mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@78910 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			467 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			467 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This implements the ScheduleDAGInstrs class, which implements re-scheduling
 | |
| // of MachineInstrs.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "sched-instrs"
 | |
| #include "ScheduleDAGInstrs.h"
 | |
| #include "llvm/Operator.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/PseudoSourceValue.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Target/TargetRegisterInfo.h"
 | |
| #include "llvm/Target/TargetSubtarget.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
 | |
|                                      const MachineLoopInfo &mli,
 | |
|                                      const MachineDominatorTree &mdt)
 | |
|   : ScheduleDAG(mf), MLI(mli), MDT(mdt), LoopRegs(MLI, MDT) {}
 | |
| 
 | |
| /// Run - perform scheduling.
 | |
| ///
 | |
| void ScheduleDAGInstrs::Run(MachineBasicBlock *bb,
 | |
|                             MachineBasicBlock::iterator begin,
 | |
|                             MachineBasicBlock::iterator end,
 | |
|                             unsigned endcount) {
 | |
|   BB = bb;
 | |
|   Begin = begin;
 | |
|   InsertPosIndex = endcount;
 | |
| 
 | |
|   ScheduleDAG::Run(bb, end);
 | |
| }
 | |
| 
 | |
| /// getUnderlyingObjectFromInt - This is the function that does the work of
 | |
| /// looking through basic ptrtoint+arithmetic+inttoptr sequences.
 | |
| static const Value *getUnderlyingObjectFromInt(const Value *V) {
 | |
|   do {
 | |
|     if (const Operator *U = dyn_cast<Operator>(V)) {
 | |
|       // If we find a ptrtoint, we can transfer control back to the
 | |
|       // regular getUnderlyingObjectFromInt.
 | |
|       if (U->getOpcode() == Instruction::PtrToInt)
 | |
|         return U->getOperand(0);
 | |
|       // If we find an add of a constant or a multiplied value, it's
 | |
|       // likely that the other operand will lead us to the base
 | |
|       // object. We don't have to worry about the case where the
 | |
|       // object address is somehow being computed by the multiply,
 | |
|       // because our callers only care when the result is an
 | |
|       // identifibale object.
 | |
|       if (U->getOpcode() != Instruction::Add ||
 | |
|           (!isa<ConstantInt>(U->getOperand(1)) &&
 | |
|            Operator::getOpcode(U->getOperand(1)) != Instruction::Mul))
 | |
|         return V;
 | |
|       V = U->getOperand(0);
 | |
|     } else {
 | |
|       return V;
 | |
|     }
 | |
|     assert(isa<IntegerType>(V->getType()) && "Unexpected operand type!");
 | |
|   } while (1);
 | |
| }
 | |
| 
 | |
| /// getUnderlyingObject - This is a wrapper around Value::getUnderlyingObject
 | |
| /// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
 | |
| static const Value *getUnderlyingObject(const Value *V) {
 | |
|   // First just call Value::getUnderlyingObject to let it do what it does.
 | |
|   do {
 | |
|     V = V->getUnderlyingObject();
 | |
|     // If it found an inttoptr, use special code to continue climing.
 | |
|     if (Operator::getOpcode(V) != Instruction::IntToPtr)
 | |
|       break;
 | |
|     const Value *O = getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
 | |
|     // If that succeeded in finding a pointer, continue the search.
 | |
|     if (!isa<PointerType>(O->getType()))
 | |
|       break;
 | |
|     V = O;
 | |
|   } while (1);
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| /// getUnderlyingObjectForInstr - If this machine instr has memory reference
 | |
| /// information and it can be tracked to a normal reference to a known
 | |
| /// object, return the Value for that object. Otherwise return null.
 | |
| static const Value *getUnderlyingObjectForInstr(const MachineInstr *MI) {
 | |
|   if (!MI->hasOneMemOperand() ||
 | |
|       !MI->memoperands_begin()->getValue() ||
 | |
|       MI->memoperands_begin()->isVolatile())
 | |
|     return 0;
 | |
| 
 | |
|   const Value *V = MI->memoperands_begin()->getValue();
 | |
|   if (!V)
 | |
|     return 0;
 | |
| 
 | |
|   V = getUnderlyingObject(V);
 | |
|   if (!isa<PseudoSourceValue>(V) && !isIdentifiedObject(V))
 | |
|     return 0;
 | |
| 
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| void ScheduleDAGInstrs::StartBlock(MachineBasicBlock *BB) {
 | |
|   if (MachineLoop *ML = MLI.getLoopFor(BB))
 | |
|     if (BB == ML->getLoopLatch()) {
 | |
|       MachineBasicBlock *Header = ML->getHeader();
 | |
|       for (MachineBasicBlock::livein_iterator I = Header->livein_begin(),
 | |
|            E = Header->livein_end(); I != E; ++I)
 | |
|         LoopLiveInRegs.insert(*I);
 | |
|       LoopRegs.VisitLoop(ML);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void ScheduleDAGInstrs::BuildSchedGraph() {
 | |
|   // We'll be allocating one SUnit for each instruction, plus one for
 | |
|   // the region exit node.
 | |
|   SUnits.reserve(BB->size());
 | |
| 
 | |
|   // We build scheduling units by walking a block's instruction list from bottom
 | |
|   // to top.
 | |
| 
 | |
|   // Remember where a generic side-effecting instruction is as we procede. If
 | |
|   // ChainMMO is null, this is assumed to have arbitrary side-effects. If
 | |
|   // ChainMMO is non-null, then Chain makes only a single memory reference.
 | |
|   SUnit *Chain = 0;
 | |
|   MachineMemOperand *ChainMMO = 0;
 | |
| 
 | |
|   // Memory references to specific known memory locations are tracked so that
 | |
|   // they can be given more precise dependencies.
 | |
|   std::map<const Value *, SUnit *> MemDefs;
 | |
|   std::map<const Value *, std::vector<SUnit *> > MemUses;
 | |
| 
 | |
|   // Check to see if the scheduler cares about latencies.
 | |
|   bool UnitLatencies = ForceUnitLatencies();
 | |
| 
 | |
|   // Ask the target if address-backscheduling is desirable, and if so how much.
 | |
|   const TargetSubtarget &ST = TM.getSubtarget<TargetSubtarget>();
 | |
|   unsigned SpecialAddressLatency = ST.getSpecialAddressLatency();
 | |
| 
 | |
|   // Walk the list of instructions, from bottom moving up.
 | |
|   for (MachineBasicBlock::iterator MII = InsertPos, MIE = Begin;
 | |
|        MII != MIE; --MII) {
 | |
|     MachineInstr *MI = prior(MII);
 | |
|     const TargetInstrDesc &TID = MI->getDesc();
 | |
|     assert(!TID.isTerminator() && !MI->isLabel() &&
 | |
|            "Cannot schedule terminators or labels!");
 | |
|     // Create the SUnit for this MI.
 | |
|     SUnit *SU = NewSUnit(MI);
 | |
| 
 | |
|     // Assign the Latency field of SU using target-provided information.
 | |
|     if (UnitLatencies)
 | |
|       SU->Latency = 1;
 | |
|     else
 | |
|       ComputeLatency(SU);
 | |
| 
 | |
|     // Add register-based dependencies (data, anti, and output).
 | |
|     for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
 | |
|       const MachineOperand &MO = MI->getOperand(j);
 | |
|       if (!MO.isReg()) continue;
 | |
|       unsigned Reg = MO.getReg();
 | |
|       if (Reg == 0) continue;
 | |
| 
 | |
|       assert(TRI->isPhysicalRegister(Reg) && "Virtual register encountered!");
 | |
|       std::vector<SUnit *> &UseList = Uses[Reg];
 | |
|       std::vector<SUnit *> &DefList = Defs[Reg];
 | |
|       // Optionally add output and anti dependencies. For anti
 | |
|       // dependencies we use a latency of 0 because for a multi-issue
 | |
|       // target we want to allow the defining instruction to issue
 | |
|       // in the same cycle as the using instruction.
 | |
|       // TODO: Using a latency of 1 here for output dependencies assumes
 | |
|       //       there's no cost for reusing registers.
 | |
|       SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
 | |
|       unsigned AOLatency = (Kind == SDep::Anti) ? 0 : 1;
 | |
|       for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
 | |
|         SUnit *DefSU = DefList[i];
 | |
|         if (DefSU != SU &&
 | |
|             (Kind != SDep::Output || !MO.isDead() ||
 | |
|              !DefSU->getInstr()->registerDefIsDead(Reg)))
 | |
|           DefSU->addPred(SDep(SU, Kind, AOLatency, /*Reg=*/Reg));
 | |
|       }
 | |
|       for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
 | |
|         std::vector<SUnit *> &DefList = Defs[*Alias];
 | |
|         for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
 | |
|           SUnit *DefSU = DefList[i];
 | |
|           if (DefSU != SU &&
 | |
|               (Kind != SDep::Output || !MO.isDead() ||
 | |
|                !DefSU->getInstr()->registerDefIsDead(Reg)))
 | |
|             DefSU->addPred(SDep(SU, Kind, AOLatency, /*Reg=*/ *Alias));
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (MO.isDef()) {
 | |
|         // Add any data dependencies.
 | |
|         unsigned DataLatency = SU->Latency;
 | |
|         for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
 | |
|           SUnit *UseSU = UseList[i];
 | |
|           if (UseSU != SU) {
 | |
|             unsigned LDataLatency = DataLatency;
 | |
|             // Optionally add in a special extra latency for nodes that
 | |
|             // feed addresses.
 | |
|             // TODO: Do this for register aliases too.
 | |
|             if (SpecialAddressLatency != 0 && !UnitLatencies) {
 | |
|               MachineInstr *UseMI = UseSU->getInstr();
 | |
|               const TargetInstrDesc &UseTID = UseMI->getDesc();
 | |
|               int RegUseIndex = UseMI->findRegisterUseOperandIdx(Reg);
 | |
|               assert(RegUseIndex >= 0 && "UseMI doesn's use register!");
 | |
|               if ((UseTID.mayLoad() || UseTID.mayStore()) &&
 | |
|                   (unsigned)RegUseIndex < UseTID.getNumOperands() &&
 | |
|                   UseTID.OpInfo[RegUseIndex].isLookupPtrRegClass())
 | |
|                 LDataLatency += SpecialAddressLatency;
 | |
|             }
 | |
|             const SDep& dep = SDep(SU, SDep::Data, LDataLatency, Reg);
 | |
|             ST.adjustSchedDependency((SDep &)dep);
 | |
|             UseSU->addPred(dep);
 | |
|           }
 | |
|         }
 | |
|         for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
 | |
|           std::vector<SUnit *> &UseList = Uses[*Alias];
 | |
|           for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
 | |
|             SUnit *UseSU = UseList[i];
 | |
|             if (UseSU != SU) {
 | |
|               const SDep& dep = SDep(SU, SDep::Data, DataLatency, *Alias);
 | |
|               ST.adjustSchedDependency((SDep &)dep);
 | |
|               UseSU->addPred(dep);
 | |
|             }
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         // If a def is going to wrap back around to the top of the loop,
 | |
|         // backschedule it.
 | |
|         if (!UnitLatencies && DefList.empty()) {
 | |
|           LoopDependencies::LoopDeps::iterator I = LoopRegs.Deps.find(Reg);
 | |
|           if (I != LoopRegs.Deps.end()) {
 | |
|             const MachineOperand *UseMO = I->second.first;
 | |
|             unsigned Count = I->second.second;
 | |
|             const MachineInstr *UseMI = UseMO->getParent();
 | |
|             unsigned UseMOIdx = UseMO - &UseMI->getOperand(0);
 | |
|             const TargetInstrDesc &UseTID = UseMI->getDesc();
 | |
|             // TODO: If we knew the total depth of the region here, we could
 | |
|             // handle the case where the whole loop is inside the region but
 | |
|             // is large enough that the isScheduleHigh trick isn't needed.
 | |
|             if (UseMOIdx < UseTID.getNumOperands()) {
 | |
|               // Currently, we only support scheduling regions consisting of
 | |
|               // single basic blocks. Check to see if the instruction is in
 | |
|               // the same region by checking to see if it has the same parent.
 | |
|               if (UseMI->getParent() != MI->getParent()) {
 | |
|                 unsigned Latency = SU->Latency;
 | |
|                 if (UseTID.OpInfo[UseMOIdx].isLookupPtrRegClass())
 | |
|                   Latency += SpecialAddressLatency;
 | |
|                 // This is a wild guess as to the portion of the latency which
 | |
|                 // will be overlapped by work done outside the current
 | |
|                 // scheduling region.
 | |
|                 Latency -= std::min(Latency, Count);
 | |
|                 // Add the artifical edge.
 | |
|                 ExitSU.addPred(SDep(SU, SDep::Order, Latency,
 | |
|                                     /*Reg=*/0, /*isNormalMemory=*/false,
 | |
|                                     /*isMustAlias=*/false,
 | |
|                                     /*isArtificial=*/true));
 | |
|               } else if (SpecialAddressLatency > 0 &&
 | |
|                          UseTID.OpInfo[UseMOIdx].isLookupPtrRegClass()) {
 | |
|                 // The entire loop body is within the current scheduling region
 | |
|                 // and the latency of this operation is assumed to be greater
 | |
|                 // than the latency of the loop.
 | |
|                 // TODO: Recursively mark data-edge predecessors as
 | |
|                 //       isScheduleHigh too.
 | |
|                 SU->isScheduleHigh = true;
 | |
|               }
 | |
|             }
 | |
|             LoopRegs.Deps.erase(I);
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         UseList.clear();
 | |
|         if (!MO.isDead())
 | |
|           DefList.clear();
 | |
|         DefList.push_back(SU);
 | |
|       } else {
 | |
|         UseList.push_back(SU);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Add chain dependencies.
 | |
|     // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable
 | |
|     // after stack slots are lowered to actual addresses.
 | |
|     // TODO: Use an AliasAnalysis and do real alias-analysis queries, and
 | |
|     // produce more precise dependence information.
 | |
|     if (TID.isCall() || TID.hasUnmodeledSideEffects()) {
 | |
|     new_chain:
 | |
|       // This is the conservative case. Add dependencies on all memory
 | |
|       // references.
 | |
|       if (Chain)
 | |
|         Chain->addPred(SDep(SU, SDep::Order, SU->Latency));
 | |
|       Chain = SU;
 | |
|       for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
 | |
|         PendingLoads[k]->addPred(SDep(SU, SDep::Order, SU->Latency));
 | |
|       PendingLoads.clear();
 | |
|       for (std::map<const Value *, SUnit *>::iterator I = MemDefs.begin(),
 | |
|            E = MemDefs.end(); I != E; ++I) {
 | |
|         I->second->addPred(SDep(SU, SDep::Order, SU->Latency));
 | |
|         I->second = SU;
 | |
|       }
 | |
|       for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
 | |
|            MemUses.begin(), E = MemUses.end(); I != E; ++I) {
 | |
|         for (unsigned i = 0, e = I->second.size(); i != e; ++i)
 | |
|           I->second[i]->addPred(SDep(SU, SDep::Order, SU->Latency));
 | |
|         I->second.clear();
 | |
|       }
 | |
|       // See if it is known to just have a single memory reference.
 | |
|       MachineInstr *ChainMI = Chain->getInstr();
 | |
|       const TargetInstrDesc &ChainTID = ChainMI->getDesc();
 | |
|       if (!ChainTID.isCall() &&
 | |
|           !ChainTID.hasUnmodeledSideEffects() &&
 | |
|           ChainMI->hasOneMemOperand() &&
 | |
|           !ChainMI->memoperands_begin()->isVolatile() &&
 | |
|           ChainMI->memoperands_begin()->getValue())
 | |
|         // We know that the Chain accesses one specific memory location.
 | |
|         ChainMMO = &*ChainMI->memoperands_begin();
 | |
|       else
 | |
|         // Unknown memory accesses. Assume the worst.
 | |
|         ChainMMO = 0;
 | |
|     } else if (TID.mayStore()) {
 | |
|       if (const Value *V = getUnderlyingObjectForInstr(MI)) {
 | |
|         // A store to a specific PseudoSourceValue. Add precise dependencies.
 | |
|         // Handle the def in MemDefs, if there is one.
 | |
|         std::map<const Value *, SUnit *>::iterator I = MemDefs.find(V);
 | |
|         if (I != MemDefs.end()) {
 | |
|           I->second->addPred(SDep(SU, SDep::Order, SU->Latency, /*Reg=*/0,
 | |
|                                   /*isNormalMemory=*/true));
 | |
|           I->second = SU;
 | |
|         } else {
 | |
|           MemDefs[V] = SU;
 | |
|         }
 | |
|         // Handle the uses in MemUses, if there are any.
 | |
|         std::map<const Value *, std::vector<SUnit *> >::iterator J =
 | |
|           MemUses.find(V);
 | |
|         if (J != MemUses.end()) {
 | |
|           for (unsigned i = 0, e = J->second.size(); i != e; ++i)
 | |
|             J->second[i]->addPred(SDep(SU, SDep::Order, SU->Latency, /*Reg=*/0,
 | |
|                                        /*isNormalMemory=*/true));
 | |
|           J->second.clear();
 | |
|         }
 | |
|         // Add dependencies from all the PendingLoads, since without
 | |
|         // memoperands we must assume they alias anything.
 | |
|         for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
 | |
|           PendingLoads[k]->addPred(SDep(SU, SDep::Order, SU->Latency));
 | |
|         // Add a general dependence too, if needed.
 | |
|         if (Chain)
 | |
|           Chain->addPred(SDep(SU, SDep::Order, SU->Latency));
 | |
|       } else
 | |
|         // Treat all other stores conservatively.
 | |
|         goto new_chain;
 | |
|     } else if (TID.mayLoad()) {
 | |
|       if (TII->isInvariantLoad(MI)) {
 | |
|         // Invariant load, no chain dependencies needed!
 | |
|       } else if (const Value *V = getUnderlyingObjectForInstr(MI)) {
 | |
|         // A load from a specific PseudoSourceValue. Add precise dependencies.
 | |
|         std::map<const Value *, SUnit *>::iterator I = MemDefs.find(V);
 | |
|         if (I != MemDefs.end())
 | |
|           I->second->addPred(SDep(SU, SDep::Order, SU->Latency, /*Reg=*/0,
 | |
|                                   /*isNormalMemory=*/true));
 | |
|         MemUses[V].push_back(SU);
 | |
| 
 | |
|         // Add a general dependence too, if needed.
 | |
|         if (Chain && (!ChainMMO ||
 | |
|                       (ChainMMO->isStore() || ChainMMO->isVolatile())))
 | |
|           Chain->addPred(SDep(SU, SDep::Order, SU->Latency));
 | |
|       } else if (MI->hasVolatileMemoryRef()) {
 | |
|         // Treat volatile loads conservatively. Note that this includes
 | |
|         // cases where memoperand information is unavailable.
 | |
|         goto new_chain;
 | |
|       } else {
 | |
|         // A normal load. Depend on the general chain, as well as on
 | |
|         // all stores. In the absense of MachineMemOperand information,
 | |
|         // we can't even assume that the load doesn't alias well-behaved
 | |
|         // memory locations.
 | |
|         if (Chain)
 | |
|           Chain->addPred(SDep(SU, SDep::Order, SU->Latency));
 | |
|         for (std::map<const Value *, SUnit *>::iterator I = MemDefs.begin(),
 | |
|              E = MemDefs.end(); I != E; ++I)
 | |
|           I->second->addPred(SDep(SU, SDep::Order, SU->Latency));
 | |
|         PendingLoads.push_back(SU);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (int i = 0, e = TRI->getNumRegs(); i != e; ++i) {
 | |
|     Defs[i].clear();
 | |
|     Uses[i].clear();
 | |
|   }
 | |
|   PendingLoads.clear();
 | |
| }
 | |
| 
 | |
| void ScheduleDAGInstrs::FinishBlock() {
 | |
|   // Nothing to do.
 | |
| }
 | |
| 
 | |
| void ScheduleDAGInstrs::ComputeLatency(SUnit *SU) {
 | |
|   const InstrItineraryData &InstrItins = TM.getInstrItineraryData();
 | |
| 
 | |
|   // Compute the latency for the node.
 | |
|   SU->Latency =
 | |
|     InstrItins.getLatency(SU->getInstr()->getDesc().getSchedClass());
 | |
| 
 | |
|   // Simplistic target-independent heuristic: assume that loads take
 | |
|   // extra time.
 | |
|   if (InstrItins.isEmpty())
 | |
|     if (SU->getInstr()->getDesc().mayLoad())
 | |
|       SU->Latency += 2;
 | |
| }
 | |
| 
 | |
| void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
 | |
|   SU->getInstr()->dump();
 | |
| }
 | |
| 
 | |
| std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
 | |
|   std::string s;
 | |
|   raw_string_ostream oss(s);
 | |
|   if (SU == &EntrySU)
 | |
|     oss << "<entry>";
 | |
|   else if (SU == &ExitSU)
 | |
|     oss << "<exit>";
 | |
|   else
 | |
|     SU->getInstr()->print(oss);
 | |
|   return oss.str();
 | |
| }
 | |
| 
 | |
| // EmitSchedule - Emit the machine code in scheduled order.
 | |
| MachineBasicBlock *ScheduleDAGInstrs::EmitSchedule() {
 | |
|   // For MachineInstr-based scheduling, we're rescheduling the instructions in
 | |
|   // the block, so start by removing them from the block.
 | |
|   while (Begin != InsertPos) {
 | |
|     MachineBasicBlock::iterator I = Begin;
 | |
|     ++Begin;
 | |
|     BB->remove(I);
 | |
|   }
 | |
| 
 | |
|   // Then re-insert them according to the given schedule.
 | |
|   for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
 | |
|     SUnit *SU = Sequence[i];
 | |
|     if (!SU) {
 | |
|       // Null SUnit* is a noop.
 | |
|       EmitNoop();
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     BB->insert(InsertPos, SU->getInstr());
 | |
|   }
 | |
| 
 | |
|   // Update the Begin iterator, as the first instruction in the block
 | |
|   // may have been scheduled later.
 | |
|   if (!Sequence.empty())
 | |
|     Begin = Sequence[0]->getInstr();
 | |
| 
 | |
|   return BB;
 | |
| }
 |