mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-06 04:31:08 +00:00
7b837d8c75
This adds a second implementation of the AArch64 architecture to LLVM, accessible in parallel via the "arm64" triple. The plan over the coming weeks & months is to merge the two into a single backend, during which time thorough code review should naturally occur. Everything will be easier with the target in-tree though, hence this commit. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205090 91177308-0d34-0410-b5e6-96231b3b80d8
327 lines
11 KiB
C++
327 lines
11 KiB
C++
//===-- ARM64TargetTransformInfo.cpp - ARM64 specific TTI pass ------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
/// \file
|
|
/// This file implements a TargetTransformInfo analysis pass specific to the
|
|
/// ARM64 target machine. It uses the target's detailed information to provide
|
|
/// more precise answers to certain TTI queries, while letting the target
|
|
/// independent and default TTI implementations handle the rest.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "arm64tti"
|
|
#include "ARM64.h"
|
|
#include "ARM64TargetMachine.h"
|
|
#include "MCTargetDesc/ARM64AddressingModes.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Target/CostTable.h"
|
|
#include "llvm/Target/TargetLowering.h"
|
|
using namespace llvm;
|
|
|
|
// Declare the pass initialization routine locally as target-specific passes
|
|
// don't havve a target-wide initialization entry point, and so we rely on the
|
|
// pass constructor initialization.
|
|
namespace llvm {
|
|
void initializeARM64TTIPass(PassRegistry &);
|
|
}
|
|
|
|
namespace {
|
|
|
|
class ARM64TTI final : public ImmutablePass, public TargetTransformInfo {
|
|
const ARM64TargetMachine *TM;
|
|
const ARM64Subtarget *ST;
|
|
const ARM64TargetLowering *TLI;
|
|
|
|
/// Estimate the overhead of scalarizing an instruction. Insert and Extract
|
|
/// are set if the result needs to be inserted and/or extracted from vectors.
|
|
unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const;
|
|
|
|
public:
|
|
ARM64TTI() : ImmutablePass(ID), TM(0), ST(0), TLI(0) {
|
|
llvm_unreachable("This pass cannot be directly constructed");
|
|
}
|
|
|
|
ARM64TTI(const ARM64TargetMachine *TM)
|
|
: ImmutablePass(ID), TM(TM), ST(TM->getSubtargetImpl()),
|
|
TLI(TM->getTargetLowering()) {
|
|
initializeARM64TTIPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
void initializePass() override { pushTTIStack(this); }
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
TargetTransformInfo::getAnalysisUsage(AU);
|
|
}
|
|
|
|
/// Pass identification.
|
|
static char ID;
|
|
|
|
/// Provide necessary pointer adjustments for the two base classes.
|
|
void *getAdjustedAnalysisPointer(const void *ID) override {
|
|
if (ID == &TargetTransformInfo::ID)
|
|
return (TargetTransformInfo *)this;
|
|
return this;
|
|
}
|
|
|
|
/// \name Scalar TTI Implementations
|
|
/// @{
|
|
|
|
unsigned getIntImmCost(const APInt &Imm, Type *Ty) const override;
|
|
PopcntSupportKind getPopcntSupport(unsigned TyWidth) const override;
|
|
|
|
/// @}
|
|
|
|
/// \name Vector TTI Implementations
|
|
/// @{
|
|
|
|
unsigned getNumberOfRegisters(bool Vector) const override {
|
|
if (Vector)
|
|
return 32;
|
|
|
|
return 31;
|
|
}
|
|
|
|
unsigned getRegisterBitWidth(bool Vector) const override {
|
|
if (Vector)
|
|
return 128;
|
|
|
|
return 64;
|
|
}
|
|
|
|
unsigned getMaximumUnrollFactor() const override { return 2; }
|
|
|
|
unsigned getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) const
|
|
override;
|
|
|
|
unsigned getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) const
|
|
override;
|
|
|
|
unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty,
|
|
OperandValueKind Opd1Info = OK_AnyValue,
|
|
OperandValueKind Opd2Info = OK_AnyValue) const
|
|
override;
|
|
|
|
unsigned getAddressComputationCost(Type *Ty, bool IsComplex) const override;
|
|
|
|
unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy) const
|
|
override;
|
|
|
|
unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
|
|
unsigned AddressSpace) const override;
|
|
/// @}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
INITIALIZE_AG_PASS(ARM64TTI, TargetTransformInfo, "arm64tti",
|
|
"ARM64 Target Transform Info", true, true, false)
|
|
char ARM64TTI::ID = 0;
|
|
|
|
ImmutablePass *
|
|
llvm::createARM64TargetTransformInfoPass(const ARM64TargetMachine *TM) {
|
|
return new ARM64TTI(TM);
|
|
}
|
|
|
|
unsigned ARM64TTI::getIntImmCost(const APInt &Imm, Type *Ty) const {
|
|
assert(Ty->isIntegerTy());
|
|
|
|
unsigned BitSize = Ty->getPrimitiveSizeInBits();
|
|
if (BitSize == 0)
|
|
return ~0U;
|
|
|
|
int64_t Val = Imm.getSExtValue();
|
|
if (Val == 0 || ARM64_AM::isLogicalImmediate(Val, BitSize))
|
|
return 1;
|
|
|
|
if ((int64_t)Val < 0)
|
|
Val = ~Val;
|
|
if (BitSize == 32)
|
|
Val &= (1LL << 32) - 1;
|
|
|
|
unsigned LZ = countLeadingZeros((uint64_t)Val);
|
|
unsigned Shift = (63 - LZ) / 16;
|
|
// MOVZ is free so return true for one or fewer MOVK.
|
|
return (Shift == 0) ? 1 : Shift;
|
|
}
|
|
|
|
ARM64TTI::PopcntSupportKind ARM64TTI::getPopcntSupport(unsigned TyWidth) const {
|
|
assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
|
|
if (TyWidth == 32 || TyWidth == 64)
|
|
return PSK_FastHardware;
|
|
// TODO: ARM64TargetLowering::LowerCTPOP() supports 128bit popcount.
|
|
return PSK_Software;
|
|
}
|
|
|
|
unsigned ARM64TTI::getCastInstrCost(unsigned Opcode, Type *Dst,
|
|
Type *Src) const {
|
|
int ISD = TLI->InstructionOpcodeToISD(Opcode);
|
|
assert(ISD && "Invalid opcode");
|
|
|
|
EVT SrcTy = TLI->getValueType(Src);
|
|
EVT DstTy = TLI->getValueType(Dst);
|
|
|
|
if (!SrcTy.isSimple() || !DstTy.isSimple())
|
|
return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
|
|
|
|
static const TypeConversionCostTblEntry<MVT> ConversionTbl[] = {
|
|
// LowerVectorINT_TO_FP:
|
|
{ ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
|
|
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8, 1 },
|
|
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 1 },
|
|
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 1 },
|
|
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 1 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 1 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 1 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
|
|
// LowerVectorFP_TO_INT
|
|
{ ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 },
|
|
{ ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 },
|
|
{ ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
|
|
{ ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 },
|
|
{ ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 1 },
|
|
{ ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 1 },
|
|
{ ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 4 },
|
|
{ ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 4 },
|
|
};
|
|
|
|
int Idx = ConvertCostTableLookup<MVT>(
|
|
ConversionTbl, array_lengthof(ConversionTbl), ISD, DstTy.getSimpleVT(),
|
|
SrcTy.getSimpleVT());
|
|
if (Idx != -1)
|
|
return ConversionTbl[Idx].Cost;
|
|
|
|
return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
|
|
}
|
|
|
|
unsigned ARM64TTI::getVectorInstrCost(unsigned Opcode, Type *Val,
|
|
unsigned Index) const {
|
|
assert(Val->isVectorTy() && "This must be a vector type");
|
|
|
|
if (Index != -1U) {
|
|
// Legalize the type.
|
|
std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Val);
|
|
|
|
// This type is legalized to a scalar type.
|
|
if (!LT.second.isVector())
|
|
return 0;
|
|
|
|
// The type may be split. Normalize the index to the new type.
|
|
unsigned Width = LT.second.getVectorNumElements();
|
|
Index = Index % Width;
|
|
|
|
// The element at index zero is already inside the vector.
|
|
if (Index == 0)
|
|
return 0;
|
|
}
|
|
|
|
// All other insert/extracts cost this much.
|
|
return 2;
|
|
}
|
|
|
|
unsigned ARM64TTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
|
|
OperandValueKind Opd1Info,
|
|
OperandValueKind Opd2Info) const {
|
|
// Legalize the type.
|
|
std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty);
|
|
|
|
int ISD = TLI->InstructionOpcodeToISD(Opcode);
|
|
|
|
switch (ISD) {
|
|
default:
|
|
return TargetTransformInfo::getArithmeticInstrCost(Opcode, Ty, Opd1Info,
|
|
Opd2Info);
|
|
case ISD::ADD:
|
|
case ISD::MUL:
|
|
case ISD::XOR:
|
|
case ISD::OR:
|
|
case ISD::AND:
|
|
// These nodes are marked as 'custom' for combining purposes only.
|
|
// We know that they are legal. See LowerAdd in ISelLowering.
|
|
return 1 * LT.first;
|
|
}
|
|
}
|
|
|
|
unsigned ARM64TTI::getAddressComputationCost(Type *Ty, bool IsComplex) const {
|
|
// Address computations in vectorized code with non-consecutive addresses will
|
|
// likely result in more instructions compared to scalar code where the
|
|
// computation can more often be merged into the index mode. The resulting
|
|
// extra micro-ops can significantly decrease throughput.
|
|
unsigned NumVectorInstToHideOverhead = 10;
|
|
|
|
if (Ty->isVectorTy() && IsComplex)
|
|
return NumVectorInstToHideOverhead;
|
|
|
|
// In many cases the address computation is not merged into the instruction
|
|
// addressing mode.
|
|
return 1;
|
|
}
|
|
|
|
unsigned ARM64TTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
|
|
Type *CondTy) const {
|
|
|
|
int ISD = TLI->InstructionOpcodeToISD(Opcode);
|
|
// We don't lower vector selects well that are wider than the register width.
|
|
if (ValTy->isVectorTy() && ISD == ISD::SELECT) {
|
|
// We would need this many instructions to hide the scalarization happening.
|
|
unsigned AmortizationCost = 20;
|
|
static const TypeConversionCostTblEntry<MVT::SimpleValueType>
|
|
VectorSelectTbl[] = {
|
|
{ ISD::SELECT, MVT::v16i1, MVT::v16i16, 16 * AmortizationCost },
|
|
{ ISD::SELECT, MVT::v8i1, MVT::v8i32, 8 * AmortizationCost },
|
|
{ ISD::SELECT, MVT::v16i1, MVT::v16i32, 16 * AmortizationCost },
|
|
{ ISD::SELECT, MVT::v4i1, MVT::v4i64, 4 * AmortizationCost },
|
|
{ ISD::SELECT, MVT::v8i1, MVT::v8i64, 8 * AmortizationCost },
|
|
{ ISD::SELECT, MVT::v16i1, MVT::v16i64, 16 * AmortizationCost }
|
|
};
|
|
|
|
EVT SelCondTy = TLI->getValueType(CondTy);
|
|
EVT SelValTy = TLI->getValueType(ValTy);
|
|
if (SelCondTy.isSimple() && SelValTy.isSimple()) {
|
|
int Idx =
|
|
ConvertCostTableLookup(VectorSelectTbl, ISD, SelCondTy.getSimpleVT(),
|
|
SelValTy.getSimpleVT());
|
|
if (Idx != -1)
|
|
return VectorSelectTbl[Idx].Cost;
|
|
}
|
|
}
|
|
return TargetTransformInfo::getCmpSelInstrCost(Opcode, ValTy, CondTy);
|
|
}
|
|
|
|
unsigned ARM64TTI::getMemoryOpCost(unsigned Opcode, Type *Src,
|
|
unsigned Alignment,
|
|
unsigned AddressSpace) const {
|
|
std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Src);
|
|
|
|
if (Opcode == Instruction::Store && Src->isVectorTy() && Alignment != 16 &&
|
|
Src->getVectorElementType()->isIntegerTy(64)) {
|
|
// Unaligned stores are extremely inefficient. We don't split
|
|
// unaligned v2i64 stores because the negative impact that has shown in
|
|
// practice on inlined memcpy code.
|
|
// We make v2i64 stores expensive so that we will only vectorize if there
|
|
// are 6 other instructions getting vectorized.
|
|
unsigned AmortizationCost = 6;
|
|
|
|
return LT.first * 2 * AmortizationCost;
|
|
}
|
|
|
|
if (Src->isVectorTy() && Src->getVectorElementType()->isIntegerTy(8) &&
|
|
Src->getVectorNumElements() < 8) {
|
|
// We scalarize the loads/stores because there is not v.4b register and we
|
|
// have to promote the elements to v.4h.
|
|
unsigned NumVecElts = Src->getVectorNumElements();
|
|
unsigned NumVectorizableInstsToAmortize = NumVecElts * 2;
|
|
// We generate 2 instructions per vector element.
|
|
return NumVectorizableInstsToAmortize * NumVecElts * 2;
|
|
}
|
|
|
|
return LT.first;
|
|
}
|