mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	comments explaining why it was wrong. 8225024. Fix the real problem in 8213383: the code that splits very large blocks when no other place to put constants can be found was not considering the case that the block contained a Thumb tablejump. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@109282 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1878 lines
		
	
	
		
			71 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1878 lines
		
	
	
		
			71 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- ARMConstantIslandPass.cpp - ARM constant islands --------*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file contains a pass that splits the constant pool up into 'islands'
 | |
| // which are scattered through-out the function.  This is required due to the
 | |
| // limited pc-relative displacements that ARM has.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "arm-cp-islands"
 | |
| #include "ARM.h"
 | |
| #include "ARMAddressingModes.h"
 | |
| #include "ARMMachineFunctionInfo.h"
 | |
| #include "ARMInstrInfo.h"
 | |
| #include "llvm/CodeGen/MachineConstantPool.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineJumpTableInfo.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumCPEs,       "Number of constpool entries");
 | |
| STATISTIC(NumSplit,      "Number of uncond branches inserted");
 | |
| STATISTIC(NumCBrFixed,   "Number of cond branches fixed");
 | |
| STATISTIC(NumUBrFixed,   "Number of uncond branches fixed");
 | |
| STATISTIC(NumTBs,        "Number of table branches generated");
 | |
| STATISTIC(NumT2CPShrunk, "Number of Thumb2 constantpool instructions shrunk");
 | |
| STATISTIC(NumT2BrShrunk, "Number of Thumb2 immediate branches shrunk");
 | |
| STATISTIC(NumCBZ,        "Number of CBZ / CBNZ formed");
 | |
| STATISTIC(NumJTMoved,    "Number of jump table destination blocks moved");
 | |
| STATISTIC(NumJTInserted, "Number of jump table intermediate blocks inserted");
 | |
| 
 | |
| 
 | |
| static cl::opt<bool>
 | |
| AdjustJumpTableBlocks("arm-adjust-jump-tables", cl::Hidden, cl::init(true),
 | |
|           cl::desc("Adjust basic block layout to better use TB[BH]"));
 | |
| 
 | |
| namespace {
 | |
|   /// ARMConstantIslands - Due to limited PC-relative displacements, ARM
 | |
|   /// requires constant pool entries to be scattered among the instructions
 | |
|   /// inside a function.  To do this, it completely ignores the normal LLVM
 | |
|   /// constant pool; instead, it places constants wherever it feels like with
 | |
|   /// special instructions.
 | |
|   ///
 | |
|   /// The terminology used in this pass includes:
 | |
|   ///   Islands - Clumps of constants placed in the function.
 | |
|   ///   Water   - Potential places where an island could be formed.
 | |
|   ///   CPE     - A constant pool entry that has been placed somewhere, which
 | |
|   ///             tracks a list of users.
 | |
|   class ARMConstantIslands : public MachineFunctionPass {
 | |
|     /// BBSizes - The size of each MachineBasicBlock in bytes of code, indexed
 | |
|     /// by MBB Number.  The two-byte pads required for Thumb alignment are
 | |
|     /// counted as part of the following block (i.e., the offset and size for
 | |
|     /// a padded block will both be ==2 mod 4).
 | |
|     std::vector<unsigned> BBSizes;
 | |
| 
 | |
|     /// BBOffsets - the offset of each MBB in bytes, starting from 0.
 | |
|     /// The two-byte pads required for Thumb alignment are counted as part of
 | |
|     /// the following block.
 | |
|     std::vector<unsigned> BBOffsets;
 | |
| 
 | |
|     /// WaterList - A sorted list of basic blocks where islands could be placed
 | |
|     /// (i.e. blocks that don't fall through to the following block, due
 | |
|     /// to a return, unreachable, or unconditional branch).
 | |
|     std::vector<MachineBasicBlock*> WaterList;
 | |
| 
 | |
|     /// NewWaterList - The subset of WaterList that was created since the
 | |
|     /// previous iteration by inserting unconditional branches.
 | |
|     SmallSet<MachineBasicBlock*, 4> NewWaterList;
 | |
| 
 | |
|     typedef std::vector<MachineBasicBlock*>::iterator water_iterator;
 | |
| 
 | |
|     /// CPUser - One user of a constant pool, keeping the machine instruction
 | |
|     /// pointer, the constant pool being referenced, and the max displacement
 | |
|     /// allowed from the instruction to the CP.  The HighWaterMark records the
 | |
|     /// highest basic block where a new CPEntry can be placed.  To ensure this
 | |
|     /// pass terminates, the CP entries are initially placed at the end of the
 | |
|     /// function and then move monotonically to lower addresses.  The
 | |
|     /// exception to this rule is when the current CP entry for a particular
 | |
|     /// CPUser is out of range, but there is another CP entry for the same
 | |
|     /// constant value in range.  We want to use the existing in-range CP
 | |
|     /// entry, but if it later moves out of range, the search for new water
 | |
|     /// should resume where it left off.  The HighWaterMark is used to record
 | |
|     /// that point.
 | |
|     struct CPUser {
 | |
|       MachineInstr *MI;
 | |
|       MachineInstr *CPEMI;
 | |
|       MachineBasicBlock *HighWaterMark;
 | |
|       unsigned MaxDisp;
 | |
|       bool NegOk;
 | |
|       bool IsSoImm;
 | |
|       CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp,
 | |
|              bool neg, bool soimm)
 | |
|         : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), NegOk(neg), IsSoImm(soimm) {
 | |
|         HighWaterMark = CPEMI->getParent();
 | |
|       }
 | |
|     };
 | |
| 
 | |
|     /// CPUsers - Keep track of all of the machine instructions that use various
 | |
|     /// constant pools and their max displacement.
 | |
|     std::vector<CPUser> CPUsers;
 | |
| 
 | |
|     /// CPEntry - One per constant pool entry, keeping the machine instruction
 | |
|     /// pointer, the constpool index, and the number of CPUser's which
 | |
|     /// reference this entry.
 | |
|     struct CPEntry {
 | |
|       MachineInstr *CPEMI;
 | |
|       unsigned CPI;
 | |
|       unsigned RefCount;
 | |
|       CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0)
 | |
|         : CPEMI(cpemi), CPI(cpi), RefCount(rc) {}
 | |
|     };
 | |
| 
 | |
|     /// CPEntries - Keep track of all of the constant pool entry machine
 | |
|     /// instructions. For each original constpool index (i.e. those that
 | |
|     /// existed upon entry to this pass), it keeps a vector of entries.
 | |
|     /// Original elements are cloned as we go along; the clones are
 | |
|     /// put in the vector of the original element, but have distinct CPIs.
 | |
|     std::vector<std::vector<CPEntry> > CPEntries;
 | |
| 
 | |
|     /// ImmBranch - One per immediate branch, keeping the machine instruction
 | |
|     /// pointer, conditional or unconditional, the max displacement,
 | |
|     /// and (if isCond is true) the corresponding unconditional branch
 | |
|     /// opcode.
 | |
|     struct ImmBranch {
 | |
|       MachineInstr *MI;
 | |
|       unsigned MaxDisp : 31;
 | |
|       bool isCond : 1;
 | |
|       int UncondBr;
 | |
|       ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, int ubr)
 | |
|         : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {}
 | |
|     };
 | |
| 
 | |
|     /// ImmBranches - Keep track of all the immediate branch instructions.
 | |
|     ///
 | |
|     std::vector<ImmBranch> ImmBranches;
 | |
| 
 | |
|     /// PushPopMIs - Keep track of all the Thumb push / pop instructions.
 | |
|     ///
 | |
|     SmallVector<MachineInstr*, 4> PushPopMIs;
 | |
| 
 | |
|     /// T2JumpTables - Keep track of all the Thumb2 jumptable instructions.
 | |
|     SmallVector<MachineInstr*, 4> T2JumpTables;
 | |
| 
 | |
|     /// HasFarJump - True if any far jump instruction has been emitted during
 | |
|     /// the branch fix up pass.
 | |
|     bool HasFarJump;
 | |
| 
 | |
|     /// HasInlineAsm - True if the function contains inline assembly.
 | |
|     bool HasInlineAsm;
 | |
| 
 | |
|     const ARMInstrInfo *TII;
 | |
|     const ARMSubtarget *STI;
 | |
|     ARMFunctionInfo *AFI;
 | |
|     bool isThumb;
 | |
|     bool isThumb1;
 | |
|     bool isThumb2;
 | |
|   public:
 | |
|     static char ID;
 | |
|     ARMConstantIslands() : MachineFunctionPass(&ID) {}
 | |
| 
 | |
|     virtual bool runOnMachineFunction(MachineFunction &MF);
 | |
| 
 | |
|     virtual const char *getPassName() const {
 | |
|       return "ARM constant island placement and branch shortening pass";
 | |
|     }
 | |
| 
 | |
|   private:
 | |
|     void DoInitialPlacement(MachineFunction &MF,
 | |
|                             std::vector<MachineInstr*> &CPEMIs);
 | |
|     CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI);
 | |
|     void JumpTableFunctionScan(MachineFunction &MF);
 | |
|     void InitialFunctionScan(MachineFunction &MF,
 | |
|                              const std::vector<MachineInstr*> &CPEMIs);
 | |
|     MachineBasicBlock *SplitBlockBeforeInstr(MachineInstr *MI);
 | |
|     void UpdateForInsertedWaterBlock(MachineBasicBlock *NewBB);
 | |
|     void AdjustBBOffsetsAfter(MachineBasicBlock *BB, int delta);
 | |
|     bool DecrementOldEntry(unsigned CPI, MachineInstr* CPEMI);
 | |
|     int LookForExistingCPEntry(CPUser& U, unsigned UserOffset);
 | |
|     bool LookForWater(CPUser&U, unsigned UserOffset, water_iterator &WaterIter);
 | |
|     void CreateNewWater(unsigned CPUserIndex, unsigned UserOffset,
 | |
|                         MachineBasicBlock *&NewMBB);
 | |
|     bool HandleConstantPoolUser(MachineFunction &MF, unsigned CPUserIndex);
 | |
|     void RemoveDeadCPEMI(MachineInstr *CPEMI);
 | |
|     bool RemoveUnusedCPEntries();
 | |
|     bool CPEIsInRange(MachineInstr *MI, unsigned UserOffset,
 | |
|                       MachineInstr *CPEMI, unsigned Disp, bool NegOk,
 | |
|                       bool DoDump = false);
 | |
|     bool WaterIsInRange(unsigned UserOffset, MachineBasicBlock *Water,
 | |
|                         CPUser &U);
 | |
|     bool OffsetIsInRange(unsigned UserOffset, unsigned TrialOffset,
 | |
|                          unsigned Disp, bool NegativeOK, bool IsSoImm = false);
 | |
|     bool BBIsInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp);
 | |
|     bool FixUpImmediateBr(MachineFunction &MF, ImmBranch &Br);
 | |
|     bool FixUpConditionalBr(MachineFunction &MF, ImmBranch &Br);
 | |
|     bool FixUpUnconditionalBr(MachineFunction &MF, ImmBranch &Br);
 | |
|     bool UndoLRSpillRestore();
 | |
|     bool OptimizeThumb2Instructions(MachineFunction &MF);
 | |
|     bool OptimizeThumb2Branches(MachineFunction &MF);
 | |
|     bool ReorderThumb2JumpTables(MachineFunction &MF);
 | |
|     bool OptimizeThumb2JumpTables(MachineFunction &MF);
 | |
|     MachineBasicBlock *AdjustJTTargetBlockForward(MachineBasicBlock *BB,
 | |
|                                                   MachineBasicBlock *JTBB);
 | |
| 
 | |
|     unsigned GetOffsetOf(MachineInstr *MI) const;
 | |
|     void dumpBBs();
 | |
|     void verify(MachineFunction &MF);
 | |
|   };
 | |
|   char ARMConstantIslands::ID = 0;
 | |
| }
 | |
| 
 | |
| /// verify - check BBOffsets, BBSizes, alignment of islands
 | |
| void ARMConstantIslands::verify(MachineFunction &MF) {
 | |
|   assert(BBOffsets.size() == BBSizes.size());
 | |
|   for (unsigned i = 1, e = BBOffsets.size(); i != e; ++i)
 | |
|     assert(BBOffsets[i-1]+BBSizes[i-1] == BBOffsets[i]);
 | |
|   if (!isThumb)
 | |
|     return;
 | |
| #ifndef NDEBUG
 | |
|   for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
 | |
|        MBBI != E; ++MBBI) {
 | |
|     MachineBasicBlock *MBB = MBBI;
 | |
|     if (!MBB->empty() &&
 | |
|         MBB->begin()->getOpcode() == ARM::CONSTPOOL_ENTRY) {
 | |
|       unsigned MBBId = MBB->getNumber();
 | |
|       assert(HasInlineAsm ||
 | |
|              (BBOffsets[MBBId]%4 == 0 && BBSizes[MBBId]%4 == 0) ||
 | |
|              (BBOffsets[MBBId]%4 != 0 && BBSizes[MBBId]%4 != 0));
 | |
|     }
 | |
|   }
 | |
|   for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) {
 | |
|     CPUser &U = CPUsers[i];
 | |
|     unsigned UserOffset = GetOffsetOf(U.MI) + (isThumb ? 4 : 8);
 | |
|     unsigned CPEOffset  = GetOffsetOf(U.CPEMI);
 | |
|     unsigned Disp = UserOffset < CPEOffset ? CPEOffset - UserOffset :
 | |
|       UserOffset - CPEOffset;
 | |
|     assert(Disp <= U.MaxDisp || "Constant pool entry out of range!");
 | |
|   }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /// print block size and offset information - debugging
 | |
| void ARMConstantIslands::dumpBBs() {
 | |
|   for (unsigned J = 0, E = BBOffsets.size(); J !=E; ++J) {
 | |
|     DEBUG(errs() << "block " << J << " offset " << BBOffsets[J]
 | |
|                  << " size " << BBSizes[J] << "\n");
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// createARMConstantIslandPass - returns an instance of the constpool
 | |
| /// island pass.
 | |
| FunctionPass *llvm::createARMConstantIslandPass() {
 | |
|   return new ARMConstantIslands();
 | |
| }
 | |
| 
 | |
| bool ARMConstantIslands::runOnMachineFunction(MachineFunction &MF) {
 | |
|   MachineConstantPool &MCP = *MF.getConstantPool();
 | |
| 
 | |
|   TII = (const ARMInstrInfo*)MF.getTarget().getInstrInfo();
 | |
|   AFI = MF.getInfo<ARMFunctionInfo>();
 | |
|   STI = &MF.getTarget().getSubtarget<ARMSubtarget>();
 | |
| 
 | |
|   isThumb = AFI->isThumbFunction();
 | |
|   isThumb1 = AFI->isThumb1OnlyFunction();
 | |
|   isThumb2 = AFI->isThumb2Function();
 | |
| 
 | |
|   HasFarJump = false;
 | |
|   HasInlineAsm = false;
 | |
| 
 | |
|   // Renumber all of the machine basic blocks in the function, guaranteeing that
 | |
|   // the numbers agree with the position of the block in the function.
 | |
|   MF.RenumberBlocks();
 | |
| 
 | |
|   // Try to reorder and otherwise adjust the block layout to make good use
 | |
|   // of the TB[BH] instructions.
 | |
|   bool MadeChange = false;
 | |
|   if (isThumb2 && AdjustJumpTableBlocks) {
 | |
|     JumpTableFunctionScan(MF);
 | |
|     MadeChange |= ReorderThumb2JumpTables(MF);
 | |
|     // Data is out of date, so clear it. It'll be re-computed later.
 | |
|     T2JumpTables.clear();
 | |
|     // Blocks may have shifted around. Keep the numbering up to date.
 | |
|     MF.RenumberBlocks();
 | |
|   }
 | |
| 
 | |
|   // Thumb1 functions containing constant pools get 4-byte alignment.
 | |
|   // This is so we can keep exact track of where the alignment padding goes.
 | |
| 
 | |
|   // ARM and Thumb2 functions need to be 4-byte aligned.
 | |
|   if (!isThumb1)
 | |
|     MF.EnsureAlignment(2);  // 2 = log2(4)
 | |
| 
 | |
|   // Perform the initial placement of the constant pool entries.  To start with,
 | |
|   // we put them all at the end of the function.
 | |
|   std::vector<MachineInstr*> CPEMIs;
 | |
|   if (!MCP.isEmpty()) {
 | |
|     DoInitialPlacement(MF, CPEMIs);
 | |
|     if (isThumb1)
 | |
|       MF.EnsureAlignment(2);  // 2 = log2(4)
 | |
|   }
 | |
| 
 | |
|   /// The next UID to take is the first unused one.
 | |
|   AFI->initConstPoolEntryUId(CPEMIs.size());
 | |
| 
 | |
|   // Do the initial scan of the function, building up information about the
 | |
|   // sizes of each block, the location of all the water, and finding all of the
 | |
|   // constant pool users.
 | |
|   InitialFunctionScan(MF, CPEMIs);
 | |
|   CPEMIs.clear();
 | |
|   DEBUG(dumpBBs());
 | |
| 
 | |
| 
 | |
|   /// Remove dead constant pool entries.
 | |
|   RemoveUnusedCPEntries();
 | |
| 
 | |
|   // Iteratively place constant pool entries and fix up branches until there
 | |
|   // is no change.
 | |
|   unsigned NoCPIters = 0, NoBRIters = 0;
 | |
|   while (true) {
 | |
|     bool CPChange = false;
 | |
|     for (unsigned i = 0, e = CPUsers.size(); i != e; ++i)
 | |
|       CPChange |= HandleConstantPoolUser(MF, i);
 | |
|     if (CPChange && ++NoCPIters > 30)
 | |
|       llvm_unreachable("Constant Island pass failed to converge!");
 | |
|     DEBUG(dumpBBs());
 | |
| 
 | |
|     // Clear NewWaterList now.  If we split a block for branches, it should
 | |
|     // appear as "new water" for the next iteration of constant pool placement.
 | |
|     NewWaterList.clear();
 | |
| 
 | |
|     bool BRChange = false;
 | |
|     for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i)
 | |
|       BRChange |= FixUpImmediateBr(MF, ImmBranches[i]);
 | |
|     if (BRChange && ++NoBRIters > 30)
 | |
|       llvm_unreachable("Branch Fix Up pass failed to converge!");
 | |
|     DEBUG(dumpBBs());
 | |
| 
 | |
|     if (!CPChange && !BRChange)
 | |
|       break;
 | |
|     MadeChange = true;
 | |
|   }
 | |
| 
 | |
|   // Shrink 32-bit Thumb2 branch, load, and store instructions.
 | |
|   if (isThumb2)
 | |
|     MadeChange |= OptimizeThumb2Instructions(MF);
 | |
| 
 | |
|   // After a while, this might be made debug-only, but it is not expensive.
 | |
|   verify(MF);
 | |
| 
 | |
|   // If LR has been forced spilled and no far jump (i.e. BL) has been issued,
 | |
|   // undo the spill / restore of LR if possible.
 | |
|   if (isThumb && !HasFarJump && AFI->isLRSpilledForFarJump())
 | |
|     MadeChange |= UndoLRSpillRestore();
 | |
| 
 | |
|   DEBUG(errs() << '\n'; dumpBBs());
 | |
| 
 | |
|   BBSizes.clear();
 | |
|   BBOffsets.clear();
 | |
|   WaterList.clear();
 | |
|   CPUsers.clear();
 | |
|   CPEntries.clear();
 | |
|   ImmBranches.clear();
 | |
|   PushPopMIs.clear();
 | |
|   T2JumpTables.clear();
 | |
| 
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| /// DoInitialPlacement - Perform the initial placement of the constant pool
 | |
| /// entries.  To start with, we put them all at the end of the function.
 | |
| void ARMConstantIslands::DoInitialPlacement(MachineFunction &MF,
 | |
|                                         std::vector<MachineInstr*> &CPEMIs) {
 | |
|   // Create the basic block to hold the CPE's.
 | |
|   MachineBasicBlock *BB = MF.CreateMachineBasicBlock();
 | |
|   MF.push_back(BB);
 | |
| 
 | |
|   // Add all of the constants from the constant pool to the end block, use an
 | |
|   // identity mapping of CPI's to CPE's.
 | |
|   const std::vector<MachineConstantPoolEntry> &CPs =
 | |
|     MF.getConstantPool()->getConstants();
 | |
| 
 | |
|   const TargetData &TD = *MF.getTarget().getTargetData();
 | |
|   for (unsigned i = 0, e = CPs.size(); i != e; ++i) {
 | |
|     unsigned Size = TD.getTypeAllocSize(CPs[i].getType());
 | |
|     // Verify that all constant pool entries are a multiple of 4 bytes.  If not,
 | |
|     // we would have to pad them out or something so that instructions stay
 | |
|     // aligned.
 | |
|     assert((Size & 3) == 0 && "CP Entry not multiple of 4 bytes!");
 | |
|     MachineInstr *CPEMI =
 | |
|       BuildMI(BB, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY))
 | |
|         .addImm(i).addConstantPoolIndex(i).addImm(Size);
 | |
|     CPEMIs.push_back(CPEMI);
 | |
| 
 | |
|     // Add a new CPEntry, but no corresponding CPUser yet.
 | |
|     std::vector<CPEntry> CPEs;
 | |
|     CPEs.push_back(CPEntry(CPEMI, i));
 | |
|     CPEntries.push_back(CPEs);
 | |
|     ++NumCPEs;
 | |
|     DEBUG(errs() << "Moved CPI#" << i << " to end of function as #" << i
 | |
|                  << "\n");
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// BBHasFallthrough - Return true if the specified basic block can fallthrough
 | |
| /// into the block immediately after it.
 | |
| static bool BBHasFallthrough(MachineBasicBlock *MBB) {
 | |
|   // Get the next machine basic block in the function.
 | |
|   MachineFunction::iterator MBBI = MBB;
 | |
|   // Can't fall off end of function.
 | |
|   if (llvm::next(MBBI) == MBB->getParent()->end())
 | |
|     return false;
 | |
| 
 | |
|   MachineBasicBlock *NextBB = llvm::next(MBBI);
 | |
|   for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
 | |
|        E = MBB->succ_end(); I != E; ++I)
 | |
|     if (*I == NextBB)
 | |
|       return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI,
 | |
| /// look up the corresponding CPEntry.
 | |
| ARMConstantIslands::CPEntry
 | |
| *ARMConstantIslands::findConstPoolEntry(unsigned CPI,
 | |
|                                         const MachineInstr *CPEMI) {
 | |
|   std::vector<CPEntry> &CPEs = CPEntries[CPI];
 | |
|   // Number of entries per constpool index should be small, just do a
 | |
|   // linear search.
 | |
|   for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
 | |
|     if (CPEs[i].CPEMI == CPEMI)
 | |
|       return &CPEs[i];
 | |
|   }
 | |
|   return NULL;
 | |
| }
 | |
| 
 | |
| /// JumpTableFunctionScan - Do a scan of the function, building up
 | |
| /// information about the sizes of each block and the locations of all
 | |
| /// the jump tables.
 | |
| void ARMConstantIslands::JumpTableFunctionScan(MachineFunction &MF) {
 | |
|   for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
 | |
|        MBBI != E; ++MBBI) {
 | |
|     MachineBasicBlock &MBB = *MBBI;
 | |
| 
 | |
|     for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
 | |
|          I != E; ++I)
 | |
|       if (I->getDesc().isBranch() && I->getOpcode() == ARM::t2BR_JT)
 | |
|         T2JumpTables.push_back(I);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// InitialFunctionScan - Do the initial scan of the function, building up
 | |
| /// information about the sizes of each block, the location of all the water,
 | |
| /// and finding all of the constant pool users.
 | |
| void ARMConstantIslands::InitialFunctionScan(MachineFunction &MF,
 | |
|                                  const std::vector<MachineInstr*> &CPEMIs) {
 | |
|   // First thing, see if the function has any inline assembly in it. If so,
 | |
|   // we have to be conservative about alignment assumptions, as we don't
 | |
|   // know for sure the size of any instructions in the inline assembly.
 | |
|   for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
 | |
|        MBBI != E; ++MBBI) {
 | |
|     MachineBasicBlock &MBB = *MBBI;
 | |
|     for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
 | |
|          I != E; ++I)
 | |
|       if (I->getOpcode() == ARM::INLINEASM)
 | |
|         HasInlineAsm = true;
 | |
|   }
 | |
| 
 | |
|   // Now go back through the instructions and build up our data structures
 | |
|   unsigned Offset = 0;
 | |
|   for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
 | |
|        MBBI != E; ++MBBI) {
 | |
|     MachineBasicBlock &MBB = *MBBI;
 | |
| 
 | |
|     // If this block doesn't fall through into the next MBB, then this is
 | |
|     // 'water' that a constant pool island could be placed.
 | |
|     if (!BBHasFallthrough(&MBB))
 | |
|       WaterList.push_back(&MBB);
 | |
| 
 | |
|     unsigned MBBSize = 0;
 | |
|     for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
 | |
|          I != E; ++I) {
 | |
|       if (I->isDebugValue())
 | |
|         continue;
 | |
|       // Add instruction size to MBBSize.
 | |
|       MBBSize += TII->GetInstSizeInBytes(I);
 | |
| 
 | |
|       int Opc = I->getOpcode();
 | |
|       if (I->getDesc().isBranch()) {
 | |
|         bool isCond = false;
 | |
|         unsigned Bits = 0;
 | |
|         unsigned Scale = 1;
 | |
|         int UOpc = Opc;
 | |
|         switch (Opc) {
 | |
|         default:
 | |
|           continue;  // Ignore other JT branches
 | |
|         case ARM::tBR_JTr:
 | |
|           // A Thumb1 table jump may involve padding; for the offsets to
 | |
|           // be right, functions containing these must be 4-byte aligned.
 | |
|           // tBR_JTr expands to a mov pc followed by .align 2 and then the jump
 | |
|           // table entries. So this code checks whether offset of tBR_JTr + 2
 | |
|           // is aligned.  That is held in Offset+MBBSize, which already has
 | |
|           // 2 added in for the size of the mov pc instruction.
 | |
|           MF.EnsureAlignment(2U);
 | |
|           if ((Offset+MBBSize)%4 != 0 || HasInlineAsm)
 | |
|             // FIXME: Add a pseudo ALIGN instruction instead.
 | |
|             MBBSize += 2;           // padding
 | |
|           continue;   // Does not get an entry in ImmBranches
 | |
|         case ARM::t2BR_JT:
 | |
|           T2JumpTables.push_back(I);
 | |
|           continue;   // Does not get an entry in ImmBranches
 | |
|         case ARM::Bcc:
 | |
|           isCond = true;
 | |
|           UOpc = ARM::B;
 | |
|           // Fallthrough
 | |
|         case ARM::B:
 | |
|           Bits = 24;
 | |
|           Scale = 4;
 | |
|           break;
 | |
|         case ARM::tBcc:
 | |
|           isCond = true;
 | |
|           UOpc = ARM::tB;
 | |
|           Bits = 8;
 | |
|           Scale = 2;
 | |
|           break;
 | |
|         case ARM::tB:
 | |
|           Bits = 11;
 | |
|           Scale = 2;
 | |
|           break;
 | |
|         case ARM::t2Bcc:
 | |
|           isCond = true;
 | |
|           UOpc = ARM::t2B;
 | |
|           Bits = 20;
 | |
|           Scale = 2;
 | |
|           break;
 | |
|         case ARM::t2B:
 | |
|           Bits = 24;
 | |
|           Scale = 2;
 | |
|           break;
 | |
|         }
 | |
| 
 | |
|         // Record this immediate branch.
 | |
|         unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
 | |
|         ImmBranches.push_back(ImmBranch(I, MaxOffs, isCond, UOpc));
 | |
|       }
 | |
| 
 | |
|       if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET)
 | |
|         PushPopMIs.push_back(I);
 | |
| 
 | |
|       if (Opc == ARM::CONSTPOOL_ENTRY)
 | |
|         continue;
 | |
| 
 | |
|       // Scan the instructions for constant pool operands.
 | |
|       for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op)
 | |
|         if (I->getOperand(op).isCPI()) {
 | |
|           // We found one.  The addressing mode tells us the max displacement
 | |
|           // from the PC that this instruction permits.
 | |
| 
 | |
|           // Basic size info comes from the TSFlags field.
 | |
|           unsigned Bits = 0;
 | |
|           unsigned Scale = 1;
 | |
|           bool NegOk = false;
 | |
|           bool IsSoImm = false;
 | |
| 
 | |
|           switch (Opc) {
 | |
|           default:
 | |
|             llvm_unreachable("Unknown addressing mode for CP reference!");
 | |
|             break;
 | |
| 
 | |
|           // Taking the address of a CP entry.
 | |
|           case ARM::LEApcrel:
 | |
|             // This takes a SoImm, which is 8 bit immediate rotated. We'll
 | |
|             // pretend the maximum offset is 255 * 4. Since each instruction
 | |
|             // 4 byte wide, this is always correct. We'll check for other
 | |
|             // displacements that fits in a SoImm as well.
 | |
|             Bits = 8;
 | |
|             Scale = 4;
 | |
|             NegOk = true;
 | |
|             IsSoImm = true;
 | |
|             break;
 | |
|           case ARM::t2LEApcrel:
 | |
|             Bits = 12;
 | |
|             NegOk = true;
 | |
|             break;
 | |
|           case ARM::tLEApcrel:
 | |
|             Bits = 8;
 | |
|             Scale = 4;
 | |
|             break;
 | |
| 
 | |
|           case ARM::LDR:
 | |
|           case ARM::LDRcp:
 | |
|           case ARM::t2LDRpci:
 | |
|             Bits = 12;  // +-offset_12
 | |
|             NegOk = true;
 | |
|             break;
 | |
| 
 | |
|           case ARM::tLDRpci:
 | |
|           case ARM::tLDRcp:
 | |
|             Bits = 8;
 | |
|             Scale = 4;  // +(offset_8*4)
 | |
|             break;
 | |
| 
 | |
|           case ARM::VLDRD:
 | |
|           case ARM::VLDRS:
 | |
|             Bits = 8;
 | |
|             Scale = 4;  // +-(offset_8*4)
 | |
|             NegOk = true;
 | |
|             break;
 | |
|           }
 | |
| 
 | |
|           // Remember that this is a user of a CP entry.
 | |
|           unsigned CPI = I->getOperand(op).getIndex();
 | |
|           MachineInstr *CPEMI = CPEMIs[CPI];
 | |
|           unsigned MaxOffs = ((1 << Bits)-1) * Scale;
 | |
|           CPUsers.push_back(CPUser(I, CPEMI, MaxOffs, NegOk, IsSoImm));
 | |
| 
 | |
|           // Increment corresponding CPEntry reference count.
 | |
|           CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
 | |
|           assert(CPE && "Cannot find a corresponding CPEntry!");
 | |
|           CPE->RefCount++;
 | |
| 
 | |
|           // Instructions can only use one CP entry, don't bother scanning the
 | |
|           // rest of the operands.
 | |
|           break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // In thumb mode, if this block is a constpool island, we may need padding
 | |
|     // so it's aligned on 4 byte boundary.
 | |
|     if (isThumb &&
 | |
|         !MBB.empty() &&
 | |
|         MBB.begin()->getOpcode() == ARM::CONSTPOOL_ENTRY &&
 | |
|         ((Offset%4) != 0 || HasInlineAsm))
 | |
|       MBBSize += 2;
 | |
| 
 | |
|     BBSizes.push_back(MBBSize);
 | |
|     BBOffsets.push_back(Offset);
 | |
|     Offset += MBBSize;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// GetOffsetOf - Return the current offset of the specified machine instruction
 | |
| /// from the start of the function.  This offset changes as stuff is moved
 | |
| /// around inside the function.
 | |
| unsigned ARMConstantIslands::GetOffsetOf(MachineInstr *MI) const {
 | |
|   MachineBasicBlock *MBB = MI->getParent();
 | |
| 
 | |
|   // The offset is composed of two things: the sum of the sizes of all MBB's
 | |
|   // before this instruction's block, and the offset from the start of the block
 | |
|   // it is in.
 | |
|   unsigned Offset = BBOffsets[MBB->getNumber()];
 | |
| 
 | |
|   // If we're looking for a CONSTPOOL_ENTRY in Thumb, see if this block has
 | |
|   // alignment padding, and compensate if so.
 | |
|   if (isThumb &&
 | |
|       MI->getOpcode() == ARM::CONSTPOOL_ENTRY &&
 | |
|       (Offset%4 != 0 || HasInlineAsm))
 | |
|     Offset += 2;
 | |
| 
 | |
|   // Sum instructions before MI in MBB.
 | |
|   for (MachineBasicBlock::iterator I = MBB->begin(); ; ++I) {
 | |
|     assert(I != MBB->end() && "Didn't find MI in its own basic block?");
 | |
|     if (&*I == MI) return Offset;
 | |
|     Offset += TII->GetInstSizeInBytes(I);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB
 | |
| /// ID.
 | |
| static bool CompareMBBNumbers(const MachineBasicBlock *LHS,
 | |
|                               const MachineBasicBlock *RHS) {
 | |
|   return LHS->getNumber() < RHS->getNumber();
 | |
| }
 | |
| 
 | |
| /// UpdateForInsertedWaterBlock - When a block is newly inserted into the
 | |
| /// machine function, it upsets all of the block numbers.  Renumber the blocks
 | |
| /// and update the arrays that parallel this numbering.
 | |
| void ARMConstantIslands::UpdateForInsertedWaterBlock(MachineBasicBlock *NewBB) {
 | |
|   // Renumber the MBB's to keep them consequtive.
 | |
|   NewBB->getParent()->RenumberBlocks(NewBB);
 | |
| 
 | |
|   // Insert a size into BBSizes to align it properly with the (newly
 | |
|   // renumbered) block numbers.
 | |
|   BBSizes.insert(BBSizes.begin()+NewBB->getNumber(), 0);
 | |
| 
 | |
|   // Likewise for BBOffsets.
 | |
|   BBOffsets.insert(BBOffsets.begin()+NewBB->getNumber(), 0);
 | |
| 
 | |
|   // Next, update WaterList.  Specifically, we need to add NewMBB as having
 | |
|   // available water after it.
 | |
|   water_iterator IP =
 | |
|     std::lower_bound(WaterList.begin(), WaterList.end(), NewBB,
 | |
|                      CompareMBBNumbers);
 | |
|   WaterList.insert(IP, NewBB);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Split the basic block containing MI into two blocks, which are joined by
 | |
| /// an unconditional branch.  Update data structures and renumber blocks to
 | |
| /// account for this change and returns the newly created block.
 | |
| MachineBasicBlock *ARMConstantIslands::SplitBlockBeforeInstr(MachineInstr *MI) {
 | |
|   MachineBasicBlock *OrigBB = MI->getParent();
 | |
|   MachineFunction &MF = *OrigBB->getParent();
 | |
| 
 | |
|   // Create a new MBB for the code after the OrigBB.
 | |
|   MachineBasicBlock *NewBB =
 | |
|     MF.CreateMachineBasicBlock(OrigBB->getBasicBlock());
 | |
|   MachineFunction::iterator MBBI = OrigBB; ++MBBI;
 | |
|   MF.insert(MBBI, NewBB);
 | |
| 
 | |
|   // Splice the instructions starting with MI over to NewBB.
 | |
|   NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end());
 | |
| 
 | |
|   // Add an unconditional branch from OrigBB to NewBB.
 | |
|   // Note the new unconditional branch is not being recorded.
 | |
|   // There doesn't seem to be meaningful DebugInfo available; this doesn't
 | |
|   // correspond to anything in the source.
 | |
|   unsigned Opc = isThumb ? (isThumb2 ? ARM::t2B : ARM::tB) : ARM::B;
 | |
|   BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB);
 | |
|   ++NumSplit;
 | |
| 
 | |
|   // Update the CFG.  All succs of OrigBB are now succs of NewBB.
 | |
|   while (!OrigBB->succ_empty()) {
 | |
|     MachineBasicBlock *Succ = *OrigBB->succ_begin();
 | |
|     OrigBB->removeSuccessor(Succ);
 | |
|     NewBB->addSuccessor(Succ);
 | |
| 
 | |
|     // This pass should be run after register allocation, so there should be no
 | |
|     // PHI nodes to update.
 | |
|     assert((Succ->empty() || !Succ->begin()->isPHI())
 | |
|            && "PHI nodes should be eliminated by now!");
 | |
|   }
 | |
| 
 | |
|   // OrigBB branches to NewBB.
 | |
|   OrigBB->addSuccessor(NewBB);
 | |
| 
 | |
|   // Update internal data structures to account for the newly inserted MBB.
 | |
|   // This is almost the same as UpdateForInsertedWaterBlock, except that
 | |
|   // the Water goes after OrigBB, not NewBB.
 | |
|   MF.RenumberBlocks(NewBB);
 | |
| 
 | |
|   // Insert a size into BBSizes to align it properly with the (newly
 | |
|   // renumbered) block numbers.
 | |
|   BBSizes.insert(BBSizes.begin()+NewBB->getNumber(), 0);
 | |
| 
 | |
|   // Likewise for BBOffsets.
 | |
|   BBOffsets.insert(BBOffsets.begin()+NewBB->getNumber(), 0);
 | |
| 
 | |
|   // Next, update WaterList.  Specifically, we need to add OrigMBB as having
 | |
|   // available water after it (but not if it's already there, which happens
 | |
|   // when splitting before a conditional branch that is followed by an
 | |
|   // unconditional branch - in that case we want to insert NewBB).
 | |
|   water_iterator IP =
 | |
|     std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB,
 | |
|                      CompareMBBNumbers);
 | |
|   MachineBasicBlock* WaterBB = *IP;
 | |
|   if (WaterBB == OrigBB)
 | |
|     WaterList.insert(llvm::next(IP), NewBB);
 | |
|   else
 | |
|     WaterList.insert(IP, OrigBB);
 | |
|   NewWaterList.insert(OrigBB);
 | |
| 
 | |
|   unsigned OrigBBI = OrigBB->getNumber();
 | |
|   unsigned NewBBI = NewBB->getNumber();
 | |
| 
 | |
|   int delta = isThumb1 ? 2 : 4;
 | |
| 
 | |
|   // Figure out how large the OrigBB is.  As the first half of the original
 | |
|   // block, it cannot contain a tablejump.  The size includes
 | |
|   // the new jump we added.  (It should be possible to do this without
 | |
|   // recounting everything, but it's very confusing, and this is rarely
 | |
|   // executed.)
 | |
|   unsigned OrigBBSize = 0;
 | |
|   for (MachineBasicBlock::iterator I = OrigBB->begin(), E = OrigBB->end();
 | |
|        I != E; ++I)
 | |
|     OrigBBSize += TII->GetInstSizeInBytes(I);
 | |
|   BBSizes[OrigBBI] = OrigBBSize;
 | |
| 
 | |
|   // ...and adjust BBOffsets for NewBB accordingly.
 | |
|   BBOffsets[NewBBI] = BBOffsets[OrigBBI] + BBSizes[OrigBBI];
 | |
| 
 | |
|   // Figure out how large the NewMBB is.  As the second half of the original
 | |
|   // block, it may contain a tablejump.
 | |
|   unsigned NewBBSize = 0;
 | |
|   for (MachineBasicBlock::iterator I = NewBB->begin(), E = NewBB->end();
 | |
|        I != E; ++I)
 | |
|     NewBBSize += TII->GetInstSizeInBytes(I);
 | |
|   // Set the size of NewBB in BBSizes.  It does not include any padding now.
 | |
|   BBSizes[NewBBI] = NewBBSize;
 | |
| 
 | |
|   MachineInstr* ThumbJTMI = prior(NewBB->end());
 | |
|   if (ThumbJTMI->getOpcode() == ARM::tBR_JTr) {
 | |
|     // We've added another 2-byte instruction before this tablejump, which
 | |
|     // means we will always need padding if we didn't before, and vice versa.
 | |
| 
 | |
|     // The original offset of the jump instruction was:
 | |
|     unsigned OrigOffset = BBOffsets[OrigBBI] + BBSizes[OrigBBI] - delta;
 | |
|     if (OrigOffset%4 == 0) {
 | |
|       // We had padding before and now we don't.  No net change in code size.
 | |
|       delta = 0;
 | |
|     } else {
 | |
|       // We didn't have padding before and now we do.
 | |
|       BBSizes[NewBBI] += 2;
 | |
|       delta = 4;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // All BBOffsets following these blocks must be modified.
 | |
|   if (delta)
 | |
|     AdjustBBOffsetsAfter(NewBB, delta);
 | |
| 
 | |
|   return NewBB;
 | |
| }
 | |
| 
 | |
| /// OffsetIsInRange - Checks whether UserOffset (the location of a constant pool
 | |
| /// reference) is within MaxDisp of TrialOffset (a proposed location of a
 | |
| /// constant pool entry).
 | |
| bool ARMConstantIslands::OffsetIsInRange(unsigned UserOffset,
 | |
|                                          unsigned TrialOffset, unsigned MaxDisp,
 | |
|                                          bool NegativeOK, bool IsSoImm) {
 | |
|   // On Thumb offsets==2 mod 4 are rounded down by the hardware for
 | |
|   // purposes of the displacement computation; compensate for that here.
 | |
|   // Effectively, the valid range of displacements is 2 bytes smaller for such
 | |
|   // references.
 | |
|   unsigned TotalAdj = 0;
 | |
|   if (isThumb && UserOffset%4 !=0) {
 | |
|     UserOffset -= 2;
 | |
|     TotalAdj = 2;
 | |
|   }
 | |
|   // CPEs will be rounded up to a multiple of 4.
 | |
|   if (isThumb && TrialOffset%4 != 0) {
 | |
|     TrialOffset += 2;
 | |
|     TotalAdj += 2;
 | |
|   }
 | |
| 
 | |
|   // In Thumb2 mode, later branch adjustments can shift instructions up and
 | |
|   // cause alignment change. In the worst case scenario this can cause the
 | |
|   // user's effective address to be subtracted by 2 and the CPE's address to
 | |
|   // be plus 2.
 | |
|   if (isThumb2 && TotalAdj != 4)
 | |
|     MaxDisp -= (4 - TotalAdj);
 | |
| 
 | |
|   if (UserOffset <= TrialOffset) {
 | |
|     // User before the Trial.
 | |
|     if (TrialOffset - UserOffset <= MaxDisp)
 | |
|       return true;
 | |
|     // FIXME: Make use full range of soimm values.
 | |
|   } else if (NegativeOK) {
 | |
|     if (UserOffset - TrialOffset <= MaxDisp)
 | |
|       return true;
 | |
|     // FIXME: Make use full range of soimm values.
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// WaterIsInRange - Returns true if a CPE placed after the specified
 | |
| /// Water (a basic block) will be in range for the specific MI.
 | |
| 
 | |
| bool ARMConstantIslands::WaterIsInRange(unsigned UserOffset,
 | |
|                                         MachineBasicBlock* Water, CPUser &U) {
 | |
|   unsigned MaxDisp = U.MaxDisp;
 | |
|   unsigned CPEOffset = BBOffsets[Water->getNumber()] +
 | |
|                        BBSizes[Water->getNumber()];
 | |
| 
 | |
|   // If the CPE is to be inserted before the instruction, that will raise
 | |
|   // the offset of the instruction.
 | |
|   if (CPEOffset < UserOffset)
 | |
|     UserOffset += U.CPEMI->getOperand(2).getImm();
 | |
| 
 | |
|   return OffsetIsInRange(UserOffset, CPEOffset, MaxDisp, U.NegOk, U.IsSoImm);
 | |
| }
 | |
| 
 | |
| /// CPEIsInRange - Returns true if the distance between specific MI and
 | |
| /// specific ConstPool entry instruction can fit in MI's displacement field.
 | |
| bool ARMConstantIslands::CPEIsInRange(MachineInstr *MI, unsigned UserOffset,
 | |
|                                       MachineInstr *CPEMI, unsigned MaxDisp,
 | |
|                                       bool NegOk, bool DoDump) {
 | |
|   unsigned CPEOffset  = GetOffsetOf(CPEMI);
 | |
|   assert((CPEOffset%4 == 0 || HasInlineAsm) && "Misaligned CPE");
 | |
| 
 | |
|   if (DoDump) {
 | |
|     DEBUG(errs() << "User of CPE#" << CPEMI->getOperand(0).getImm()
 | |
|                  << " max delta=" << MaxDisp
 | |
|                  << " insn address=" << UserOffset
 | |
|                  << " CPE address=" << CPEOffset
 | |
|                  << " offset=" << int(CPEOffset-UserOffset) << "\t" << *MI);
 | |
|   }
 | |
| 
 | |
|   return OffsetIsInRange(UserOffset, CPEOffset, MaxDisp, NegOk);
 | |
| }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| /// BBIsJumpedOver - Return true of the specified basic block's only predecessor
 | |
| /// unconditionally branches to its only successor.
 | |
| static bool BBIsJumpedOver(MachineBasicBlock *MBB) {
 | |
|   if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
 | |
|     return false;
 | |
| 
 | |
|   MachineBasicBlock *Succ = *MBB->succ_begin();
 | |
|   MachineBasicBlock *Pred = *MBB->pred_begin();
 | |
|   MachineInstr *PredMI = &Pred->back();
 | |
|   if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB
 | |
|       || PredMI->getOpcode() == ARM::t2B)
 | |
|     return PredMI->getOperand(0).getMBB() == Succ;
 | |
|   return false;
 | |
| }
 | |
| #endif // NDEBUG
 | |
| 
 | |
| void ARMConstantIslands::AdjustBBOffsetsAfter(MachineBasicBlock *BB,
 | |
|                                               int delta) {
 | |
|   MachineFunction::iterator MBBI = BB; MBBI = llvm::next(MBBI);
 | |
|   for(unsigned i = BB->getNumber()+1, e = BB->getParent()->getNumBlockIDs();
 | |
|       i < e; ++i) {
 | |
|     BBOffsets[i] += delta;
 | |
|     // If some existing blocks have padding, adjust the padding as needed, a
 | |
|     // bit tricky.  delta can be negative so don't use % on that.
 | |
|     if (!isThumb)
 | |
|       continue;
 | |
|     MachineBasicBlock *MBB = MBBI;
 | |
|     if (!MBB->empty() && !HasInlineAsm) {
 | |
|       // Constant pool entries require padding.
 | |
|       if (MBB->begin()->getOpcode() == ARM::CONSTPOOL_ENTRY) {
 | |
|         unsigned OldOffset = BBOffsets[i] - delta;
 | |
|         if ((OldOffset%4) == 0 && (BBOffsets[i]%4) != 0) {
 | |
|           // add new padding
 | |
|           BBSizes[i] += 2;
 | |
|           delta += 2;
 | |
|         } else if ((OldOffset%4) != 0 && (BBOffsets[i]%4) == 0) {
 | |
|           // remove existing padding
 | |
|           BBSizes[i] -= 2;
 | |
|           delta -= 2;
 | |
|         }
 | |
|       }
 | |
|       // Thumb1 jump tables require padding.  They should be at the end;
 | |
|       // following unconditional branches are removed by AnalyzeBranch.
 | |
|       // tBR_JTr expands to a mov pc followed by .align 2 and then the jump
 | |
|       // table entries. So this code checks whether offset of tBR_JTr
 | |
|       // is aligned; if it is, the offset of the jump table following the
 | |
|       // instruction will not be aligned, and we need padding.
 | |
|       MachineInstr *ThumbJTMI = prior(MBB->end());
 | |
|       if (ThumbJTMI->getOpcode() == ARM::tBR_JTr) {
 | |
|         unsigned NewMIOffset = GetOffsetOf(ThumbJTMI);
 | |
|         unsigned OldMIOffset = NewMIOffset - delta;
 | |
|         if ((OldMIOffset%4) == 0 && (NewMIOffset%4) != 0) {
 | |
|           // remove existing padding
 | |
|           BBSizes[i] -= 2;
 | |
|           delta -= 2;
 | |
|         } else if ((OldMIOffset%4) != 0 && (NewMIOffset%4) == 0) {
 | |
|           // add new padding
 | |
|           BBSizes[i] += 2;
 | |
|           delta += 2;
 | |
|         }
 | |
|       }
 | |
|       if (delta==0)
 | |
|         return;
 | |
|     }
 | |
|     MBBI = llvm::next(MBBI);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// DecrementOldEntry - find the constant pool entry with index CPI
 | |
| /// and instruction CPEMI, and decrement its refcount.  If the refcount
 | |
| /// becomes 0 remove the entry and instruction.  Returns true if we removed
 | |
| /// the entry, false if we didn't.
 | |
| 
 | |
| bool ARMConstantIslands::DecrementOldEntry(unsigned CPI, MachineInstr *CPEMI) {
 | |
|   // Find the old entry. Eliminate it if it is no longer used.
 | |
|   CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
 | |
|   assert(CPE && "Unexpected!");
 | |
|   if (--CPE->RefCount == 0) {
 | |
|     RemoveDeadCPEMI(CPEMI);
 | |
|     CPE->CPEMI = NULL;
 | |
|     --NumCPEs;
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// LookForCPEntryInRange - see if the currently referenced CPE is in range;
 | |
| /// if not, see if an in-range clone of the CPE is in range, and if so,
 | |
| /// change the data structures so the user references the clone.  Returns:
 | |
| /// 0 = no existing entry found
 | |
| /// 1 = entry found, and there were no code insertions or deletions
 | |
| /// 2 = entry found, and there were code insertions or deletions
 | |
| int ARMConstantIslands::LookForExistingCPEntry(CPUser& U, unsigned UserOffset)
 | |
| {
 | |
|   MachineInstr *UserMI = U.MI;
 | |
|   MachineInstr *CPEMI  = U.CPEMI;
 | |
| 
 | |
|   // Check to see if the CPE is already in-range.
 | |
|   if (CPEIsInRange(UserMI, UserOffset, CPEMI, U.MaxDisp, U.NegOk, true)) {
 | |
|     DEBUG(errs() << "In range\n");
 | |
|     return 1;
 | |
|   }
 | |
| 
 | |
|   // No.  Look for previously created clones of the CPE that are in range.
 | |
|   unsigned CPI = CPEMI->getOperand(1).getIndex();
 | |
|   std::vector<CPEntry> &CPEs = CPEntries[CPI];
 | |
|   for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
 | |
|     // We already tried this one
 | |
|     if (CPEs[i].CPEMI == CPEMI)
 | |
|       continue;
 | |
|     // Removing CPEs can leave empty entries, skip
 | |
|     if (CPEs[i].CPEMI == NULL)
 | |
|       continue;
 | |
|     if (CPEIsInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.MaxDisp, U.NegOk)) {
 | |
|       DEBUG(errs() << "Replacing CPE#" << CPI << " with CPE#"
 | |
|                    << CPEs[i].CPI << "\n");
 | |
|       // Point the CPUser node to the replacement
 | |
|       U.CPEMI = CPEs[i].CPEMI;
 | |
|       // Change the CPI in the instruction operand to refer to the clone.
 | |
|       for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j)
 | |
|         if (UserMI->getOperand(j).isCPI()) {
 | |
|           UserMI->getOperand(j).setIndex(CPEs[i].CPI);
 | |
|           break;
 | |
|         }
 | |
|       // Adjust the refcount of the clone...
 | |
|       CPEs[i].RefCount++;
 | |
|       // ...and the original.  If we didn't remove the old entry, none of the
 | |
|       // addresses changed, so we don't need another pass.
 | |
|       return DecrementOldEntry(CPI, CPEMI) ? 2 : 1;
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in
 | |
| /// the specific unconditional branch instruction.
 | |
| static inline unsigned getUnconditionalBrDisp(int Opc) {
 | |
|   switch (Opc) {
 | |
|   case ARM::tB:
 | |
|     return ((1<<10)-1)*2;
 | |
|   case ARM::t2B:
 | |
|     return ((1<<23)-1)*2;
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return ((1<<23)-1)*4;
 | |
| }
 | |
| 
 | |
| /// LookForWater - Look for an existing entry in the WaterList in which
 | |
| /// we can place the CPE referenced from U so it's within range of U's MI.
 | |
| /// Returns true if found, false if not.  If it returns true, WaterIter
 | |
| /// is set to the WaterList entry.  For Thumb, prefer water that will not
 | |
| /// introduce padding to water that will.  To ensure that this pass
 | |
| /// terminates, the CPE location for a particular CPUser is only allowed to
 | |
| /// move to a lower address, so search backward from the end of the list and
 | |
| /// prefer the first water that is in range.
 | |
| bool ARMConstantIslands::LookForWater(CPUser &U, unsigned UserOffset,
 | |
|                                       water_iterator &WaterIter) {
 | |
|   if (WaterList.empty())
 | |
|     return false;
 | |
| 
 | |
|   bool FoundWaterThatWouldPad = false;
 | |
|   water_iterator IPThatWouldPad;
 | |
|   for (water_iterator IP = prior(WaterList.end()),
 | |
|          B = WaterList.begin();; --IP) {
 | |
|     MachineBasicBlock* WaterBB = *IP;
 | |
|     // Check if water is in range and is either at a lower address than the
 | |
|     // current "high water mark" or a new water block that was created since
 | |
|     // the previous iteration by inserting an unconditional branch.  In the
 | |
|     // latter case, we want to allow resetting the high water mark back to
 | |
|     // this new water since we haven't seen it before.  Inserting branches
 | |
|     // should be relatively uncommon and when it does happen, we want to be
 | |
|     // sure to take advantage of it for all the CPEs near that block, so that
 | |
|     // we don't insert more branches than necessary.
 | |
|     if (WaterIsInRange(UserOffset, WaterBB, U) &&
 | |
|         (WaterBB->getNumber() < U.HighWaterMark->getNumber() ||
 | |
|          NewWaterList.count(WaterBB))) {
 | |
|       unsigned WBBId = WaterBB->getNumber();
 | |
|       if (isThumb &&
 | |
|           (BBOffsets[WBBId] + BBSizes[WBBId])%4 != 0) {
 | |
|         // This is valid Water, but would introduce padding.  Remember
 | |
|         // it in case we don't find any Water that doesn't do this.
 | |
|         if (!FoundWaterThatWouldPad) {
 | |
|           FoundWaterThatWouldPad = true;
 | |
|           IPThatWouldPad = IP;
 | |
|         }
 | |
|       } else {
 | |
|         WaterIter = IP;
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|     if (IP == B)
 | |
|       break;
 | |
|   }
 | |
|   if (FoundWaterThatWouldPad) {
 | |
|     WaterIter = IPThatWouldPad;
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// CreateNewWater - No existing WaterList entry will work for
 | |
| /// CPUsers[CPUserIndex], so create a place to put the CPE.  The end of the
 | |
| /// block is used if in range, and the conditional branch munged so control
 | |
| /// flow is correct.  Otherwise the block is split to create a hole with an
 | |
| /// unconditional branch around it.  In either case NewMBB is set to a
 | |
| /// block following which the new island can be inserted (the WaterList
 | |
| /// is not adjusted).
 | |
| void ARMConstantIslands::CreateNewWater(unsigned CPUserIndex,
 | |
|                                         unsigned UserOffset,
 | |
|                                         MachineBasicBlock *&NewMBB) {
 | |
|   CPUser &U = CPUsers[CPUserIndex];
 | |
|   MachineInstr *UserMI = U.MI;
 | |
|   MachineInstr *CPEMI  = U.CPEMI;
 | |
|   MachineBasicBlock *UserMBB = UserMI->getParent();
 | |
|   unsigned OffsetOfNextBlock = BBOffsets[UserMBB->getNumber()] +
 | |
|                                BBSizes[UserMBB->getNumber()];
 | |
|   assert(OffsetOfNextBlock== BBOffsets[UserMBB->getNumber()+1]);
 | |
| 
 | |
|   // If the block does not end in an unconditional branch already, and if the
 | |
|   // end of the block is within range, make new water there.  (The addition
 | |
|   // below is for the unconditional branch we will be adding: 4 bytes on ARM +
 | |
|   // Thumb2, 2 on Thumb1.  Possible Thumb1 alignment padding is allowed for
 | |
|   // inside OffsetIsInRange.
 | |
|   if (BBHasFallthrough(UserMBB) &&
 | |
|       OffsetIsInRange(UserOffset, OffsetOfNextBlock + (isThumb1 ? 2: 4),
 | |
|                       U.MaxDisp, U.NegOk, U.IsSoImm)) {
 | |
|     DEBUG(errs() << "Split at end of block\n");
 | |
|     if (&UserMBB->back() == UserMI)
 | |
|       assert(BBHasFallthrough(UserMBB) && "Expected a fallthrough BB!");
 | |
|     NewMBB = llvm::next(MachineFunction::iterator(UserMBB));
 | |
|     // Add an unconditional branch from UserMBB to fallthrough block.
 | |
|     // Record it for branch lengthening; this new branch will not get out of
 | |
|     // range, but if the preceding conditional branch is out of range, the
 | |
|     // targets will be exchanged, and the altered branch may be out of
 | |
|     // range, so the machinery has to know about it.
 | |
|     int UncondBr = isThumb ? ((isThumb2) ? ARM::t2B : ARM::tB) : ARM::B;
 | |
|     BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB);
 | |
|     unsigned MaxDisp = getUnconditionalBrDisp(UncondBr);
 | |
|     ImmBranches.push_back(ImmBranch(&UserMBB->back(),
 | |
|                           MaxDisp, false, UncondBr));
 | |
|     int delta = isThumb1 ? 2 : 4;
 | |
|     BBSizes[UserMBB->getNumber()] += delta;
 | |
|     AdjustBBOffsetsAfter(UserMBB, delta);
 | |
|   } else {
 | |
|     // What a big block.  Find a place within the block to split it.
 | |
|     // This is a little tricky on Thumb1 since instructions are 2 bytes
 | |
|     // and constant pool entries are 4 bytes: if instruction I references
 | |
|     // island CPE, and instruction I+1 references CPE', it will
 | |
|     // not work well to put CPE as far forward as possible, since then
 | |
|     // CPE' cannot immediately follow it (that location is 2 bytes
 | |
|     // farther away from I+1 than CPE was from I) and we'd need to create
 | |
|     // a new island.  So, we make a first guess, then walk through the
 | |
|     // instructions between the one currently being looked at and the
 | |
|     // possible insertion point, and make sure any other instructions
 | |
|     // that reference CPEs will be able to use the same island area;
 | |
|     // if not, we back up the insertion point.
 | |
| 
 | |
|     // The 4 in the following is for the unconditional branch we'll be
 | |
|     // inserting (allows for long branch on Thumb1).  Alignment of the
 | |
|     // island is handled inside OffsetIsInRange.
 | |
|     unsigned BaseInsertOffset = UserOffset + U.MaxDisp -4;
 | |
|     // This could point off the end of the block if we've already got
 | |
|     // constant pool entries following this block; only the last one is
 | |
|     // in the water list.  Back past any possible branches (allow for a
 | |
|     // conditional and a maximally long unconditional).
 | |
|     if (BaseInsertOffset >= BBOffsets[UserMBB->getNumber()+1])
 | |
|       BaseInsertOffset = BBOffsets[UserMBB->getNumber()+1] -
 | |
|                               (isThumb1 ? 6 : 8);
 | |
|     unsigned EndInsertOffset = BaseInsertOffset +
 | |
|            CPEMI->getOperand(2).getImm();
 | |
|     MachineBasicBlock::iterator MI = UserMI;
 | |
|     ++MI;
 | |
|     unsigned CPUIndex = CPUserIndex+1;
 | |
|     for (unsigned Offset = UserOffset+TII->GetInstSizeInBytes(UserMI);
 | |
|          Offset < BaseInsertOffset;
 | |
|          Offset += TII->GetInstSizeInBytes(MI),
 | |
|             MI = llvm::next(MI)) {
 | |
|       if (CPUIndex < CPUsers.size() && CPUsers[CPUIndex].MI == MI) {
 | |
|         CPUser &U = CPUsers[CPUIndex];
 | |
|         if (!OffsetIsInRange(Offset, EndInsertOffset,
 | |
|                              U.MaxDisp, U.NegOk, U.IsSoImm)) {
 | |
|           BaseInsertOffset -= (isThumb1 ? 2 : 4);
 | |
|           EndInsertOffset  -= (isThumb1 ? 2 : 4);
 | |
|         }
 | |
|         // This is overly conservative, as we don't account for CPEMIs
 | |
|         // being reused within the block, but it doesn't matter much.
 | |
|         EndInsertOffset += CPUsers[CPUIndex].CPEMI->getOperand(2).getImm();
 | |
|         CPUIndex++;
 | |
|       }
 | |
|     }
 | |
|     DEBUG(errs() << "Split in middle of big block\n");
 | |
|     NewMBB = SplitBlockBeforeInstr(prior(MI));
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// HandleConstantPoolUser - Analyze the specified user, checking to see if it
 | |
| /// is out-of-range.  If so, pick up the constant pool value and move it some
 | |
| /// place in-range.  Return true if we changed any addresses (thus must run
 | |
| /// another pass of branch lengthening), false otherwise.
 | |
| bool ARMConstantIslands::HandleConstantPoolUser(MachineFunction &MF,
 | |
|                                                 unsigned CPUserIndex) {
 | |
|   CPUser &U = CPUsers[CPUserIndex];
 | |
|   MachineInstr *UserMI = U.MI;
 | |
|   MachineInstr *CPEMI  = U.CPEMI;
 | |
|   unsigned CPI = CPEMI->getOperand(1).getIndex();
 | |
|   unsigned Size = CPEMI->getOperand(2).getImm();
 | |
|   // Compute this only once, it's expensive.  The 4 or 8 is the value the
 | |
|   // hardware keeps in the PC.
 | |
|   unsigned UserOffset = GetOffsetOf(UserMI) + (isThumb ? 4 : 8);
 | |
| 
 | |
|   // See if the current entry is within range, or there is a clone of it
 | |
|   // in range.
 | |
|   int result = LookForExistingCPEntry(U, UserOffset);
 | |
|   if (result==1) return false;
 | |
|   else if (result==2) return true;
 | |
| 
 | |
|   // No existing clone of this CPE is within range.
 | |
|   // We will be generating a new clone.  Get a UID for it.
 | |
|   unsigned ID = AFI->createConstPoolEntryUId();
 | |
| 
 | |
|   // Look for water where we can place this CPE.
 | |
|   MachineBasicBlock *NewIsland = MF.CreateMachineBasicBlock();
 | |
|   MachineBasicBlock *NewMBB;
 | |
|   water_iterator IP;
 | |
|   if (LookForWater(U, UserOffset, IP)) {
 | |
|     DEBUG(errs() << "found water in range\n");
 | |
|     MachineBasicBlock *WaterBB = *IP;
 | |
| 
 | |
|     // If the original WaterList entry was "new water" on this iteration,
 | |
|     // propagate that to the new island.  This is just keeping NewWaterList
 | |
|     // updated to match the WaterList, which will be updated below.
 | |
|     if (NewWaterList.count(WaterBB)) {
 | |
|       NewWaterList.erase(WaterBB);
 | |
|       NewWaterList.insert(NewIsland);
 | |
|     }
 | |
|     // The new CPE goes before the following block (NewMBB).
 | |
|     NewMBB = llvm::next(MachineFunction::iterator(WaterBB));
 | |
| 
 | |
|   } else {
 | |
|     // No water found.
 | |
|     DEBUG(errs() << "No water found\n");
 | |
|     CreateNewWater(CPUserIndex, UserOffset, NewMBB);
 | |
| 
 | |
|     // SplitBlockBeforeInstr adds to WaterList, which is important when it is
 | |
|     // called while handling branches so that the water will be seen on the
 | |
|     // next iteration for constant pools, but in this context, we don't want
 | |
|     // it.  Check for this so it will be removed from the WaterList.
 | |
|     // Also remove any entry from NewWaterList.
 | |
|     MachineBasicBlock *WaterBB = prior(MachineFunction::iterator(NewMBB));
 | |
|     IP = std::find(WaterList.begin(), WaterList.end(), WaterBB);
 | |
|     if (IP != WaterList.end())
 | |
|       NewWaterList.erase(WaterBB);
 | |
| 
 | |
|     // We are adding new water.  Update NewWaterList.
 | |
|     NewWaterList.insert(NewIsland);
 | |
|   }
 | |
| 
 | |
|   // Remove the original WaterList entry; we want subsequent insertions in
 | |
|   // this vicinity to go after the one we're about to insert.  This
 | |
|   // considerably reduces the number of times we have to move the same CPE
 | |
|   // more than once and is also important to ensure the algorithm terminates.
 | |
|   if (IP != WaterList.end())
 | |
|     WaterList.erase(IP);
 | |
| 
 | |
|   // Okay, we know we can put an island before NewMBB now, do it!
 | |
|   MF.insert(NewMBB, NewIsland);
 | |
| 
 | |
|   // Update internal data structures to account for the newly inserted MBB.
 | |
|   UpdateForInsertedWaterBlock(NewIsland);
 | |
| 
 | |
|   // Decrement the old entry, and remove it if refcount becomes 0.
 | |
|   DecrementOldEntry(CPI, CPEMI);
 | |
| 
 | |
|   // Now that we have an island to add the CPE to, clone the original CPE and
 | |
|   // add it to the island.
 | |
|   U.HighWaterMark = NewIsland;
 | |
|   U.CPEMI = BuildMI(NewIsland, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY))
 | |
|                 .addImm(ID).addConstantPoolIndex(CPI).addImm(Size);
 | |
|   CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1));
 | |
|   ++NumCPEs;
 | |
| 
 | |
|   BBOffsets[NewIsland->getNumber()] = BBOffsets[NewMBB->getNumber()];
 | |
|   // Compensate for .align 2 in thumb mode.
 | |
|   if (isThumb && (BBOffsets[NewIsland->getNumber()]%4 != 0 || HasInlineAsm))
 | |
|     Size += 2;
 | |
|   // Increase the size of the island block to account for the new entry.
 | |
|   BBSizes[NewIsland->getNumber()] += Size;
 | |
|   AdjustBBOffsetsAfter(NewIsland, Size);
 | |
| 
 | |
|   // Finally, change the CPI in the instruction operand to be ID.
 | |
|   for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i)
 | |
|     if (UserMI->getOperand(i).isCPI()) {
 | |
|       UserMI->getOperand(i).setIndex(ID);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|   DEBUG(errs() << "  Moved CPE to #" << ID << " CPI=" << CPI
 | |
|            << '\t' << *UserMI);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// RemoveDeadCPEMI - Remove a dead constant pool entry instruction. Update
 | |
| /// sizes and offsets of impacted basic blocks.
 | |
| void ARMConstantIslands::RemoveDeadCPEMI(MachineInstr *CPEMI) {
 | |
|   MachineBasicBlock *CPEBB = CPEMI->getParent();
 | |
|   unsigned Size = CPEMI->getOperand(2).getImm();
 | |
|   CPEMI->eraseFromParent();
 | |
|   BBSizes[CPEBB->getNumber()] -= Size;
 | |
|   // All succeeding offsets have the current size value added in, fix this.
 | |
|   if (CPEBB->empty()) {
 | |
|     // In thumb1 mode, the size of island may be padded by two to compensate for
 | |
|     // the alignment requirement.  Then it will now be 2 when the block is
 | |
|     // empty, so fix this.
 | |
|     // All succeeding offsets have the current size value added in, fix this.
 | |
|     if (BBSizes[CPEBB->getNumber()] != 0) {
 | |
|       Size += BBSizes[CPEBB->getNumber()];
 | |
|       BBSizes[CPEBB->getNumber()] = 0;
 | |
|     }
 | |
|   }
 | |
|   AdjustBBOffsetsAfter(CPEBB, -Size);
 | |
|   // An island has only one predecessor BB and one successor BB. Check if
 | |
|   // this BB's predecessor jumps directly to this BB's successor. This
 | |
|   // shouldn't happen currently.
 | |
|   assert(!BBIsJumpedOver(CPEBB) && "How did this happen?");
 | |
|   // FIXME: remove the empty blocks after all the work is done?
 | |
| }
 | |
| 
 | |
| /// RemoveUnusedCPEntries - Remove constant pool entries whose refcounts
 | |
| /// are zero.
 | |
| bool ARMConstantIslands::RemoveUnusedCPEntries() {
 | |
|   unsigned MadeChange = false;
 | |
|   for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
 | |
|       std::vector<CPEntry> &CPEs = CPEntries[i];
 | |
|       for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) {
 | |
|         if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) {
 | |
|           RemoveDeadCPEMI(CPEs[j].CPEMI);
 | |
|           CPEs[j].CPEMI = NULL;
 | |
|           MadeChange = true;
 | |
|         }
 | |
|       }
 | |
|   }
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| /// BBIsInRange - Returns true if the distance between specific MI and
 | |
| /// specific BB can fit in MI's displacement field.
 | |
| bool ARMConstantIslands::BBIsInRange(MachineInstr *MI,MachineBasicBlock *DestBB,
 | |
|                                      unsigned MaxDisp) {
 | |
|   unsigned PCAdj      = isThumb ? 4 : 8;
 | |
|   unsigned BrOffset   = GetOffsetOf(MI) + PCAdj;
 | |
|   unsigned DestOffset = BBOffsets[DestBB->getNumber()];
 | |
| 
 | |
|   DEBUG(errs() << "Branch of destination BB#" << DestBB->getNumber()
 | |
|                << " from BB#" << MI->getParent()->getNumber()
 | |
|                << " max delta=" << MaxDisp
 | |
|                << " from " << GetOffsetOf(MI) << " to " << DestOffset
 | |
|                << " offset " << int(DestOffset-BrOffset) << "\t" << *MI);
 | |
| 
 | |
|   if (BrOffset <= DestOffset) {
 | |
|     // Branch before the Dest.
 | |
|     if (DestOffset-BrOffset <= MaxDisp)
 | |
|       return true;
 | |
|   } else {
 | |
|     if (BrOffset-DestOffset <= MaxDisp)
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// FixUpImmediateBr - Fix up an immediate branch whose destination is too far
 | |
| /// away to fit in its displacement field.
 | |
| bool ARMConstantIslands::FixUpImmediateBr(MachineFunction &MF, ImmBranch &Br) {
 | |
|   MachineInstr *MI = Br.MI;
 | |
|   MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
 | |
| 
 | |
|   // Check to see if the DestBB is already in-range.
 | |
|   if (BBIsInRange(MI, DestBB, Br.MaxDisp))
 | |
|     return false;
 | |
| 
 | |
|   if (!Br.isCond)
 | |
|     return FixUpUnconditionalBr(MF, Br);
 | |
|   return FixUpConditionalBr(MF, Br);
 | |
| }
 | |
| 
 | |
| /// FixUpUnconditionalBr - Fix up an unconditional branch whose destination is
 | |
| /// too far away to fit in its displacement field. If the LR register has been
 | |
| /// spilled in the epilogue, then we can use BL to implement a far jump.
 | |
| /// Otherwise, add an intermediate branch instruction to a branch.
 | |
| bool
 | |
| ARMConstantIslands::FixUpUnconditionalBr(MachineFunction &MF, ImmBranch &Br) {
 | |
|   MachineInstr *MI = Br.MI;
 | |
|   MachineBasicBlock *MBB = MI->getParent();
 | |
|   if (!isThumb1)
 | |
|     llvm_unreachable("FixUpUnconditionalBr is Thumb1 only!");
 | |
| 
 | |
|   // Use BL to implement far jump.
 | |
|   Br.MaxDisp = (1 << 21) * 2;
 | |
|   MI->setDesc(TII->get(ARM::tBfar));
 | |
|   BBSizes[MBB->getNumber()] += 2;
 | |
|   AdjustBBOffsetsAfter(MBB, 2);
 | |
|   HasFarJump = true;
 | |
|   ++NumUBrFixed;
 | |
| 
 | |
|   DEBUG(errs() << "  Changed B to long jump " << *MI);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// FixUpConditionalBr - Fix up a conditional branch whose destination is too
 | |
| /// far away to fit in its displacement field. It is converted to an inverse
 | |
| /// conditional branch + an unconditional branch to the destination.
 | |
| bool
 | |
| ARMConstantIslands::FixUpConditionalBr(MachineFunction &MF, ImmBranch &Br) {
 | |
|   MachineInstr *MI = Br.MI;
 | |
|   MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
 | |
| 
 | |
|   // Add an unconditional branch to the destination and invert the branch
 | |
|   // condition to jump over it:
 | |
|   // blt L1
 | |
|   // =>
 | |
|   // bge L2
 | |
|   // b   L1
 | |
|   // L2:
 | |
|   ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImm();
 | |
|   CC = ARMCC::getOppositeCondition(CC);
 | |
|   unsigned CCReg = MI->getOperand(2).getReg();
 | |
| 
 | |
|   // If the branch is at the end of its MBB and that has a fall-through block,
 | |
|   // direct the updated conditional branch to the fall-through block. Otherwise,
 | |
|   // split the MBB before the next instruction.
 | |
|   MachineBasicBlock *MBB = MI->getParent();
 | |
|   MachineInstr *BMI = &MBB->back();
 | |
|   bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB);
 | |
| 
 | |
|   ++NumCBrFixed;
 | |
|   if (BMI != MI) {
 | |
|     if (llvm::next(MachineBasicBlock::iterator(MI)) == prior(MBB->end()) &&
 | |
|         BMI->getOpcode() == Br.UncondBr) {
 | |
|       // Last MI in the BB is an unconditional branch. Can we simply invert the
 | |
|       // condition and swap destinations:
 | |
|       // beq L1
 | |
|       // b   L2
 | |
|       // =>
 | |
|       // bne L2
 | |
|       // b   L1
 | |
|       MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB();
 | |
|       if (BBIsInRange(MI, NewDest, Br.MaxDisp)) {
 | |
|         DEBUG(errs() << "  Invert Bcc condition and swap its destination with "
 | |
|                      << *BMI);
 | |
|         BMI->getOperand(0).setMBB(DestBB);
 | |
|         MI->getOperand(0).setMBB(NewDest);
 | |
|         MI->getOperand(1).setImm(CC);
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (NeedSplit) {
 | |
|     SplitBlockBeforeInstr(MI);
 | |
|     // No need for the branch to the next block. We're adding an unconditional
 | |
|     // branch to the destination.
 | |
|     int delta = TII->GetInstSizeInBytes(&MBB->back());
 | |
|     BBSizes[MBB->getNumber()] -= delta;
 | |
|     MachineBasicBlock* SplitBB = llvm::next(MachineFunction::iterator(MBB));
 | |
|     AdjustBBOffsetsAfter(SplitBB, -delta);
 | |
|     MBB->back().eraseFromParent();
 | |
|     // BBOffsets[SplitBB] is wrong temporarily, fixed below
 | |
|   }
 | |
|   MachineBasicBlock *NextBB = llvm::next(MachineFunction::iterator(MBB));
 | |
| 
 | |
|   DEBUG(errs() << "  Insert B to BB#" << DestBB->getNumber()
 | |
|                << " also invert condition and change dest. to BB#"
 | |
|                << NextBB->getNumber() << "\n");
 | |
| 
 | |
|   // Insert a new conditional branch and a new unconditional branch.
 | |
|   // Also update the ImmBranch as well as adding a new entry for the new branch.
 | |
|   BuildMI(MBB, DebugLoc(), TII->get(MI->getOpcode()))
 | |
|     .addMBB(NextBB).addImm(CC).addReg(CCReg);
 | |
|   Br.MI = &MBB->back();
 | |
|   BBSizes[MBB->getNumber()] += TII->GetInstSizeInBytes(&MBB->back());
 | |
|   BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB);
 | |
|   BBSizes[MBB->getNumber()] += TII->GetInstSizeInBytes(&MBB->back());
 | |
|   unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr);
 | |
|   ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr));
 | |
| 
 | |
|   // Remove the old conditional branch.  It may or may not still be in MBB.
 | |
|   BBSizes[MI->getParent()->getNumber()] -= TII->GetInstSizeInBytes(MI);
 | |
|   MI->eraseFromParent();
 | |
| 
 | |
|   // The net size change is an addition of one unconditional branch.
 | |
|   int delta = TII->GetInstSizeInBytes(&MBB->back());
 | |
|   AdjustBBOffsetsAfter(MBB, delta);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// UndoLRSpillRestore - Remove Thumb push / pop instructions that only spills
 | |
| /// LR / restores LR to pc. FIXME: This is done here because it's only possible
 | |
| /// to do this if tBfar is not used.
 | |
| bool ARMConstantIslands::UndoLRSpillRestore() {
 | |
|   bool MadeChange = false;
 | |
|   for (unsigned i = 0, e = PushPopMIs.size(); i != e; ++i) {
 | |
|     MachineInstr *MI = PushPopMIs[i];
 | |
|     // First two operands are predicates.
 | |
|     if (MI->getOpcode() == ARM::tPOP_RET &&
 | |
|         MI->getOperand(2).getReg() == ARM::PC &&
 | |
|         MI->getNumExplicitOperands() == 3) {
 | |
|       BuildMI(MI->getParent(), MI->getDebugLoc(), TII->get(ARM::tBX_RET));
 | |
|       MI->eraseFromParent();
 | |
|       MadeChange = true;
 | |
|     }
 | |
|   }
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| bool ARMConstantIslands::OptimizeThumb2Instructions(MachineFunction &MF) {
 | |
|   bool MadeChange = false;
 | |
| 
 | |
|   // Shrink ADR and LDR from constantpool.
 | |
|   for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) {
 | |
|     CPUser &U = CPUsers[i];
 | |
|     unsigned Opcode = U.MI->getOpcode();
 | |
|     unsigned NewOpc = 0;
 | |
|     unsigned Scale = 1;
 | |
|     unsigned Bits = 0;
 | |
|     switch (Opcode) {
 | |
|     default: break;
 | |
|     case ARM::t2LEApcrel:
 | |
|       if (isARMLowRegister(U.MI->getOperand(0).getReg())) {
 | |
|         NewOpc = ARM::tLEApcrel;
 | |
|         Bits = 8;
 | |
|         Scale = 4;
 | |
|       }
 | |
|       break;
 | |
|     case ARM::t2LDRpci:
 | |
|       if (isARMLowRegister(U.MI->getOperand(0).getReg())) {
 | |
|         NewOpc = ARM::tLDRpci;
 | |
|         Bits = 8;
 | |
|         Scale = 4;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     if (!NewOpc)
 | |
|       continue;
 | |
| 
 | |
|     unsigned UserOffset = GetOffsetOf(U.MI) + 4;
 | |
|     unsigned MaxOffs = ((1 << Bits) - 1) * Scale;
 | |
|     // FIXME: Check if offset is multiple of scale if scale is not 4.
 | |
|     if (CPEIsInRange(U.MI, UserOffset, U.CPEMI, MaxOffs, false, true)) {
 | |
|       U.MI->setDesc(TII->get(NewOpc));
 | |
|       MachineBasicBlock *MBB = U.MI->getParent();
 | |
|       BBSizes[MBB->getNumber()] -= 2;
 | |
|       AdjustBBOffsetsAfter(MBB, -2);
 | |
|       ++NumT2CPShrunk;
 | |
|       MadeChange = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   MadeChange |= OptimizeThumb2Branches(MF);
 | |
|   MadeChange |= OptimizeThumb2JumpTables(MF);
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| bool ARMConstantIslands::OptimizeThumb2Branches(MachineFunction &MF) {
 | |
|   bool MadeChange = false;
 | |
| 
 | |
|   for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) {
 | |
|     ImmBranch &Br = ImmBranches[i];
 | |
|     unsigned Opcode = Br.MI->getOpcode();
 | |
|     unsigned NewOpc = 0;
 | |
|     unsigned Scale = 1;
 | |
|     unsigned Bits = 0;
 | |
|     switch (Opcode) {
 | |
|     default: break;
 | |
|     case ARM::t2B:
 | |
|       NewOpc = ARM::tB;
 | |
|       Bits = 11;
 | |
|       Scale = 2;
 | |
|       break;
 | |
|     case ARM::t2Bcc: {
 | |
|       NewOpc = ARM::tBcc;
 | |
|       Bits = 8;
 | |
|       Scale = 2;
 | |
|       break;
 | |
|     }
 | |
|     }
 | |
|     if (NewOpc) {
 | |
|       unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
 | |
|       MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB();
 | |
|       if (BBIsInRange(Br.MI, DestBB, MaxOffs)) {
 | |
|         Br.MI->setDesc(TII->get(NewOpc));
 | |
|         MachineBasicBlock *MBB = Br.MI->getParent();
 | |
|         BBSizes[MBB->getNumber()] -= 2;
 | |
|         AdjustBBOffsetsAfter(MBB, -2);
 | |
|         ++NumT2BrShrunk;
 | |
|         MadeChange = true;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     Opcode = Br.MI->getOpcode();
 | |
|     if (Opcode != ARM::tBcc)
 | |
|       continue;
 | |
| 
 | |
|     NewOpc = 0;
 | |
|     unsigned PredReg = 0;
 | |
|     ARMCC::CondCodes Pred = llvm::getInstrPredicate(Br.MI, PredReg);
 | |
|     if (Pred == ARMCC::EQ)
 | |
|       NewOpc = ARM::tCBZ;
 | |
|     else if (Pred == ARMCC::NE)
 | |
|       NewOpc = ARM::tCBNZ;
 | |
|     if (!NewOpc)
 | |
|       continue;
 | |
|     MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB();
 | |
|     // Check if the distance is within 126. Subtract starting offset by 2
 | |
|     // because the cmp will be eliminated.
 | |
|     unsigned BrOffset = GetOffsetOf(Br.MI) + 4 - 2;
 | |
|     unsigned DestOffset = BBOffsets[DestBB->getNumber()];
 | |
|     if (BrOffset < DestOffset && (DestOffset - BrOffset) <= 126) {
 | |
|       MachineBasicBlock::iterator CmpMI = Br.MI; --CmpMI;
 | |
|       if (CmpMI->getOpcode() == ARM::tCMPzi8) {
 | |
|         unsigned Reg = CmpMI->getOperand(0).getReg();
 | |
|         Pred = llvm::getInstrPredicate(CmpMI, PredReg);
 | |
|         if (Pred == ARMCC::AL &&
 | |
|             CmpMI->getOperand(1).getImm() == 0 &&
 | |
|             isARMLowRegister(Reg)) {
 | |
|           MachineBasicBlock *MBB = Br.MI->getParent();
 | |
|           MachineInstr *NewBR =
 | |
|             BuildMI(*MBB, CmpMI, Br.MI->getDebugLoc(), TII->get(NewOpc))
 | |
|             .addReg(Reg).addMBB(DestBB, Br.MI->getOperand(0).getTargetFlags());
 | |
|           CmpMI->eraseFromParent();
 | |
|           Br.MI->eraseFromParent();
 | |
|           Br.MI = NewBR;
 | |
|           BBSizes[MBB->getNumber()] -= 2;
 | |
|           AdjustBBOffsetsAfter(MBB, -2);
 | |
|           ++NumCBZ;
 | |
|           MadeChange = true;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| /// OptimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller
 | |
| /// jumptables when it's possible.
 | |
| bool ARMConstantIslands::OptimizeThumb2JumpTables(MachineFunction &MF) {
 | |
|   bool MadeChange = false;
 | |
| 
 | |
|   // FIXME: After the tables are shrunk, can we get rid some of the
 | |
|   // constantpool tables?
 | |
|   MachineJumpTableInfo *MJTI = MF.getJumpTableInfo();
 | |
|   if (MJTI == 0) return false;
 | |
| 
 | |
|   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
 | |
|   for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) {
 | |
|     MachineInstr *MI = T2JumpTables[i];
 | |
|     const TargetInstrDesc &TID = MI->getDesc();
 | |
|     unsigned NumOps = TID.getNumOperands();
 | |
|     unsigned JTOpIdx = NumOps - (TID.isPredicable() ? 3 : 2);
 | |
|     MachineOperand JTOP = MI->getOperand(JTOpIdx);
 | |
|     unsigned JTI = JTOP.getIndex();
 | |
|     assert(JTI < JT.size());
 | |
| 
 | |
|     bool ByteOk = true;
 | |
|     bool HalfWordOk = true;
 | |
|     unsigned JTOffset = GetOffsetOf(MI) + 4;
 | |
|     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
 | |
|     for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) {
 | |
|       MachineBasicBlock *MBB = JTBBs[j];
 | |
|       unsigned DstOffset = BBOffsets[MBB->getNumber()];
 | |
|       // Negative offset is not ok. FIXME: We should change BB layout to make
 | |
|       // sure all the branches are forward.
 | |
|       if (ByteOk && (DstOffset - JTOffset) > ((1<<8)-1)*2)
 | |
|         ByteOk = false;
 | |
|       unsigned TBHLimit = ((1<<16)-1)*2;
 | |
|       if (HalfWordOk && (DstOffset - JTOffset) > TBHLimit)
 | |
|         HalfWordOk = false;
 | |
|       if (!ByteOk && !HalfWordOk)
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     if (ByteOk || HalfWordOk) {
 | |
|       MachineBasicBlock *MBB = MI->getParent();
 | |
|       unsigned BaseReg = MI->getOperand(0).getReg();
 | |
|       bool BaseRegKill = MI->getOperand(0).isKill();
 | |
|       if (!BaseRegKill)
 | |
|         continue;
 | |
|       unsigned IdxReg = MI->getOperand(1).getReg();
 | |
|       bool IdxRegKill = MI->getOperand(1).isKill();
 | |
| 
 | |
|       // Scan backwards to find the instruction that defines the base
 | |
|       // register. Due to post-RA scheduling, we can't count on it
 | |
|       // immediately preceding the branch instruction.
 | |
|       MachineBasicBlock::iterator PrevI = MI;
 | |
|       MachineBasicBlock::iterator B = MBB->begin();
 | |
|       while (PrevI != B && !PrevI->definesRegister(BaseReg))
 | |
|         --PrevI;
 | |
| 
 | |
|       // If for some reason we didn't find it, we can't do anything, so
 | |
|       // just skip this one.
 | |
|       if (!PrevI->definesRegister(BaseReg))
 | |
|         continue;
 | |
| 
 | |
|       MachineInstr *AddrMI = PrevI;
 | |
|       bool OptOk = true;
 | |
|       // Examine the instruction that calculates the jumptable entry address.
 | |
|       // Make sure it only defines the base register and kills any uses
 | |
|       // other than the index register.
 | |
|       for (unsigned k = 0, eee = AddrMI->getNumOperands(); k != eee; ++k) {
 | |
|         const MachineOperand &MO = AddrMI->getOperand(k);
 | |
|         if (!MO.isReg() || !MO.getReg())
 | |
|           continue;
 | |
|         if (MO.isDef() && MO.getReg() != BaseReg) {
 | |
|           OptOk = false;
 | |
|           break;
 | |
|         }
 | |
|         if (MO.isUse() && !MO.isKill() && MO.getReg() != IdxReg) {
 | |
|           OptOk = false;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       if (!OptOk)
 | |
|         continue;
 | |
| 
 | |
|       // Now scan back again to find the tLEApcrel or t2LEApcrelJT instruction
 | |
|       // that gave us the initial base register definition.
 | |
|       for (--PrevI; PrevI != B && !PrevI->definesRegister(BaseReg); --PrevI)
 | |
|         ;
 | |
| 
 | |
|       // The instruction should be a tLEApcrel or t2LEApcrelJT; we want
 | |
|       // to delete it as well.
 | |
|       MachineInstr *LeaMI = PrevI;
 | |
|       if ((LeaMI->getOpcode() != ARM::tLEApcrelJT &&
 | |
|            LeaMI->getOpcode() != ARM::t2LEApcrelJT) ||
 | |
|           LeaMI->getOperand(0).getReg() != BaseReg)
 | |
|         OptOk = false;
 | |
| 
 | |
|       if (!OptOk)
 | |
|         continue;
 | |
| 
 | |
|       unsigned Opc = ByteOk ? ARM::t2TBB : ARM::t2TBH;
 | |
|       MachineInstr *NewJTMI = BuildMI(MBB, MI->getDebugLoc(), TII->get(Opc))
 | |
|         .addReg(IdxReg, getKillRegState(IdxRegKill))
 | |
|         .addJumpTableIndex(JTI, JTOP.getTargetFlags())
 | |
|         .addImm(MI->getOperand(JTOpIdx+1).getImm());
 | |
|       // FIXME: Insert an "ALIGN" instruction to ensure the next instruction
 | |
|       // is 2-byte aligned. For now, asm printer will fix it up.
 | |
|       unsigned NewSize = TII->GetInstSizeInBytes(NewJTMI);
 | |
|       unsigned OrigSize = TII->GetInstSizeInBytes(AddrMI);
 | |
|       OrigSize += TII->GetInstSizeInBytes(LeaMI);
 | |
|       OrigSize += TII->GetInstSizeInBytes(MI);
 | |
| 
 | |
|       AddrMI->eraseFromParent();
 | |
|       LeaMI->eraseFromParent();
 | |
|       MI->eraseFromParent();
 | |
| 
 | |
|       int delta = OrigSize - NewSize;
 | |
|       BBSizes[MBB->getNumber()] -= delta;
 | |
|       AdjustBBOffsetsAfter(MBB, -delta);
 | |
| 
 | |
|       ++NumTBs;
 | |
|       MadeChange = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| /// ReorderThumb2JumpTables - Adjust the function's block layout to ensure that
 | |
| /// jump tables always branch forwards, since that's what tbb and tbh need.
 | |
| bool ARMConstantIslands::ReorderThumb2JumpTables(MachineFunction &MF) {
 | |
|   bool MadeChange = false;
 | |
| 
 | |
|   MachineJumpTableInfo *MJTI = MF.getJumpTableInfo();
 | |
|   if (MJTI == 0) return false;
 | |
| 
 | |
|   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
 | |
|   for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) {
 | |
|     MachineInstr *MI = T2JumpTables[i];
 | |
|     const TargetInstrDesc &TID = MI->getDesc();
 | |
|     unsigned NumOps = TID.getNumOperands();
 | |
|     unsigned JTOpIdx = NumOps - (TID.isPredicable() ? 3 : 2);
 | |
|     MachineOperand JTOP = MI->getOperand(JTOpIdx);
 | |
|     unsigned JTI = JTOP.getIndex();
 | |
|     assert(JTI < JT.size());
 | |
| 
 | |
|     // We prefer if target blocks for the jump table come after the jump
 | |
|     // instruction so we can use TB[BH]. Loop through the target blocks
 | |
|     // and try to adjust them such that that's true.
 | |
|     int JTNumber = MI->getParent()->getNumber();
 | |
|     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
 | |
|     for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) {
 | |
|       MachineBasicBlock *MBB = JTBBs[j];
 | |
|       int DTNumber = MBB->getNumber();
 | |
| 
 | |
|       if (DTNumber < JTNumber) {
 | |
|         // The destination precedes the switch. Try to move the block forward
 | |
|         // so we have a positive offset.
 | |
|         MachineBasicBlock *NewBB =
 | |
|           AdjustJTTargetBlockForward(MBB, MI->getParent());
 | |
|         if (NewBB)
 | |
|           MJTI->ReplaceMBBInJumpTable(JTI, JTBBs[j], NewBB);
 | |
|         MadeChange = true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| MachineBasicBlock *ARMConstantIslands::
 | |
| AdjustJTTargetBlockForward(MachineBasicBlock *BB, MachineBasicBlock *JTBB)
 | |
| {
 | |
|   MachineFunction &MF = *BB->getParent();
 | |
| 
 | |
|   // If the destination block is terminated by an unconditional branch,
 | |
|   // try to move it; otherwise, create a new block following the jump
 | |
|   // table that branches back to the actual target. This is a very simple
 | |
|   // heuristic. FIXME: We can definitely improve it.
 | |
|   MachineBasicBlock *TBB = 0, *FBB = 0;
 | |
|   SmallVector<MachineOperand, 4> Cond;
 | |
|   SmallVector<MachineOperand, 4> CondPrior;
 | |
|   MachineFunction::iterator BBi = BB;
 | |
|   MachineFunction::iterator OldPrior = prior(BBi);
 | |
| 
 | |
|   // If the block terminator isn't analyzable, don't try to move the block
 | |
|   bool B = TII->AnalyzeBranch(*BB, TBB, FBB, Cond);
 | |
| 
 | |
|   // If the block ends in an unconditional branch, move it. The prior block
 | |
|   // has to have an analyzable terminator for us to move this one. Be paranoid
 | |
|   // and make sure we're not trying to move the entry block of the function.
 | |
|   if (!B && Cond.empty() && BB != MF.begin() &&
 | |
|       !TII->AnalyzeBranch(*OldPrior, TBB, FBB, CondPrior)) {
 | |
|     BB->moveAfter(JTBB);
 | |
|     OldPrior->updateTerminator();
 | |
|     BB->updateTerminator();
 | |
|     // Update numbering to account for the block being moved.
 | |
|     MF.RenumberBlocks();
 | |
|     ++NumJTMoved;
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   // Create a new MBB for the code after the jump BB.
 | |
|   MachineBasicBlock *NewBB =
 | |
|     MF.CreateMachineBasicBlock(JTBB->getBasicBlock());
 | |
|   MachineFunction::iterator MBBI = JTBB; ++MBBI;
 | |
|   MF.insert(MBBI, NewBB);
 | |
| 
 | |
|   // Add an unconditional branch from NewBB to BB.
 | |
|   // There doesn't seem to be meaningful DebugInfo available; this doesn't
 | |
|   // correspond directly to anything in the source.
 | |
|   assert (isThumb2 && "Adjusting for TB[BH] but not in Thumb2?");
 | |
|   BuildMI(NewBB, DebugLoc(), TII->get(ARM::t2B)).addMBB(BB);
 | |
| 
 | |
|   // Update internal data structures to account for the newly inserted MBB.
 | |
|   MF.RenumberBlocks(NewBB);
 | |
| 
 | |
|   // Update the CFG.
 | |
|   NewBB->addSuccessor(BB);
 | |
|   JTBB->removeSuccessor(BB);
 | |
|   JTBB->addSuccessor(NewBB);
 | |
| 
 | |
|   ++NumJTInserted;
 | |
|   return NewBB;
 | |
| }
 |