mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@78948 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1067 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1067 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines the common interface used by the various execution engine
 | |
| // subclasses.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "jit"
 | |
| #include "llvm/ExecutionEngine/ExecutionEngine.h"
 | |
| 
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Module.h"
 | |
| #include "llvm/ModuleProvider.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Config/alloca.h"
 | |
| #include "llvm/ExecutionEngine/GenericValue.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/MutexGuard.h"
 | |
| #include "llvm/Support/ValueHandle.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/System/DynamicLibrary.h"
 | |
| #include "llvm/System/Host.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include <cmath>
 | |
| #include <cstring>
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumInitBytes, "Number of bytes of global vars initialized");
 | |
| STATISTIC(NumGlobals  , "Number of global vars initialized");
 | |
| 
 | |
| ExecutionEngine *(*ExecutionEngine::JITCtor)(ModuleProvider *MP,
 | |
|                                              std::string *ErrorStr,
 | |
|                                              JITMemoryManager *JMM,
 | |
|                                              CodeGenOpt::Level OptLevel,
 | |
|                                              bool GVsWithCode) = 0;
 | |
| ExecutionEngine *(*ExecutionEngine::InterpCtor)(ModuleProvider *MP,
 | |
|                                                 std::string *ErrorStr) = 0;
 | |
| ExecutionEngine::EERegisterFn ExecutionEngine::ExceptionTableRegister = 0;
 | |
| 
 | |
| 
 | |
| ExecutionEngine::ExecutionEngine(ModuleProvider *P) : LazyFunctionCreator(0) {
 | |
|   LazyCompilationDisabled = false;
 | |
|   GVCompilationDisabled   = false;
 | |
|   SymbolSearchingDisabled = false;
 | |
|   DlsymStubsEnabled       = false;
 | |
|   Modules.push_back(P);
 | |
|   assert(P && "ModuleProvider is null?");
 | |
| }
 | |
| 
 | |
| ExecutionEngine::~ExecutionEngine() {
 | |
|   clearAllGlobalMappings();
 | |
|   for (unsigned i = 0, e = Modules.size(); i != e; ++i)
 | |
|     delete Modules[i];
 | |
| }
 | |
| 
 | |
| char* ExecutionEngine::getMemoryForGV(const GlobalVariable* GV) {
 | |
|   const Type *ElTy = GV->getType()->getElementType();
 | |
|   size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy);
 | |
|   return new char[GVSize];
 | |
| }
 | |
| 
 | |
| /// removeModuleProvider - Remove a ModuleProvider from the list of modules.
 | |
| /// Relases the Module from the ModuleProvider, materializing it in the
 | |
| /// process, and returns the materialized Module.
 | |
| Module* ExecutionEngine::removeModuleProvider(ModuleProvider *P, 
 | |
|                                               std::string *ErrInfo) {
 | |
|   for(SmallVector<ModuleProvider *, 1>::iterator I = Modules.begin(), 
 | |
|         E = Modules.end(); I != E; ++I) {
 | |
|     ModuleProvider *MP = *I;
 | |
|     if (MP == P) {
 | |
|       Modules.erase(I);
 | |
|       clearGlobalMappingsFromModule(MP->getModule());
 | |
|       return MP->releaseModule(ErrInfo);
 | |
|     }
 | |
|   }
 | |
|   return NULL;
 | |
| }
 | |
| 
 | |
| /// deleteModuleProvider - Remove a ModuleProvider from the list of modules,
 | |
| /// and deletes the ModuleProvider and owned Module.  Avoids materializing 
 | |
| /// the underlying module.
 | |
| void ExecutionEngine::deleteModuleProvider(ModuleProvider *P, 
 | |
|                                            std::string *ErrInfo) {
 | |
|   for(SmallVector<ModuleProvider *, 1>::iterator I = Modules.begin(), 
 | |
|       E = Modules.end(); I != E; ++I) {
 | |
|     ModuleProvider *MP = *I;
 | |
|     if (MP == P) {
 | |
|       Modules.erase(I);
 | |
|       clearGlobalMappingsFromModule(MP->getModule());
 | |
|       delete MP;
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// FindFunctionNamed - Search all of the active modules to find the one that
 | |
| /// defines FnName.  This is very slow operation and shouldn't be used for
 | |
| /// general code.
 | |
| Function *ExecutionEngine::FindFunctionNamed(const char *FnName) {
 | |
|   for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
 | |
|     if (Function *F = Modules[i]->getModule()->getFunction(FnName))
 | |
|       return F;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// addGlobalMapping - Tell the execution engine that the specified global is
 | |
| /// at the specified location.  This is used internally as functions are JIT'd
 | |
| /// and as global variables are laid out in memory.  It can and should also be
 | |
| /// used by clients of the EE that want to have an LLVM global overlay
 | |
| /// existing data in memory.
 | |
| void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) {
 | |
|   MutexGuard locked(lock);
 | |
| 
 | |
|   DEBUG(errs() << "JIT: Map \'" << GV->getName() 
 | |
|         << "\' to [" << Addr << "]\n";);
 | |
|   void *&CurVal = state.getGlobalAddressMap(locked)[GV];
 | |
|   assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!");
 | |
|   CurVal = Addr;
 | |
|   
 | |
|   // If we are using the reverse mapping, add it too
 | |
|   if (!state.getGlobalAddressReverseMap(locked).empty()) {
 | |
|     AssertingVH<const GlobalValue> &V =
 | |
|       state.getGlobalAddressReverseMap(locked)[Addr];
 | |
|     assert((V == 0 || GV == 0) && "GlobalMapping already established!");
 | |
|     V = GV;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// clearAllGlobalMappings - Clear all global mappings and start over again
 | |
| /// use in dynamic compilation scenarios when you want to move globals
 | |
| void ExecutionEngine::clearAllGlobalMappings() {
 | |
|   MutexGuard locked(lock);
 | |
|   
 | |
|   state.getGlobalAddressMap(locked).clear();
 | |
|   state.getGlobalAddressReverseMap(locked).clear();
 | |
| }
 | |
| 
 | |
| /// clearGlobalMappingsFromModule - Clear all global mappings that came from a
 | |
| /// particular module, because it has been removed from the JIT.
 | |
| void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) {
 | |
|   MutexGuard locked(lock);
 | |
|   
 | |
|   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) {
 | |
|     state.getGlobalAddressMap(locked).erase(&*FI);
 | |
|     state.getGlobalAddressReverseMap(locked).erase(&*FI);
 | |
|   }
 | |
|   for (Module::global_iterator GI = M->global_begin(), GE = M->global_end(); 
 | |
|        GI != GE; ++GI) {
 | |
|     state.getGlobalAddressMap(locked).erase(&*GI);
 | |
|     state.getGlobalAddressReverseMap(locked).erase(&*GI);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// updateGlobalMapping - Replace an existing mapping for GV with a new
 | |
| /// address.  This updates both maps as required.  If "Addr" is null, the
 | |
| /// entry for the global is removed from the mappings.
 | |
| void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) {
 | |
|   MutexGuard locked(lock);
 | |
| 
 | |
|   std::map<AssertingVH<const GlobalValue>, void *> &Map =
 | |
|     state.getGlobalAddressMap(locked);
 | |
| 
 | |
|   // Deleting from the mapping?
 | |
|   if (Addr == 0) {
 | |
|     std::map<AssertingVH<const GlobalValue>, void *>::iterator I = Map.find(GV);
 | |
|     void *OldVal;
 | |
|     if (I == Map.end())
 | |
|       OldVal = 0;
 | |
|     else {
 | |
|       OldVal = I->second;
 | |
|       Map.erase(I); 
 | |
|     }
 | |
|     
 | |
|     if (!state.getGlobalAddressReverseMap(locked).empty())
 | |
|       state.getGlobalAddressReverseMap(locked).erase(OldVal);
 | |
|     return OldVal;
 | |
|   }
 | |
|   
 | |
|   void *&CurVal = Map[GV];
 | |
|   void *OldVal = CurVal;
 | |
| 
 | |
|   if (CurVal && !state.getGlobalAddressReverseMap(locked).empty())
 | |
|     state.getGlobalAddressReverseMap(locked).erase(CurVal);
 | |
|   CurVal = Addr;
 | |
|   
 | |
|   // If we are using the reverse mapping, add it too
 | |
|   if (!state.getGlobalAddressReverseMap(locked).empty()) {
 | |
|     AssertingVH<const GlobalValue> &V =
 | |
|       state.getGlobalAddressReverseMap(locked)[Addr];
 | |
|     assert((V == 0 || GV == 0) && "GlobalMapping already established!");
 | |
|     V = GV;
 | |
|   }
 | |
|   return OldVal;
 | |
| }
 | |
| 
 | |
| /// getPointerToGlobalIfAvailable - This returns the address of the specified
 | |
| /// global value if it is has already been codegen'd, otherwise it returns null.
 | |
| ///
 | |
| void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) {
 | |
|   MutexGuard locked(lock);
 | |
|   
 | |
|   std::map<AssertingVH<const GlobalValue>, void*>::iterator I =
 | |
|     state.getGlobalAddressMap(locked).find(GV);
 | |
|   return I != state.getGlobalAddressMap(locked).end() ? I->second : 0;
 | |
| }
 | |
| 
 | |
| /// getGlobalValueAtAddress - Return the LLVM global value object that starts
 | |
| /// at the specified address.
 | |
| ///
 | |
| const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) {
 | |
|   MutexGuard locked(lock);
 | |
| 
 | |
|   // If we haven't computed the reverse mapping yet, do so first.
 | |
|   if (state.getGlobalAddressReverseMap(locked).empty()) {
 | |
|     for (std::map<AssertingVH<const GlobalValue>, void *>::iterator
 | |
|          I = state.getGlobalAddressMap(locked).begin(),
 | |
|          E = state.getGlobalAddressMap(locked).end(); I != E; ++I)
 | |
|       state.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second,
 | |
|                                                                      I->first));
 | |
|   }
 | |
| 
 | |
|   std::map<void *, AssertingVH<const GlobalValue> >::iterator I =
 | |
|     state.getGlobalAddressReverseMap(locked).find(Addr);
 | |
|   return I != state.getGlobalAddressReverseMap(locked).end() ? I->second : 0;
 | |
| }
 | |
| 
 | |
| // CreateArgv - Turn a vector of strings into a nice argv style array of
 | |
| // pointers to null terminated strings.
 | |
| //
 | |
| static void *CreateArgv(LLVMContext &C, ExecutionEngine *EE,
 | |
|                         const std::vector<std::string> &InputArgv) {
 | |
|   unsigned PtrSize = EE->getTargetData()->getPointerSize();
 | |
|   char *Result = new char[(InputArgv.size()+1)*PtrSize];
 | |
| 
 | |
|   DOUT << "JIT: ARGV = " << (void*)Result << "\n";
 | |
|   const Type *SBytePtr = PointerType::getUnqual(Type::getInt8Ty(C));
 | |
| 
 | |
|   for (unsigned i = 0; i != InputArgv.size(); ++i) {
 | |
|     unsigned Size = InputArgv[i].size()+1;
 | |
|     char *Dest = new char[Size];
 | |
|     DOUT << "JIT: ARGV[" << i << "] = " << (void*)Dest << "\n";
 | |
| 
 | |
|     std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest);
 | |
|     Dest[Size-1] = 0;
 | |
| 
 | |
|     // Endian safe: Result[i] = (PointerTy)Dest;
 | |
|     EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i*PtrSize),
 | |
|                            SBytePtr);
 | |
|   }
 | |
| 
 | |
|   // Null terminate it
 | |
|   EE->StoreValueToMemory(PTOGV(0),
 | |
|                          (GenericValue*)(Result+InputArgv.size()*PtrSize),
 | |
|                          SBytePtr);
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// runStaticConstructorsDestructors - This method is used to execute all of
 | |
| /// the static constructors or destructors for a module, depending on the
 | |
| /// value of isDtors.
 | |
| void ExecutionEngine::runStaticConstructorsDestructors(Module *module, bool isDtors) {
 | |
|   const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors";
 | |
|   
 | |
|   // Execute global ctors/dtors for each module in the program.
 | |
|   
 | |
|  GlobalVariable *GV = module->getNamedGlobal(Name);
 | |
| 
 | |
|  // If this global has internal linkage, or if it has a use, then it must be
 | |
|  // an old-style (llvmgcc3) static ctor with __main linked in and in use.  If
 | |
|  // this is the case, don't execute any of the global ctors, __main will do
 | |
|  // it.
 | |
|  if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return;
 | |
|  
 | |
|  // Should be an array of '{ int, void ()* }' structs.  The first value is
 | |
|  // the init priority, which we ignore.
 | |
|  ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
 | |
|  if (!InitList) return;
 | |
|  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
 | |
|    if (ConstantStruct *CS = 
 | |
|        dyn_cast<ConstantStruct>(InitList->getOperand(i))) {
 | |
|      if (CS->getNumOperands() != 2) return; // Not array of 2-element structs.
 | |
|    
 | |
|      Constant *FP = CS->getOperand(1);
 | |
|      if (FP->isNullValue())
 | |
|        break;  // Found a null terminator, exit.
 | |
|    
 | |
|      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
 | |
|        if (CE->isCast())
 | |
|          FP = CE->getOperand(0);
 | |
|      if (Function *F = dyn_cast<Function>(FP)) {
 | |
|        // Execute the ctor/dtor function!
 | |
|        runFunction(F, std::vector<GenericValue>());
 | |
|      }
 | |
|    }
 | |
| }
 | |
| 
 | |
| /// runStaticConstructorsDestructors - This method is used to execute all of
 | |
| /// the static constructors or destructors for a program, depending on the
 | |
| /// value of isDtors.
 | |
| void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) {
 | |
|   // Execute global ctors/dtors for each module in the program.
 | |
|   for (unsigned m = 0, e = Modules.size(); m != e; ++m)
 | |
|     runStaticConstructorsDestructors(Modules[m]->getModule(), isDtors);
 | |
| }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| /// isTargetNullPtr - Return whether the target pointer stored at Loc is null.
 | |
| static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) {
 | |
|   unsigned PtrSize = EE->getTargetData()->getPointerSize();
 | |
|   for (unsigned i = 0; i < PtrSize; ++i)
 | |
|     if (*(i + (uint8_t*)Loc))
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /// runFunctionAsMain - This is a helper function which wraps runFunction to
 | |
| /// handle the common task of starting up main with the specified argc, argv,
 | |
| /// and envp parameters.
 | |
| int ExecutionEngine::runFunctionAsMain(Function *Fn,
 | |
|                                        const std::vector<std::string> &argv,
 | |
|                                        const char * const * envp) {
 | |
|   std::vector<GenericValue> GVArgs;
 | |
|   GenericValue GVArgc;
 | |
|   GVArgc.IntVal = APInt(32, argv.size());
 | |
| 
 | |
|   // Check main() type
 | |
|   unsigned NumArgs = Fn->getFunctionType()->getNumParams();
 | |
|   const FunctionType *FTy = Fn->getFunctionType();
 | |
|   const Type* PPInt8Ty = 
 | |
|     PointerType::getUnqual(PointerType::getUnqual(
 | |
|           Type::getInt8Ty(Fn->getContext())));
 | |
|   switch (NumArgs) {
 | |
|   case 3:
 | |
|    if (FTy->getParamType(2) != PPInt8Ty) {
 | |
|      llvm_report_error("Invalid type for third argument of main() supplied");
 | |
|    }
 | |
|    // FALLS THROUGH
 | |
|   case 2:
 | |
|    if (FTy->getParamType(1) != PPInt8Ty) {
 | |
|      llvm_report_error("Invalid type for second argument of main() supplied");
 | |
|    }
 | |
|    // FALLS THROUGH
 | |
|   case 1:
 | |
|    if (FTy->getParamType(0) != Type::getInt32Ty(Fn->getContext())) {
 | |
|      llvm_report_error("Invalid type for first argument of main() supplied");
 | |
|    }
 | |
|    // FALLS THROUGH
 | |
|   case 0:
 | |
|    if (!isa<IntegerType>(FTy->getReturnType()) &&
 | |
|        FTy->getReturnType() != Type::getVoidTy(FTy->getContext())) {
 | |
|      llvm_report_error("Invalid return type of main() supplied");
 | |
|    }
 | |
|    break;
 | |
|   default:
 | |
|    llvm_report_error("Invalid number of arguments of main() supplied");
 | |
|   }
 | |
|   
 | |
|   if (NumArgs) {
 | |
|     GVArgs.push_back(GVArgc); // Arg #0 = argc.
 | |
|     if (NumArgs > 1) {
 | |
|       // Arg #1 = argv.
 | |
|       GVArgs.push_back(PTOGV(CreateArgv(Fn->getContext(), this, argv))); 
 | |
|       assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) &&
 | |
|              "argv[0] was null after CreateArgv");
 | |
|       if (NumArgs > 2) {
 | |
|         std::vector<std::string> EnvVars;
 | |
|         for (unsigned i = 0; envp[i]; ++i)
 | |
|           EnvVars.push_back(envp[i]);
 | |
|         // Arg #2 = envp.
 | |
|         GVArgs.push_back(PTOGV(CreateArgv(Fn->getContext(), this, EnvVars)));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return runFunction(Fn, GVArgs).IntVal.getZExtValue();
 | |
| }
 | |
| 
 | |
| /// If possible, create a JIT, unless the caller specifically requests an
 | |
| /// Interpreter or there's an error. If even an Interpreter cannot be created,
 | |
| /// NULL is returned.
 | |
| ///
 | |
| ExecutionEngine *ExecutionEngine::create(ModuleProvider *MP,
 | |
|                                          bool ForceInterpreter,
 | |
|                                          std::string *ErrorStr,
 | |
|                                          CodeGenOpt::Level OptLevel,
 | |
|                                          bool GVsWithCode) {
 | |
|   return EngineBuilder(MP)
 | |
|       .setEngineKind(ForceInterpreter
 | |
|                      ? EngineKind::Interpreter
 | |
|                      : EngineKind::JIT)
 | |
|       .setErrorStr(ErrorStr)
 | |
|       .setOptLevel(OptLevel)
 | |
|       .setAllocateGVsWithCode(GVsWithCode)
 | |
|       .create();
 | |
| }
 | |
| 
 | |
| ExecutionEngine *ExecutionEngine::create(Module *M) {
 | |
|   return EngineBuilder(M).create();
 | |
| }
 | |
| 
 | |
| /// EngineBuilder - Overloaded constructor that automatically creates an
 | |
| /// ExistingModuleProvider for an existing module.
 | |
| EngineBuilder::EngineBuilder(Module *m) : MP(new ExistingModuleProvider(m)) {
 | |
|   InitEngine();
 | |
| }
 | |
| 
 | |
| ExecutionEngine *EngineBuilder::create() {
 | |
|   // Make sure we can resolve symbols in the program as well. The zero arg
 | |
|   // to the function tells DynamicLibrary to load the program, not a library.
 | |
|   if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr))
 | |
|     return 0;
 | |
| 
 | |
|   // If the user specified a memory manager but didn't specify which engine to
 | |
|   // create, we assume they only want the JIT, and we fail if they only want
 | |
|   // the interpreter.
 | |
|   if (JMM) {
 | |
|     if (WhichEngine & EngineKind::JIT) {
 | |
|       WhichEngine = EngineKind::JIT;
 | |
|     } else {
 | |
|       *ErrorStr = "Cannot create an interpreter with a memory manager.";
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   ExecutionEngine *EE = 0;
 | |
| 
 | |
|   // Unless the interpreter was explicitly selected or the JIT is not linked,
 | |
|   // try making a JIT.
 | |
|   if (WhichEngine & EngineKind::JIT && ExecutionEngine::JITCtor) {
 | |
|     EE = ExecutionEngine::JITCtor(MP, ErrorStr, JMM, OptLevel,
 | |
|                                   AllocateGVsWithCode);
 | |
|   }
 | |
| 
 | |
|   // If we can't make a JIT and we didn't request one specifically, try making
 | |
|   // an interpreter instead.
 | |
|   if (WhichEngine & EngineKind::Interpreter && EE == 0 &&
 | |
|       ExecutionEngine::InterpCtor) {
 | |
|     EE = ExecutionEngine::InterpCtor(MP, ErrorStr);
 | |
|   }
 | |
| 
 | |
|   return EE;
 | |
| }
 | |
| 
 | |
| /// getPointerToGlobal - This returns the address of the specified global
 | |
| /// value.  This may involve code generation if it's a function.
 | |
| ///
 | |
| void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) {
 | |
|   if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV)))
 | |
|     return getPointerToFunction(F);
 | |
| 
 | |
|   MutexGuard locked(lock);
 | |
|   void *p = state.getGlobalAddressMap(locked)[GV];
 | |
|   if (p)
 | |
|     return p;
 | |
| 
 | |
|   // Global variable might have been added since interpreter started.
 | |
|   if (GlobalVariable *GVar =
 | |
|           const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV)))
 | |
|     EmitGlobalVariable(GVar);
 | |
|   else
 | |
|     llvm_unreachable("Global hasn't had an address allocated yet!");
 | |
|   return state.getGlobalAddressMap(locked)[GV];
 | |
| }
 | |
| 
 | |
| /// This function converts a Constant* into a GenericValue. The interesting 
 | |
| /// part is if C is a ConstantExpr.
 | |
| /// @brief Get a GenericValue for a Constant*
 | |
| GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
 | |
|   // If its undefined, return the garbage.
 | |
|   if (isa<UndefValue>(C)) 
 | |
|     return GenericValue();
 | |
| 
 | |
|   // If the value is a ConstantExpr
 | |
|   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
 | |
|     Constant *Op0 = CE->getOperand(0);
 | |
|     switch (CE->getOpcode()) {
 | |
|     case Instruction::GetElementPtr: {
 | |
|       // Compute the index 
 | |
|       GenericValue Result = getConstantValue(Op0);
 | |
|       SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end());
 | |
|       uint64_t Offset =
 | |
|         TD->getIndexedOffset(Op0->getType(), &Indices[0], Indices.size());
 | |
| 
 | |
|       char* tmp = (char*) Result.PointerVal;
 | |
|       Result = PTOGV(tmp + Offset);
 | |
|       return Result;
 | |
|     }
 | |
|     case Instruction::Trunc: {
 | |
|       GenericValue GV = getConstantValue(Op0);
 | |
|       uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
 | |
|       GV.IntVal = GV.IntVal.trunc(BitWidth);
 | |
|       return GV;
 | |
|     }
 | |
|     case Instruction::ZExt: {
 | |
|       GenericValue GV = getConstantValue(Op0);
 | |
|       uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
 | |
|       GV.IntVal = GV.IntVal.zext(BitWidth);
 | |
|       return GV;
 | |
|     }
 | |
|     case Instruction::SExt: {
 | |
|       GenericValue GV = getConstantValue(Op0);
 | |
|       uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
 | |
|       GV.IntVal = GV.IntVal.sext(BitWidth);
 | |
|       return GV;
 | |
|     }
 | |
|     case Instruction::FPTrunc: {
 | |
|       // FIXME long double
 | |
|       GenericValue GV = getConstantValue(Op0);
 | |
|       GV.FloatVal = float(GV.DoubleVal);
 | |
|       return GV;
 | |
|     }
 | |
|     case Instruction::FPExt:{
 | |
|       // FIXME long double
 | |
|       GenericValue GV = getConstantValue(Op0);
 | |
|       GV.DoubleVal = double(GV.FloatVal);
 | |
|       return GV;
 | |
|     }
 | |
|     case Instruction::UIToFP: {
 | |
|       GenericValue GV = getConstantValue(Op0);
 | |
|       if (CE->getType() == Type::getFloatTy(CE->getContext()))
 | |
|         GV.FloatVal = float(GV.IntVal.roundToDouble());
 | |
|       else if (CE->getType() == Type::getDoubleTy(CE->getContext()))
 | |
|         GV.DoubleVal = GV.IntVal.roundToDouble();
 | |
|       else if (CE->getType() == Type::getX86_FP80Ty(Op0->getContext())) {
 | |
|         const uint64_t zero[] = {0, 0};
 | |
|         APFloat apf = APFloat(APInt(80, 2, zero));
 | |
|         (void)apf.convertFromAPInt(GV.IntVal, 
 | |
|                                    false,
 | |
|                                    APFloat::rmNearestTiesToEven);
 | |
|         GV.IntVal = apf.bitcastToAPInt();
 | |
|       }
 | |
|       return GV;
 | |
|     }
 | |
|     case Instruction::SIToFP: {
 | |
|       GenericValue GV = getConstantValue(Op0);
 | |
|       if (CE->getType() == Type::getFloatTy(CE->getContext()))
 | |
|         GV.FloatVal = float(GV.IntVal.signedRoundToDouble());
 | |
|       else if (CE->getType() == Type::getDoubleTy(CE->getContext()))
 | |
|         GV.DoubleVal = GV.IntVal.signedRoundToDouble();
 | |
|       else if (CE->getType() == Type::getX86_FP80Ty(CE->getContext())) {
 | |
|         const uint64_t zero[] = { 0, 0};
 | |
|         APFloat apf = APFloat(APInt(80, 2, zero));
 | |
|         (void)apf.convertFromAPInt(GV.IntVal, 
 | |
|                                    true,
 | |
|                                    APFloat::rmNearestTiesToEven);
 | |
|         GV.IntVal = apf.bitcastToAPInt();
 | |
|       }
 | |
|       return GV;
 | |
|     }
 | |
|     case Instruction::FPToUI: // double->APInt conversion handles sign
 | |
|     case Instruction::FPToSI: {
 | |
|       GenericValue GV = getConstantValue(Op0);
 | |
|       uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
 | |
|       if (Op0->getType() == Type::getFloatTy(Op0->getContext()))
 | |
|         GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth);
 | |
|       else if (Op0->getType() == Type::getDoubleTy(Op0->getContext()))
 | |
|         GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth);
 | |
|       else if (Op0->getType() == Type::getX86_FP80Ty(Op0->getContext())) {
 | |
|         APFloat apf = APFloat(GV.IntVal);
 | |
|         uint64_t v;
 | |
|         bool ignored;
 | |
|         (void)apf.convertToInteger(&v, BitWidth,
 | |
|                                    CE->getOpcode()==Instruction::FPToSI, 
 | |
|                                    APFloat::rmTowardZero, &ignored);
 | |
|         GV.IntVal = v; // endian?
 | |
|       }
 | |
|       return GV;
 | |
|     }
 | |
|     case Instruction::PtrToInt: {
 | |
|       GenericValue GV = getConstantValue(Op0);
 | |
|       uint32_t PtrWidth = TD->getPointerSizeInBits();
 | |
|       GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal));
 | |
|       return GV;
 | |
|     }
 | |
|     case Instruction::IntToPtr: {
 | |
|       GenericValue GV = getConstantValue(Op0);
 | |
|       uint32_t PtrWidth = TD->getPointerSizeInBits();
 | |
|       if (PtrWidth != GV.IntVal.getBitWidth())
 | |
|         GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth);
 | |
|       assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width");
 | |
|       GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue()));
 | |
|       return GV;
 | |
|     }
 | |
|     case Instruction::BitCast: {
 | |
|       GenericValue GV = getConstantValue(Op0);
 | |
|       const Type* DestTy = CE->getType();
 | |
|       switch (Op0->getType()->getTypeID()) {
 | |
|         default: llvm_unreachable("Invalid bitcast operand");
 | |
|         case Type::IntegerTyID:
 | |
|           assert(DestTy->isFloatingPoint() && "invalid bitcast");
 | |
|           if (DestTy == Type::getFloatTy(Op0->getContext()))
 | |
|             GV.FloatVal = GV.IntVal.bitsToFloat();
 | |
|           else if (DestTy == Type::getDoubleTy(DestTy->getContext()))
 | |
|             GV.DoubleVal = GV.IntVal.bitsToDouble();
 | |
|           break;
 | |
|         case Type::FloatTyID: 
 | |
|           assert(DestTy == Type::getInt32Ty(DestTy->getContext()) &&
 | |
|                  "Invalid bitcast");
 | |
|           GV.IntVal.floatToBits(GV.FloatVal);
 | |
|           break;
 | |
|         case Type::DoubleTyID:
 | |
|           assert(DestTy == Type::getInt64Ty(DestTy->getContext()) &&
 | |
|                  "Invalid bitcast");
 | |
|           GV.IntVal.doubleToBits(GV.DoubleVal);
 | |
|           break;
 | |
|         case Type::PointerTyID:
 | |
|           assert(isa<PointerType>(DestTy) && "Invalid bitcast");
 | |
|           break; // getConstantValue(Op0)  above already converted it
 | |
|       }
 | |
|       return GV;
 | |
|     }
 | |
|     case Instruction::Add:
 | |
|     case Instruction::FAdd:
 | |
|     case Instruction::Sub:
 | |
|     case Instruction::FSub:
 | |
|     case Instruction::Mul:
 | |
|     case Instruction::FMul:
 | |
|     case Instruction::UDiv:
 | |
|     case Instruction::SDiv:
 | |
|     case Instruction::URem:
 | |
|     case Instruction::SRem:
 | |
|     case Instruction::And:
 | |
|     case Instruction::Or:
 | |
|     case Instruction::Xor: {
 | |
|       GenericValue LHS = getConstantValue(Op0);
 | |
|       GenericValue RHS = getConstantValue(CE->getOperand(1));
 | |
|       GenericValue GV;
 | |
|       switch (CE->getOperand(0)->getType()->getTypeID()) {
 | |
|       default: llvm_unreachable("Bad add type!");
 | |
|       case Type::IntegerTyID:
 | |
|         switch (CE->getOpcode()) {
 | |
|           default: llvm_unreachable("Invalid integer opcode");
 | |
|           case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break;
 | |
|           case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break;
 | |
|           case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break;
 | |
|           case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break;
 | |
|           case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break;
 | |
|           case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break;
 | |
|           case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break;
 | |
|           case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break;
 | |
|           case Instruction::Or:  GV.IntVal = LHS.IntVal | RHS.IntVal; break;
 | |
|           case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break;
 | |
|         }
 | |
|         break;
 | |
|       case Type::FloatTyID:
 | |
|         switch (CE->getOpcode()) {
 | |
|           default: llvm_unreachable("Invalid float opcode");
 | |
|           case Instruction::FAdd:
 | |
|             GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break;
 | |
|           case Instruction::FSub:
 | |
|             GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break;
 | |
|           case Instruction::FMul:
 | |
|             GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break;
 | |
|           case Instruction::FDiv: 
 | |
|             GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break;
 | |
|           case Instruction::FRem: 
 | |
|             GV.FloatVal = ::fmodf(LHS.FloatVal,RHS.FloatVal); break;
 | |
|         }
 | |
|         break;
 | |
|       case Type::DoubleTyID:
 | |
|         switch (CE->getOpcode()) {
 | |
|           default: llvm_unreachable("Invalid double opcode");
 | |
|           case Instruction::FAdd:
 | |
|             GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break;
 | |
|           case Instruction::FSub:
 | |
|             GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break;
 | |
|           case Instruction::FMul:
 | |
|             GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break;
 | |
|           case Instruction::FDiv: 
 | |
|             GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break;
 | |
|           case Instruction::FRem: 
 | |
|             GV.DoubleVal = ::fmod(LHS.DoubleVal,RHS.DoubleVal); break;
 | |
|         }
 | |
|         break;
 | |
|       case Type::X86_FP80TyID:
 | |
|       case Type::PPC_FP128TyID:
 | |
|       case Type::FP128TyID: {
 | |
|         APFloat apfLHS = APFloat(LHS.IntVal);
 | |
|         switch (CE->getOpcode()) {
 | |
|           default: llvm_unreachable("Invalid long double opcode");llvm_unreachable(0);
 | |
|           case Instruction::FAdd:
 | |
|             apfLHS.add(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
 | |
|             GV.IntVal = apfLHS.bitcastToAPInt();
 | |
|             break;
 | |
|           case Instruction::FSub:
 | |
|             apfLHS.subtract(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
 | |
|             GV.IntVal = apfLHS.bitcastToAPInt();
 | |
|             break;
 | |
|           case Instruction::FMul:
 | |
|             apfLHS.multiply(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
 | |
|             GV.IntVal = apfLHS.bitcastToAPInt();
 | |
|             break;
 | |
|           case Instruction::FDiv: 
 | |
|             apfLHS.divide(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
 | |
|             GV.IntVal = apfLHS.bitcastToAPInt();
 | |
|             break;
 | |
|           case Instruction::FRem: 
 | |
|             apfLHS.mod(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
 | |
|             GV.IntVal = apfLHS.bitcastToAPInt();
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|       return GV;
 | |
|     }
 | |
|     default:
 | |
|       break;
 | |
|     }
 | |
|     std::string msg;
 | |
|     raw_string_ostream Msg(msg);
 | |
|     Msg << "ConstantExpr not handled: " << *CE;
 | |
|     llvm_report_error(Msg.str());
 | |
|   }
 | |
| 
 | |
|   GenericValue Result;
 | |
|   switch (C->getType()->getTypeID()) {
 | |
|   case Type::FloatTyID: 
 | |
|     Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat(); 
 | |
|     break;
 | |
|   case Type::DoubleTyID:
 | |
|     Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble();
 | |
|     break;
 | |
|   case Type::X86_FP80TyID:
 | |
|   case Type::FP128TyID:
 | |
|   case Type::PPC_FP128TyID:
 | |
|     Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt();
 | |
|     break;
 | |
|   case Type::IntegerTyID:
 | |
|     Result.IntVal = cast<ConstantInt>(C)->getValue();
 | |
|     break;
 | |
|   case Type::PointerTyID:
 | |
|     if (isa<ConstantPointerNull>(C))
 | |
|       Result.PointerVal = 0;
 | |
|     else if (const Function *F = dyn_cast<Function>(C))
 | |
|       Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F)));
 | |
|     else if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(C))
 | |
|       Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV)));
 | |
|     else
 | |
|       llvm_unreachable("Unknown constant pointer type!");
 | |
|     break;
 | |
|   default:
 | |
|     std::string msg;
 | |
|     raw_string_ostream Msg(msg);
 | |
|     Msg << "ERROR: Constant unimplemented for type: " << *C->getType();
 | |
|     llvm_report_error(Msg.str());
 | |
|   }
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
 | |
| /// with the integer held in IntVal.
 | |
| static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst,
 | |
|                              unsigned StoreBytes) {
 | |
|   assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!");
 | |
|   uint8_t *Src = (uint8_t *)IntVal.getRawData();
 | |
| 
 | |
|   if (sys::isLittleEndianHost())
 | |
|     // Little-endian host - the source is ordered from LSB to MSB.  Order the
 | |
|     // destination from LSB to MSB: Do a straight copy.
 | |
|     memcpy(Dst, Src, StoreBytes);
 | |
|   else {
 | |
|     // Big-endian host - the source is an array of 64 bit words ordered from
 | |
|     // LSW to MSW.  Each word is ordered from MSB to LSB.  Order the destination
 | |
|     // from MSB to LSB: Reverse the word order, but not the bytes in a word.
 | |
|     while (StoreBytes > sizeof(uint64_t)) {
 | |
|       StoreBytes -= sizeof(uint64_t);
 | |
|       // May not be aligned so use memcpy.
 | |
|       memcpy(Dst + StoreBytes, Src, sizeof(uint64_t));
 | |
|       Src += sizeof(uint64_t);
 | |
|     }
 | |
| 
 | |
|     memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr.  Ptr
 | |
| /// is the address of the memory at which to store Val, cast to GenericValue *.
 | |
| /// It is not a pointer to a GenericValue containing the address at which to
 | |
| /// store Val.
 | |
| void ExecutionEngine::StoreValueToMemory(const GenericValue &Val,
 | |
|                                          GenericValue *Ptr, const Type *Ty) {
 | |
|   const unsigned StoreBytes = getTargetData()->getTypeStoreSize(Ty);
 | |
| 
 | |
|   switch (Ty->getTypeID()) {
 | |
|   case Type::IntegerTyID:
 | |
|     StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes);
 | |
|     break;
 | |
|   case Type::FloatTyID:
 | |
|     *((float*)Ptr) = Val.FloatVal;
 | |
|     break;
 | |
|   case Type::DoubleTyID:
 | |
|     *((double*)Ptr) = Val.DoubleVal;
 | |
|     break;
 | |
|   case Type::X86_FP80TyID:
 | |
|     memcpy(Ptr, Val.IntVal.getRawData(), 10);
 | |
|     break;
 | |
|   case Type::PointerTyID:
 | |
|     // Ensure 64 bit target pointers are fully initialized on 32 bit hosts.
 | |
|     if (StoreBytes != sizeof(PointerTy))
 | |
|       memset(Ptr, 0, StoreBytes);
 | |
| 
 | |
|     *((PointerTy*)Ptr) = Val.PointerVal;
 | |
|     break;
 | |
|   default:
 | |
|     cerr << "Cannot store value of type " << *Ty << "!\n";
 | |
|   }
 | |
| 
 | |
|   if (sys::isLittleEndianHost() != getTargetData()->isLittleEndian())
 | |
|     // Host and target are different endian - reverse the stored bytes.
 | |
|     std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr);
 | |
| }
 | |
| 
 | |
| /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
 | |
| /// from Src into IntVal, which is assumed to be wide enough and to hold zero.
 | |
| static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) {
 | |
|   assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!");
 | |
|   uint8_t *Dst = (uint8_t *)IntVal.getRawData();
 | |
| 
 | |
|   if (sys::isLittleEndianHost())
 | |
|     // Little-endian host - the destination must be ordered from LSB to MSB.
 | |
|     // The source is ordered from LSB to MSB: Do a straight copy.
 | |
|     memcpy(Dst, Src, LoadBytes);
 | |
|   else {
 | |
|     // Big-endian - the destination is an array of 64 bit words ordered from
 | |
|     // LSW to MSW.  Each word must be ordered from MSB to LSB.  The source is
 | |
|     // ordered from MSB to LSB: Reverse the word order, but not the bytes in
 | |
|     // a word.
 | |
|     while (LoadBytes > sizeof(uint64_t)) {
 | |
|       LoadBytes -= sizeof(uint64_t);
 | |
|       // May not be aligned so use memcpy.
 | |
|       memcpy(Dst, Src + LoadBytes, sizeof(uint64_t));
 | |
|       Dst += sizeof(uint64_t);
 | |
|     }
 | |
| 
 | |
|     memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// FIXME: document
 | |
| ///
 | |
| void ExecutionEngine::LoadValueFromMemory(GenericValue &Result,
 | |
|                                           GenericValue *Ptr,
 | |
|                                           const Type *Ty) {
 | |
|   const unsigned LoadBytes = getTargetData()->getTypeStoreSize(Ty);
 | |
| 
 | |
|   if (sys::isLittleEndianHost() != getTargetData()->isLittleEndian()) {
 | |
|     // Host and target are different endian - reverse copy the stored
 | |
|     // bytes into a buffer, and load from that.
 | |
|     uint8_t *Src = (uint8_t*)Ptr;
 | |
|     uint8_t *Buf = (uint8_t*)alloca(LoadBytes);
 | |
|     std::reverse_copy(Src, Src + LoadBytes, Buf);
 | |
|     Ptr = (GenericValue*)Buf;
 | |
|   }
 | |
| 
 | |
|   switch (Ty->getTypeID()) {
 | |
|   case Type::IntegerTyID:
 | |
|     // An APInt with all words initially zero.
 | |
|     Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0);
 | |
|     LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes);
 | |
|     break;
 | |
|   case Type::FloatTyID:
 | |
|     Result.FloatVal = *((float*)Ptr);
 | |
|     break;
 | |
|   case Type::DoubleTyID:
 | |
|     Result.DoubleVal = *((double*)Ptr);
 | |
|     break;
 | |
|   case Type::PointerTyID:
 | |
|     Result.PointerVal = *((PointerTy*)Ptr);
 | |
|     break;
 | |
|   case Type::X86_FP80TyID: {
 | |
|     // This is endian dependent, but it will only work on x86 anyway.
 | |
|     // FIXME: Will not trap if loading a signaling NaN.
 | |
|     uint64_t y[2];
 | |
|     memcpy(y, Ptr, 10);
 | |
|     Result.IntVal = APInt(80, 2, y);
 | |
|     break;
 | |
|   }
 | |
|   default:
 | |
|     std::string msg;
 | |
|     raw_string_ostream Msg(msg);
 | |
|     Msg << "Cannot load value of type " << *Ty << "!";
 | |
|     llvm_report_error(Msg.str());
 | |
|   }
 | |
| }
 | |
| 
 | |
| // InitializeMemory - Recursive function to apply a Constant value into the
 | |
| // specified memory location...
 | |
| //
 | |
| void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) {
 | |
|   DOUT << "JIT: Initializing " << Addr << " ";
 | |
|   DEBUG(Init->dump());
 | |
|   if (isa<UndefValue>(Init)) {
 | |
|     return;
 | |
|   } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) {
 | |
|     unsigned ElementSize =
 | |
|       getTargetData()->getTypeAllocSize(CP->getType()->getElementType());
 | |
|     for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
 | |
|       InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize);
 | |
|     return;
 | |
|   } else if (isa<ConstantAggregateZero>(Init)) {
 | |
|     memset(Addr, 0, (size_t)getTargetData()->getTypeAllocSize(Init->getType()));
 | |
|     return;
 | |
|   } else if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) {
 | |
|     unsigned ElementSize =
 | |
|       getTargetData()->getTypeAllocSize(CPA->getType()->getElementType());
 | |
|     for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
 | |
|       InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize);
 | |
|     return;
 | |
|   } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) {
 | |
|     const StructLayout *SL =
 | |
|       getTargetData()->getStructLayout(cast<StructType>(CPS->getType()));
 | |
|     for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
 | |
|       InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i));
 | |
|     return;
 | |
|   } else if (Init->getType()->isFirstClassType()) {
 | |
|     GenericValue Val = getConstantValue(Init);
 | |
|     StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType());
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   cerr << "Bad Type: " << *Init->getType() << "\n";
 | |
|   llvm_unreachable("Unknown constant type to initialize memory with!");
 | |
| }
 | |
| 
 | |
| /// EmitGlobals - Emit all of the global variables to memory, storing their
 | |
| /// addresses into GlobalAddress.  This must make sure to copy the contents of
 | |
| /// their initializers into the memory.
 | |
| ///
 | |
| void ExecutionEngine::emitGlobals() {
 | |
| 
 | |
|   // Loop over all of the global variables in the program, allocating the memory
 | |
|   // to hold them.  If there is more than one module, do a prepass over globals
 | |
|   // to figure out how the different modules should link together.
 | |
|   //
 | |
|   std::map<std::pair<std::string, const Type*>,
 | |
|            const GlobalValue*> LinkedGlobalsMap;
 | |
| 
 | |
|   if (Modules.size() != 1) {
 | |
|     for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
 | |
|       Module &M = *Modules[m]->getModule();
 | |
|       for (Module::const_global_iterator I = M.global_begin(),
 | |
|            E = M.global_end(); I != E; ++I) {
 | |
|         const GlobalValue *GV = I;
 | |
|         if (GV->hasLocalLinkage() || GV->isDeclaration() ||
 | |
|             GV->hasAppendingLinkage() || !GV->hasName())
 | |
|           continue;// Ignore external globals and globals with internal linkage.
 | |
|           
 | |
|         const GlobalValue *&GVEntry = 
 | |
|           LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
 | |
| 
 | |
|         // If this is the first time we've seen this global, it is the canonical
 | |
|         // version.
 | |
|         if (!GVEntry) {
 | |
|           GVEntry = GV;
 | |
|           continue;
 | |
|         }
 | |
|         
 | |
|         // If the existing global is strong, never replace it.
 | |
|         if (GVEntry->hasExternalLinkage() ||
 | |
|             GVEntry->hasDLLImportLinkage() ||
 | |
|             GVEntry->hasDLLExportLinkage())
 | |
|           continue;
 | |
|         
 | |
|         // Otherwise, we know it's linkonce/weak, replace it if this is a strong
 | |
|         // symbol.  FIXME is this right for common?
 | |
|         if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage())
 | |
|           GVEntry = GV;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   std::vector<const GlobalValue*> NonCanonicalGlobals;
 | |
|   for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
 | |
|     Module &M = *Modules[m]->getModule();
 | |
|     for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
 | |
|          I != E; ++I) {
 | |
|       // In the multi-module case, see what this global maps to.
 | |
|       if (!LinkedGlobalsMap.empty()) {
 | |
|         if (const GlobalValue *GVEntry = 
 | |
|               LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) {
 | |
|           // If something else is the canonical global, ignore this one.
 | |
|           if (GVEntry != &*I) {
 | |
|             NonCanonicalGlobals.push_back(I);
 | |
|             continue;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       
 | |
|       if (!I->isDeclaration()) {
 | |
|         addGlobalMapping(I, getMemoryForGV(I));
 | |
|       } else {
 | |
|         // External variable reference. Try to use the dynamic loader to
 | |
|         // get a pointer to it.
 | |
|         if (void *SymAddr =
 | |
|             sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName()))
 | |
|           addGlobalMapping(I, SymAddr);
 | |
|         else {
 | |
|           llvm_report_error("Could not resolve external global address: "
 | |
|                             +I->getName());
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // If there are multiple modules, map the non-canonical globals to their
 | |
|     // canonical location.
 | |
|     if (!NonCanonicalGlobals.empty()) {
 | |
|       for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) {
 | |
|         const GlobalValue *GV = NonCanonicalGlobals[i];
 | |
|         const GlobalValue *CGV =
 | |
|           LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
 | |
|         void *Ptr = getPointerToGlobalIfAvailable(CGV);
 | |
|         assert(Ptr && "Canonical global wasn't codegen'd!");
 | |
|         addGlobalMapping(GV, Ptr);
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // Now that all of the globals are set up in memory, loop through them all 
 | |
|     // and initialize their contents.
 | |
|     for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
 | |
|          I != E; ++I) {
 | |
|       if (!I->isDeclaration()) {
 | |
|         if (!LinkedGlobalsMap.empty()) {
 | |
|           if (const GlobalValue *GVEntry = 
 | |
|                 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())])
 | |
|             if (GVEntry != &*I)  // Not the canonical variable.
 | |
|               continue;
 | |
|         }
 | |
|         EmitGlobalVariable(I);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // EmitGlobalVariable - This method emits the specified global variable to the
 | |
| // address specified in GlobalAddresses, or allocates new memory if it's not
 | |
| // already in the map.
 | |
| void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) {
 | |
|   void *GA = getPointerToGlobalIfAvailable(GV);
 | |
| 
 | |
|   if (GA == 0) {
 | |
|     // If it's not already specified, allocate memory for the global.
 | |
|     GA = getMemoryForGV(GV);
 | |
|     addGlobalMapping(GV, GA);
 | |
|   }
 | |
|   
 | |
|   // Don't initialize if it's thread local, let the client do it.
 | |
|   if (!GV->isThreadLocal())
 | |
|     InitializeMemory(GV->getInitializer(), GA);
 | |
|   
 | |
|   const Type *ElTy = GV->getType()->getElementType();
 | |
|   size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy);
 | |
|   NumInitBytes += (unsigned)GVSize;
 | |
|   ++NumGlobals;
 | |
| }
 |