point. For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
/// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
///
/// Note that these are laid out in a specific order to allow bit-twiddling
/// to transform conditions.
enum CondCode {
// Opcode N U L G E Intuitive operation
SETFALSE, // 0 0 0 0 Always false (always folded)
SETOEQ, // 0 0 0 1 True if ordered and equal
SETOGT, // 0 0 1 0 True if ordered and greater than
SETOGE, // 0 0 1 1 True if ordered and greater than or equal
SETOLT, // 0 1 0 0 True if ordered and less than
SETOLE, // 0 1 0 1 True if ordered and less than or equal
SETONE, // 0 1 1 0 True if ordered and operands are unequal
SETO, // 0 1 1 1 True if ordered (no nans)
SETUO, // 1 0 0 0 True if unordered: isnan(X) | isnan(Y)
SETUEQ, // 1 0 0 1 True if unordered or equal
SETUGT, // 1 0 1 0 True if unordered or greater than
SETUGE, // 1 0 1 1 True if unordered, greater than, or equal
SETULT, // 1 1 0 0 True if unordered or less than
SETULE, // 1 1 0 1 True if unordered, less than, or equal
SETUNE, // 1 1 1 0 True if unordered or not equal
SETTRUE, // 1 1 1 1 Always true (always folded)
// Don't care operations: undefined if the input is a nan.
SETFALSE2, // 1 X 0 0 0 Always false (always folded)
SETEQ, // 1 X 0 0 1 True if equal
SETGT, // 1 X 0 1 0 True if greater than
SETGE, // 1 X 0 1 1 True if greater than or equal
SETLT, // 1 X 1 0 0 True if less than
SETLE, // 1 X 1 0 1 True if less than or equal
SETNE, // 1 X 1 1 0 True if not equal
SETTRUE2, // 1 X 1 1 1 Always true (always folded)
SETCC_INVALID, // Marker value.
};
/// isSignedIntSetCC - Return true if this is a setcc instruction that
/// performs a signed comparison when used with integer operands.
inline bool isSignedIntSetCC(CondCode Code) {
return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
}
/// isUnsignedIntSetCC - Return true if this is a setcc instruction that
/// performs an unsigned comparison when used with integer operands.
inline bool isUnsignedIntSetCC(CondCode Code) {
return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
}
/// isTrueWhenEqual - Return true if the specified condition returns true if
/// the two operands to the condition are equal. Note that if one of the two
/// operands is a NaN, this value is meaningless.
inline bool isTrueWhenEqual(CondCode Cond) {
return ((int)Cond & 1) != 0;
}
/// getUnorderedFlavor - This function returns 0 if the condition is always
/// false if an operand is a NaN, 1 if the condition is always true if the
/// operand is a NaN, and 2 if the condition is undefined if the operand is a
/// NaN.
inline unsigned getUnorderedFlavor(CondCode Cond) {
return ((int)Cond >> 3) & 3;
}
/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
/// 'op' is a valid SetCC operation.
CondCode getSetCCInverse(CondCode Operation, bool isInteger);
/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
/// when given the operation for (X op Y).
CondCode getSetCCSwappedOperands(CondCode Operation);
/// getSetCCOrOperation - Return the result of a logical OR between different
/// comparisons of identical values: ((X op1 Y) | (X op2 Y)). This
/// function returns SETCC_INVALID if it is not possible to represent the
/// resultant comparison.
CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger);
/// getSetCCAndOperation - Return the result of a logical AND between
/// different comparisons of identical values: ((X op1 Y) & (X op2 Y)). This
/// function returns SETCC_INVALID if it is not possible to represent the
/// resultant comparison.
CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger);
} // end llvm::ISD namespace
//===----------------------------------------------------------------------===//
/// SDOperand - Unlike LLVM values, Selection DAG nodes may return multiple
/// values as the result of a computation. Many nodes return multiple values,
/// from loads (which define a token and a return value) to ADDC (which returns
/// a result and a carry value), to calls (which may return an arbitrary number
/// of values).
///
/// As such, each use of a SelectionDAG computation must indicate the node that
/// computes it as well as which return value to use from that node. This pair
/// of information is represented with the SDOperand value type.
///
class SDOperand {
public:
SDNode *Val; // The node defining the value we are using.
unsigned ResNo; // Which return value of the node we are using.
SDOperand() : Val(0) {}
SDOperand(SDNode *val, unsigned resno) : Val(val), ResNo(resno) {}
bool operator==(const SDOperand &O) const {
return Val == O.Val && ResNo == O.ResNo;
}
bool operator!=(const SDOperand &O) const {
return !operator==(O);
}
bool operator<(const SDOperand &O) const {
return Val < O.Val || (Val == O.Val && ResNo < O.ResNo);
}
SDOperand getValue(unsigned R) const {
return SDOperand(Val, R);
}
/// getValueType - Return the ValueType of the referenced return value.
///
inline MVT::ValueType getValueType() const;
// Forwarding methods - These forward to the corresponding methods in SDNode.
inline unsigned getOpcode() const;
inline unsigned getNodeDepth() const;
inline unsigned getNumOperands() const;
inline const SDOperand &getOperand(unsigned i) const;
/// hasOneUse - Return true if there is exactly one operation using this
/// result value of the defining operator.
inline bool hasOneUse() const;
};
/// simplify_type specializations - Allow casting operators to work directly on
/// SDOperands as if they were SDNode*'s.
template<> struct simplify_type<SDOperand> {
typedef SDNode* SimpleType;
static SimpleType getSimplifiedValue(const SDOperand &Val) {
return static_cast<SimpleType>(Val.Val);
}
};
template<> struct simplify_type<const SDOperand> {
typedef SDNode* SimpleType;
static SimpleType getSimplifiedValue(const SDOperand &Val) {
return static_cast<SimpleType>(Val.Val);
}
};
/// SDNode - Represents one node in the SelectionDAG.
///
class SDNode {
/// NodeType - The operation that this node performs.
///
unsigned short NodeType;
/// NodeDepth - Node depth is defined as MAX(Node depth of children)+1. This
/// means that leaves have a depth of 1, things that use only leaves have a
/// depth of 2, etc.
unsigned short NodeDepth;
/// Operands - The values that are used by this operation.
///
std::vector<SDOperand> Operands;
/// Values - The types of the values this node defines. SDNode's may define
/// multiple values simultaneously.
std::vector<MVT::ValueType> Values;
/// Uses - These are all of the SDNode's that use a value produced by this
/// node.
std::vector<SDNode*> Uses;
public:
//===--------------------------------------------------------------------===//
// Accessors
//
unsigned getOpcode() const { return NodeType; }
size_t use_size() const { return Uses.size(); }
bool use_empty() const { return Uses.empty(); }
bool hasOneUse() const { return Uses.size() == 1; }
/// getNodeDepth - Return the distance from this node to the leaves in the
/// graph. The leaves have a depth of 1.
unsigned getNodeDepth() const { return NodeDepth; }
typedef std::vector<SDNode*>::const_iterator use_iterator;
use_iterator use_begin() const { return Uses.begin(); }
use_iterator use_end() const { return Uses.end(); }
/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
/// indicated value. This method ignores uses of other values defined by this
/// operation.
bool hasNUsesOfValue(unsigned NUses, unsigned Value);
/// getNumOperands - Return the number of values used by this operation.
///
unsigned getNumOperands() const { return Operands.size(); }
const SDOperand &getOperand(unsigned Num) {
assert(Num < Operands.size() && "Invalid child # of SDNode!");
return Operands[Num];
}
const SDOperand &getOperand(unsigned Num) const {
assert(Num < Operands.size() && "Invalid child # of SDNode!");
return Operands[Num];
}
/// getNumValues - Return the number of values defined/returned by this
/// operator.
///
unsigned getNumValues() const { return Values.size(); }
/// getValueType - Return the type of a specified result.
///
MVT::ValueType getValueType(unsigned ResNo) const {
assert(ResNo < Values.size() && "Illegal result number!");
return Values[ResNo];
}
/// getOperationName - Return the opcode of this operation for printing.
///
const char* getOperationName() const;
void dump() const;
static bool classof(const SDNode *) { return true; }
protected:
friend class SelectionDAG;
SDNode(unsigned NT, MVT::ValueType VT) : NodeType(NT), NodeDepth(1) {
Values.reserve(1);
Values.push_back(VT);
}
SDNode(unsigned NT, SDOperand Op)
: NodeType(NT), NodeDepth(Op.Val->getNodeDepth()+1) {
Operands.reserve(1); Operands.push_back(Op);
Op.Val->Uses.push_back(this);
}
SDNode(unsigned NT, SDOperand N1, SDOperand N2)
: NodeType(NT) {
if (N1.Val->getNodeDepth() > N2.Val->getNodeDepth())
NodeDepth = N1.Val->getNodeDepth()+1;
else
NodeDepth = N2.Val->getNodeDepth()+1;
Operands.reserve(2); Operands.push_back(N1); Operands.push_back(N2);
N1.Val->Uses.push_back(this); N2.Val->Uses.push_back(this);
}
SDNode(unsigned NT, SDOperand N1, SDOperand N2, SDOperand N3)
: NodeType(NT) {
unsigned ND = N1.Val->getNodeDepth();
if (ND < N2.Val->getNodeDepth())
ND = N2.Val->getNodeDepth();
if (ND < N3.Val->getNodeDepth())
ND = N3.Val->getNodeDepth();
NodeDepth = ND+1;
Operands.reserve(3); Operands.push_back(N1); Operands.push_back(N2);
Operands.push_back(N3);
N1.Val->Uses.push_back(this); N2.Val->Uses.push_back(this);
N3.Val->Uses.push_back(this);
}
SDNode(unsigned NT, SDOperand N1, SDOperand N2, SDOperand N3, SDOperand N4)
: NodeType(NT) {
unsigned ND = N1.Val->getNodeDepth();
if (ND < N2.Val->getNodeDepth())
ND = N2.Val->getNodeDepth();
if (ND < N3.Val->getNodeDepth())
ND = N3.Val->getNodeDepth();
if (ND < N4.Val->getNodeDepth())
ND = N4.Val->getNodeDepth();
NodeDepth = ND+1;
Operands.reserve(4); Operands.push_back(N1); Operands.push_back(N2);
Operands.push_back(N3); Operands.push_back(N4);
N1.Val->Uses.push_back(this); N2.Val->Uses.push_back(this);
N3.Val->Uses.push_back(this); N4.Val->Uses.push_back(this);
}
SDNode(unsigned NT, std::vector<SDOperand> &Nodes) : NodeType(NT) {
Operands.swap(Nodes);
unsigned ND = 0;
for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
Operands[i].Val->Uses.push_back(this);
if (ND < Operands[i].Val->getNodeDepth())
ND = Operands[i].Val->getNodeDepth();
}
NodeDepth = ND+1;
}
virtual ~SDNode() {
// FIXME: Drop uses.
}
void setValueTypes(MVT::ValueType VT) {
Values.reserve(1);
Values.push_back(VT);
}
void setValueTypes(MVT::ValueType VT1, MVT::ValueType VT2) {
Values.reserve(2);
Values.push_back(VT1);
Values.push_back(VT2);
}
/// Note: this method destroys the vector passed in.
void setValueTypes(std::vector<MVT::ValueType> &VTs) {
std::swap(Values, VTs);
}
void removeUser(SDNode *User) {
// Remove this user from the operand's use list.
for (unsigned i = Uses.size(); ; --i) {
assert(i != 0 && "Didn't find user!");
if (Uses[i-1] == User) {
Uses.erase(Uses.begin()+i-1);
break;
}
}
}
};
// Define inline functions from the SDOperand class.
inline unsigned SDOperand::getOpcode() const {
return Val->getOpcode();
}
inline unsigned SDOperand::getNodeDepth() const {
return Val->getNodeDepth();
}
inline MVT::ValueType SDOperand::getValueType() const {
return Val->getValueType(ResNo);
}
inline unsigned SDOperand::getNumOperands() const {
return Val->getNumOperands();
}
inline const SDOperand &SDOperand::getOperand(unsigned i) const {
return Val->getOperand(i);
}
inline bool SDOperand::hasOneUse() const {
return Val->hasNUsesOfValue(1, ResNo);
}
class ConstantSDNode : public SDNode {
uint64_t Value;
protected:
friend class SelectionDAG;
ConstantSDNode(uint64_t val, MVT::ValueType VT)
: SDNode(ISD::Constant, VT), Value(val) {
}
public:
uint64_t getValue() const { return Value; }
int64_t getSignExtended() const {
unsigned Bits = MVT::getSizeInBits(getValueType(0));
return ((int64_t)Value << (64-Bits)) >> (64-Bits);
}
bool isNullValue() const { return Value == 0; }
bool isAllOnesValue() const {
int NumBits = MVT::getSizeInBits(getValueType(0));
if (NumBits == 64) return Value+1 == 0;
return Value == (1ULL << NumBits)-1;
}
static bool classof(const ConstantSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::Constant;
}
};
class ConstantFPSDNode : public SDNode {
double Value;
protected:
friend class SelectionDAG;
ConstantFPSDNode(double val, MVT::ValueType VT)
: SDNode(ISD::ConstantFP, VT), Value(val) {
}
public:
double getValue() const { return Value; }
/// isExactlyValue - We don't rely on operator== working on double values, as
/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
/// As such, this method can be used to do an exact bit-for-bit comparison of
/// two floating point values.
bool isExactlyValue(double V) const {
union {
double V;
uint64_t I;
} T1;
T1.V = Value;
union {
double V;
uint64_t I;
} T2;
T2.V = V;
return T1.I == T2.I;
}
static bool classof(const ConstantFPSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::ConstantFP;
}
};
class GlobalAddressSDNode : public SDNode {
GlobalValue *TheGlobal;
protected:
friend class SelectionDAG;
GlobalAddressSDNode(const GlobalValue *GA, MVT::ValueType VT)
: SDNode(ISD::GlobalAddress, VT) {
TheGlobal = const_cast<GlobalValue*>(GA);
}
public:
GlobalValue *getGlobal() const { return TheGlobal; }
static bool classof(const GlobalAddressSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::GlobalAddress;
}
};
class FrameIndexSDNode : public SDNode {
int FI;
protected:
friend class SelectionDAG;
FrameIndexSDNode(int fi, MVT::ValueType VT)
: SDNode(ISD::FrameIndex, VT), FI(fi) {}
public:
int getIndex() const { return FI; }
static bool classof(const FrameIndexSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::FrameIndex;
}
};
class ConstantPoolSDNode : public SDNode {
unsigned CPI;
protected:
friend class SelectionDAG;
ConstantPoolSDNode(unsigned cpi, MVT::ValueType VT)
: SDNode(ISD::ConstantPool, VT), CPI(cpi) {}
public:
unsigned getIndex() const { return CPI; }
static bool classof(const ConstantPoolSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::ConstantPool;
}
};
class BasicBlockSDNode : public SDNode {
MachineBasicBlock *MBB;
protected:
friend class SelectionDAG;
BasicBlockSDNode(MachineBasicBlock *mbb)
: SDNode(ISD::BasicBlock, MVT::Other), MBB(mbb) {}
public:
MachineBasicBlock *getBasicBlock() const { return MBB; }
static bool classof(const BasicBlockSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::BasicBlock;
}
};
class SrcValueSDNode : public SDNode {
const Value *V;
int offset;
protected:
friend class SelectionDAG;
SrcValueSDNode(const Value* v, int o)
: SDNode(ISD::SRCVALUE, MVT::Other), V(v), offset(o) {}
public:
const Value *getValue() const { return V; }
int getOffset() const { return offset; }
static bool classof(const SrcValueSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::SRCVALUE;
}
};
class RegSDNode : public SDNode {
unsigned Reg;
protected:
friend class SelectionDAG;
RegSDNode(unsigned Opc, SDOperand Chain, SDOperand Src, unsigned reg)
: SDNode(Opc, Chain, Src), Reg(reg) {
}
RegSDNode(unsigned Opc, SDOperand Chain, unsigned reg)
: SDNode(Opc, Chain), Reg(reg) {}
public:
unsigned getReg() const { return Reg; }
static bool classof(const RegSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::CopyToReg ||
N->getOpcode() == ISD::CopyFromReg ||
N->getOpcode() == ISD::ImplicitDef;
}
};
class ExternalSymbolSDNode : public SDNode {
const char *Symbol;
protected:
friend class SelectionDAG;
ExternalSymbolSDNode(const char *Sym, MVT::ValueType VT)
: SDNode(ISD::ExternalSymbol, VT), Symbol(Sym) {
}
public:
const char *getSymbol() const { return Symbol; }
static bool classof(const ExternalSymbolSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::ExternalSymbol;
}
};
class SetCCSDNode : public SDNode {
ISD::CondCode Condition;
protected:
friend class SelectionDAG;
SetCCSDNode(ISD::CondCode Cond, SDOperand LHS, SDOperand RHS)
: SDNode(ISD::SETCC, LHS, RHS), Condition(Cond) {
}
public:
ISD::CondCode getCondition() const { return Condition; }
static bool classof(const SetCCSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::SETCC;
}
};
/// MVTSDNode - This class is used for operators that require an extra
/// value-type to be kept with the node.
class MVTSDNode : public SDNode {
MVT::ValueType ExtraValueType;
protected:
friend class SelectionDAG;
MVTSDNode(unsigned Opc, MVT::ValueType VT1, SDOperand Op0, MVT::ValueType EVT)
: SDNode(Opc, Op0), ExtraValueType(EVT) {
setValueTypes(VT1);
}
MVTSDNode(unsigned Opc, MVT::ValueType VT1, MVT::ValueType VT2,
SDOperand Op0, SDOperand Op1, SDOperand Op2, MVT::ValueType EVT)
: SDNode(Opc, Op0, Op1, Op2), ExtraValueType(EVT) {
setValueTypes(VT1, VT2);
}
MVTSDNode(unsigned Opc, MVT::ValueType VT,
SDOperand Op0, SDOperand Op1, SDOperand Op2, SDOperand Op3, MVT::ValueType EVT)
: SDNode(Opc, Op0, Op1, Op2, Op3), ExtraValueType(EVT) {
setValueTypes(VT);
}
public:
MVT::ValueType getExtraValueType() const { return ExtraValueType; }
static bool classof(const MVTSDNode *) { return true; }
static bool classof(const SDNode *N) {
return
N->getOpcode() == ISD::SIGN_EXTEND_INREG ||
N->getOpcode() == ISD::FP_ROUND_INREG ||
N->getOpcode() == ISD::EXTLOAD ||
N->getOpcode() == ISD::SEXTLOAD ||
N->getOpcode() == ISD::ZEXTLOAD ||
N->getOpcode() == ISD::TRUNCSTORE;
}
};
class SDNodeIterator : public forward_iterator<SDNode, ptrdiff_t> {
SDNode *Node;
unsigned Operand;
SDNodeIterator(SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
public:
bool operator==(const SDNodeIterator& x) const {
return Operand == x.Operand;
}
bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
const SDNodeIterator &operator=(const SDNodeIterator &I) {
assert(I.Node == Node && "Cannot assign iterators to two different nodes!");
Operand = I.Operand;
return *this;
}
pointer operator*() const {
return Node->getOperand(Operand).Val;
}
pointer operator->() const { return operator*(); }
SDNodeIterator& operator++() { // Preincrement
++Operand;
return *this;
}
SDNodeIterator operator++(int) { // Postincrement
SDNodeIterator tmp = *this; ++*this; return tmp;
}
static SDNodeIterator begin(SDNode *N) { return SDNodeIterator(N, 0); }
static SDNodeIterator end (SDNode *N) {
return SDNodeIterator(N, N->getNumOperands());
}
unsigned getOperand() const { return Operand; }
const SDNode *getNode() const { return Node; }
};
template <> struct GraphTraits<SDNode*> {
typedef SDNode NodeType;
typedef SDNodeIterator ChildIteratorType;
static inline NodeType *getEntryNode(SDNode *N) { return N; }
static inline ChildIteratorType child_begin(NodeType *N) {
return SDNodeIterator::begin(N);
}
static inline ChildIteratorType child_end(NodeType *N) {
return SDNodeIterator::end(N);
}
};
} // end llvm namespace
#endif