mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	to use the information in the module rather than TargetOptions. We've had and clang has used the use-soft-float attribute for some time now so have the backends set a subtarget feature based on a particular function now that subtargets are created based on functions and function attributes. For the one middle end soft float check go ahead and create an overloadable TargetLowering::useSoftFloat function that just checks the TargetSubtargetInfo in all cases. Also remove the command line option that hard codes whether or not soft-float is set by using the attribute for all of the target specific test cases - for the generic just go ahead and add the attribute in the one case that showed up. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237079 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			505 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			505 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- X86Subtarget.h - Define Subtarget for the X86 ----------*- C++ -*--===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file declares the X86 specific subclass of TargetSubtargetInfo.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#ifndef LLVM_LIB_TARGET_X86_X86SUBTARGET_H
 | 
						|
#define LLVM_LIB_TARGET_X86_X86SUBTARGET_H
 | 
						|
 | 
						|
#include "X86FrameLowering.h"
 | 
						|
#include "X86ISelLowering.h"
 | 
						|
#include "X86InstrInfo.h"
 | 
						|
#include "X86SelectionDAGInfo.h"
 | 
						|
#include "llvm/ADT/Triple.h"
 | 
						|
#include "llvm/IR/CallingConv.h"
 | 
						|
#include "llvm/Target/TargetSubtargetInfo.h"
 | 
						|
#include <string>
 | 
						|
 | 
						|
#define GET_SUBTARGETINFO_HEADER
 | 
						|
#include "X86GenSubtargetInfo.inc"
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
class GlobalValue;
 | 
						|
class StringRef;
 | 
						|
class TargetMachine;
 | 
						|
 | 
						|
/// The X86 backend supports a number of different styles of PIC.
 | 
						|
///
 | 
						|
namespace PICStyles {
 | 
						|
enum Style {
 | 
						|
  StubPIC,          // Used on i386-darwin in -fPIC mode.
 | 
						|
  StubDynamicNoPIC, // Used on i386-darwin in -mdynamic-no-pic mode.
 | 
						|
  GOT,              // Used on many 32-bit unices in -fPIC mode.
 | 
						|
  RIPRel,           // Used on X86-64 when not in -static mode.
 | 
						|
  None              // Set when in -static mode (not PIC or DynamicNoPIC mode).
 | 
						|
};
 | 
						|
}
 | 
						|
 | 
						|
class X86Subtarget final : public X86GenSubtargetInfo {
 | 
						|
 | 
						|
protected:
 | 
						|
  enum X86SSEEnum {
 | 
						|
    NoMMXSSE, MMX, SSE1, SSE2, SSE3, SSSE3, SSE41, SSE42, AVX, AVX2, AVX512F
 | 
						|
  };
 | 
						|
 | 
						|
  enum X863DNowEnum {
 | 
						|
    NoThreeDNow, ThreeDNow, ThreeDNowA
 | 
						|
  };
 | 
						|
 | 
						|
  enum X86ProcFamilyEnum {
 | 
						|
    Others, IntelAtom, IntelSLM
 | 
						|
  };
 | 
						|
 | 
						|
  /// X86 processor family: Intel Atom, and others
 | 
						|
  X86ProcFamilyEnum X86ProcFamily;
 | 
						|
 | 
						|
  /// Which PIC style to use
 | 
						|
  PICStyles::Style PICStyle;
 | 
						|
 | 
						|
  /// MMX, SSE1, SSE2, SSE3, SSSE3, SSE41, SSE42, or none supported.
 | 
						|
  X86SSEEnum X86SSELevel;
 | 
						|
 | 
						|
  /// 3DNow, 3DNow Athlon, or none supported.
 | 
						|
  X863DNowEnum X863DNowLevel;
 | 
						|
 | 
						|
  /// True if this processor has conditional move instructions
 | 
						|
  /// (generally pentium pro+).
 | 
						|
  bool HasCMov;
 | 
						|
 | 
						|
  /// True if the processor supports X86-64 instructions.
 | 
						|
  bool HasX86_64;
 | 
						|
 | 
						|
  /// True if the processor supports POPCNT.
 | 
						|
  bool HasPOPCNT;
 | 
						|
 | 
						|
  /// True if the processor supports SSE4A instructions.
 | 
						|
  bool HasSSE4A;
 | 
						|
 | 
						|
  /// Target has AES instructions
 | 
						|
  bool HasAES;
 | 
						|
 | 
						|
  /// Target has carry-less multiplication
 | 
						|
  bool HasPCLMUL;
 | 
						|
 | 
						|
  /// Target has 3-operand fused multiply-add
 | 
						|
  bool HasFMA;
 | 
						|
 | 
						|
  /// Target has 4-operand fused multiply-add
 | 
						|
  bool HasFMA4;
 | 
						|
 | 
						|
  /// Target has XOP instructions
 | 
						|
  bool HasXOP;
 | 
						|
 | 
						|
  /// Target has TBM instructions.
 | 
						|
  bool HasTBM;
 | 
						|
 | 
						|
  /// True if the processor has the MOVBE instruction.
 | 
						|
  bool HasMOVBE;
 | 
						|
 | 
						|
  /// True if the processor has the RDRAND instruction.
 | 
						|
  bool HasRDRAND;
 | 
						|
 | 
						|
  /// Processor has 16-bit floating point conversion instructions.
 | 
						|
  bool HasF16C;
 | 
						|
 | 
						|
  /// Processor has FS/GS base insturctions.
 | 
						|
  bool HasFSGSBase;
 | 
						|
 | 
						|
  /// Processor has LZCNT instruction.
 | 
						|
  bool HasLZCNT;
 | 
						|
 | 
						|
  /// Processor has BMI1 instructions.
 | 
						|
  bool HasBMI;
 | 
						|
 | 
						|
  /// Processor has BMI2 instructions.
 | 
						|
  bool HasBMI2;
 | 
						|
 | 
						|
  /// Processor has RTM instructions.
 | 
						|
  bool HasRTM;
 | 
						|
 | 
						|
  /// Processor has HLE.
 | 
						|
  bool HasHLE;
 | 
						|
 | 
						|
  /// Processor has ADX instructions.
 | 
						|
  bool HasADX;
 | 
						|
 | 
						|
  /// Processor has SHA instructions.
 | 
						|
  bool HasSHA;
 | 
						|
 | 
						|
  /// Processor has PRFCHW instructions.
 | 
						|
  bool HasPRFCHW;
 | 
						|
 | 
						|
  /// Processor has RDSEED instructions.
 | 
						|
  bool HasRDSEED;
 | 
						|
 | 
						|
  /// True if BT (bit test) of memory instructions are slow.
 | 
						|
  bool IsBTMemSlow;
 | 
						|
 | 
						|
  /// True if SHLD instructions are slow.
 | 
						|
  bool IsSHLDSlow;
 | 
						|
 | 
						|
  /// True if unaligned memory access is fast.
 | 
						|
  bool IsUAMemFast;
 | 
						|
 | 
						|
  /// True if unaligned 32-byte memory accesses are slow.
 | 
						|
  bool IsUAMem32Slow;
 | 
						|
 | 
						|
  /// True if SSE operations can have unaligned memory operands.
 | 
						|
  /// This may require setting a configuration bit in the processor.
 | 
						|
  bool HasSSEUnalignedMem;
 | 
						|
 | 
						|
  /// True if this processor has the CMPXCHG16B instruction;
 | 
						|
  /// this is true for most x86-64 chips, but not the first AMD chips.
 | 
						|
  bool HasCmpxchg16b;
 | 
						|
 | 
						|
  /// True if the LEA instruction should be used for adjusting
 | 
						|
  /// the stack pointer. This is an optimization for Intel Atom processors.
 | 
						|
  bool UseLeaForSP;
 | 
						|
 | 
						|
  /// True if 8-bit divisions are significantly faster than
 | 
						|
  /// 32-bit divisions and should be used when possible.
 | 
						|
  bool HasSlowDivide32;
 | 
						|
 | 
						|
  /// True if 16-bit divides are significantly faster than
 | 
						|
  /// 64-bit divisions and should be used when possible.
 | 
						|
  bool HasSlowDivide64;
 | 
						|
 | 
						|
  /// True if the short functions should be padded to prevent
 | 
						|
  /// a stall when returning too early.
 | 
						|
  bool PadShortFunctions;
 | 
						|
 | 
						|
  /// True if the Calls with memory reference should be converted
 | 
						|
  /// to a register-based indirect call.
 | 
						|
  bool CallRegIndirect;
 | 
						|
 | 
						|
  /// True if the LEA instruction inputs have to be ready at address generation
 | 
						|
  /// (AG) time.
 | 
						|
  bool LEAUsesAG;
 | 
						|
 | 
						|
  /// True if the LEA instruction with certain arguments is slow
 | 
						|
  bool SlowLEA;
 | 
						|
 | 
						|
  /// True if INC and DEC instructions are slow when writing to flags
 | 
						|
  bool SlowIncDec;
 | 
						|
 | 
						|
  /// Use the RSQRT* instructions to optimize square root calculations.
 | 
						|
  /// For this to be profitable, the cost of FSQRT and FDIV must be
 | 
						|
  /// substantially higher than normal FP ops like FADD and FMUL.
 | 
						|
  bool UseSqrtEst;
 | 
						|
 | 
						|
  /// Use the RCP* instructions to optimize FP division calculations.
 | 
						|
  /// For this to be profitable, the cost of FDIV must be
 | 
						|
  /// substantially higher than normal FP ops like FADD and FMUL.
 | 
						|
  bool UseReciprocalEst;
 | 
						|
 | 
						|
  /// Processor has AVX-512 PreFetch Instructions
 | 
						|
  bool HasPFI;
 | 
						|
 | 
						|
  /// Processor has AVX-512 Exponential and Reciprocal Instructions
 | 
						|
  bool HasERI;
 | 
						|
 | 
						|
  /// Processor has AVX-512 Conflict Detection Instructions
 | 
						|
  bool HasCDI;
 | 
						|
 | 
						|
  /// Processor has AVX-512 Doubleword and Quadword instructions
 | 
						|
  bool HasDQI;
 | 
						|
 | 
						|
  /// Processor has AVX-512 Byte and Word instructions
 | 
						|
  bool HasBWI;
 | 
						|
 | 
						|
  /// Processor has AVX-512 Vector Length eXtenstions
 | 
						|
  bool HasVLX;
 | 
						|
 | 
						|
  /// Use software floating point for code generation.
 | 
						|
  bool UseSoftFloat;
 | 
						|
 | 
						|
  /// The minimum alignment known to hold of the stack frame on
 | 
						|
  /// entry to the function and which must be maintained by every function.
 | 
						|
  unsigned stackAlignment;
 | 
						|
 | 
						|
  /// Max. memset / memcpy size that is turned into rep/movs, rep/stos ops.
 | 
						|
  ///
 | 
						|
  unsigned MaxInlineSizeThreshold;
 | 
						|
 | 
						|
  /// What processor and OS we're targeting.
 | 
						|
  Triple TargetTriple;
 | 
						|
 | 
						|
  /// Instruction itineraries for scheduling
 | 
						|
  InstrItineraryData InstrItins;
 | 
						|
 | 
						|
private:
 | 
						|
 | 
						|
  /// Override the stack alignment.
 | 
						|
  unsigned StackAlignOverride;
 | 
						|
 | 
						|
  /// True if compiling for 64-bit, false for 16-bit or 32-bit.
 | 
						|
  bool In64BitMode;
 | 
						|
 | 
						|
  /// True if compiling for 32-bit, false for 16-bit or 64-bit.
 | 
						|
  bool In32BitMode;
 | 
						|
 | 
						|
  /// True if compiling for 16-bit, false for 32-bit or 64-bit.
 | 
						|
  bool In16BitMode;
 | 
						|
 | 
						|
  X86SelectionDAGInfo TSInfo;
 | 
						|
  // Ordering here is important. X86InstrInfo initializes X86RegisterInfo which
 | 
						|
  // X86TargetLowering needs.
 | 
						|
  X86InstrInfo InstrInfo;
 | 
						|
  X86TargetLowering TLInfo;
 | 
						|
  X86FrameLowering FrameLowering;
 | 
						|
 | 
						|
public:
 | 
						|
  /// This constructor initializes the data members to match that
 | 
						|
  /// of the specified triple.
 | 
						|
  ///
 | 
						|
  X86Subtarget(const std::string &TT, const std::string &CPU,
 | 
						|
               const std::string &FS, const X86TargetMachine &TM,
 | 
						|
               unsigned StackAlignOverride);
 | 
						|
 | 
						|
  const X86TargetLowering *getTargetLowering() const override {
 | 
						|
    return &TLInfo;
 | 
						|
  }
 | 
						|
  const X86InstrInfo *getInstrInfo() const override { return &InstrInfo; }
 | 
						|
  const X86FrameLowering *getFrameLowering() const override {
 | 
						|
    return &FrameLowering;
 | 
						|
  }
 | 
						|
  const X86SelectionDAGInfo *getSelectionDAGInfo() const override {
 | 
						|
    return &TSInfo;
 | 
						|
  }
 | 
						|
  const X86RegisterInfo *getRegisterInfo() const override {
 | 
						|
    return &getInstrInfo()->getRegisterInfo();
 | 
						|
  }
 | 
						|
 | 
						|
  /// Returns the minimum alignment known to hold of the
 | 
						|
  /// stack frame on entry to the function and which must be maintained by every
 | 
						|
  /// function for this subtarget.
 | 
						|
  unsigned getStackAlignment() const { return stackAlignment; }
 | 
						|
 | 
						|
  /// Returns the maximum memset / memcpy size
 | 
						|
  /// that still makes it profitable to inline the call.
 | 
						|
  unsigned getMaxInlineSizeThreshold() const { return MaxInlineSizeThreshold; }
 | 
						|
 | 
						|
  /// ParseSubtargetFeatures - Parses features string setting specified
 | 
						|
  /// subtarget options.  Definition of function is auto generated by tblgen.
 | 
						|
  void ParseSubtargetFeatures(StringRef CPU, StringRef FS);
 | 
						|
 | 
						|
private:
 | 
						|
  /// Initialize the full set of dependencies so we can use an initializer
 | 
						|
  /// list for X86Subtarget.
 | 
						|
  X86Subtarget &initializeSubtargetDependencies(StringRef CPU, StringRef FS);
 | 
						|
  void initializeEnvironment();
 | 
						|
  void initSubtargetFeatures(StringRef CPU, StringRef FS);
 | 
						|
public:
 | 
						|
  /// Is this x86_64? (disregarding specific ABI / programming model)
 | 
						|
  bool is64Bit() const {
 | 
						|
    return In64BitMode;
 | 
						|
  }
 | 
						|
 | 
						|
  bool is32Bit() const {
 | 
						|
    return In32BitMode;
 | 
						|
  }
 | 
						|
 | 
						|
  bool is16Bit() const {
 | 
						|
    return In16BitMode;
 | 
						|
  }
 | 
						|
 | 
						|
  /// Is this x86_64 with the ILP32 programming model (x32 ABI)?
 | 
						|
  bool isTarget64BitILP32() const {
 | 
						|
    return In64BitMode && (TargetTriple.getEnvironment() == Triple::GNUX32 ||
 | 
						|
                           TargetTriple.isOSNaCl());
 | 
						|
  }
 | 
						|
 | 
						|
  /// Is this x86_64 with the LP64 programming model (standard AMD64, no x32)?
 | 
						|
  bool isTarget64BitLP64() const {
 | 
						|
    return In64BitMode && (TargetTriple.getEnvironment() != Triple::GNUX32 &&
 | 
						|
                           !TargetTriple.isOSNaCl());
 | 
						|
  }
 | 
						|
 | 
						|
  PICStyles::Style getPICStyle() const { return PICStyle; }
 | 
						|
  void setPICStyle(PICStyles::Style Style)  { PICStyle = Style; }
 | 
						|
 | 
						|
  bool hasCMov() const { return HasCMov; }
 | 
						|
  bool hasMMX() const { return X86SSELevel >= MMX; }
 | 
						|
  bool hasSSE1() const { return X86SSELevel >= SSE1; }
 | 
						|
  bool hasSSE2() const { return X86SSELevel >= SSE2; }
 | 
						|
  bool hasSSE3() const { return X86SSELevel >= SSE3; }
 | 
						|
  bool hasSSSE3() const { return X86SSELevel >= SSSE3; }
 | 
						|
  bool hasSSE41() const { return X86SSELevel >= SSE41; }
 | 
						|
  bool hasSSE42() const { return X86SSELevel >= SSE42; }
 | 
						|
  bool hasAVX() const { return X86SSELevel >= AVX; }
 | 
						|
  bool hasAVX2() const { return X86SSELevel >= AVX2; }
 | 
						|
  bool hasAVX512() const { return X86SSELevel >= AVX512F; }
 | 
						|
  bool hasFp256() const { return hasAVX(); }
 | 
						|
  bool hasInt256() const { return hasAVX2(); }
 | 
						|
  bool hasSSE4A() const { return HasSSE4A; }
 | 
						|
  bool has3DNow() const { return X863DNowLevel >= ThreeDNow; }
 | 
						|
  bool has3DNowA() const { return X863DNowLevel >= ThreeDNowA; }
 | 
						|
  bool hasPOPCNT() const { return HasPOPCNT; }
 | 
						|
  bool hasAES() const { return HasAES; }
 | 
						|
  bool hasPCLMUL() const { return HasPCLMUL; }
 | 
						|
  bool hasFMA() const { return HasFMA; }
 | 
						|
  // FIXME: Favor FMA when both are enabled. Is this the right thing to do?
 | 
						|
  bool hasFMA4() const { return HasFMA4 && !HasFMA; }
 | 
						|
  bool hasXOP() const { return HasXOP; }
 | 
						|
  bool hasTBM() const { return HasTBM; }
 | 
						|
  bool hasMOVBE() const { return HasMOVBE; }
 | 
						|
  bool hasRDRAND() const { return HasRDRAND; }
 | 
						|
  bool hasF16C() const { return HasF16C; }
 | 
						|
  bool hasFSGSBase() const { return HasFSGSBase; }
 | 
						|
  bool hasLZCNT() const { return HasLZCNT; }
 | 
						|
  bool hasBMI() const { return HasBMI; }
 | 
						|
  bool hasBMI2() const { return HasBMI2; }
 | 
						|
  bool hasRTM() const { return HasRTM; }
 | 
						|
  bool hasHLE() const { return HasHLE; }
 | 
						|
  bool hasADX() const { return HasADX; }
 | 
						|
  bool hasSHA() const { return HasSHA; }
 | 
						|
  bool hasPRFCHW() const { return HasPRFCHW; }
 | 
						|
  bool hasRDSEED() const { return HasRDSEED; }
 | 
						|
  bool isBTMemSlow() const { return IsBTMemSlow; }
 | 
						|
  bool isSHLDSlow() const { return IsSHLDSlow; }
 | 
						|
  bool isUnalignedMemAccessFast() const { return IsUAMemFast; }
 | 
						|
  bool isUnalignedMem32Slow() const { return IsUAMem32Slow; }
 | 
						|
  bool hasSSEUnalignedMem() const { return HasSSEUnalignedMem; }
 | 
						|
  bool hasCmpxchg16b() const { return HasCmpxchg16b; }
 | 
						|
  bool useLeaForSP() const { return UseLeaForSP; }
 | 
						|
  bool hasSlowDivide32() const { return HasSlowDivide32; }
 | 
						|
  bool hasSlowDivide64() const { return HasSlowDivide64; }
 | 
						|
  bool padShortFunctions() const { return PadShortFunctions; }
 | 
						|
  bool callRegIndirect() const { return CallRegIndirect; }
 | 
						|
  bool LEAusesAG() const { return LEAUsesAG; }
 | 
						|
  bool slowLEA() const { return SlowLEA; }
 | 
						|
  bool slowIncDec() const { return SlowIncDec; }
 | 
						|
  bool useSqrtEst() const { return UseSqrtEst; }
 | 
						|
  bool useReciprocalEst() const { return UseReciprocalEst; }
 | 
						|
  bool hasCDI() const { return HasCDI; }
 | 
						|
  bool hasPFI() const { return HasPFI; }
 | 
						|
  bool hasERI() const { return HasERI; }
 | 
						|
  bool hasDQI() const { return HasDQI; }
 | 
						|
  bool hasBWI() const { return HasBWI; }
 | 
						|
  bool hasVLX() const { return HasVLX; }
 | 
						|
 | 
						|
  bool isAtom() const { return X86ProcFamily == IntelAtom; }
 | 
						|
  bool isSLM() const { return X86ProcFamily == IntelSLM; }
 | 
						|
  bool useSoftFloat() const { return UseSoftFloat; }
 | 
						|
 | 
						|
  const Triple &getTargetTriple() const { return TargetTriple; }
 | 
						|
 | 
						|
  bool isTargetDarwin() const { return TargetTriple.isOSDarwin(); }
 | 
						|
  bool isTargetFreeBSD() const { return TargetTriple.isOSFreeBSD(); }
 | 
						|
  bool isTargetDragonFly() const { return TargetTriple.isOSDragonFly(); }
 | 
						|
  bool isTargetSolaris() const { return TargetTriple.isOSSolaris(); }
 | 
						|
  bool isTargetPS4() const { return TargetTriple.isPS4(); }
 | 
						|
 | 
						|
  bool isTargetELF() const { return TargetTriple.isOSBinFormatELF(); }
 | 
						|
  bool isTargetCOFF() const { return TargetTriple.isOSBinFormatCOFF(); }
 | 
						|
  bool isTargetMachO() const { return TargetTriple.isOSBinFormatMachO(); }
 | 
						|
 | 
						|
  bool isTargetLinux() const { return TargetTriple.isOSLinux(); }
 | 
						|
  bool isTargetNaCl() const { return TargetTriple.isOSNaCl(); }
 | 
						|
  bool isTargetNaCl32() const { return isTargetNaCl() && !is64Bit(); }
 | 
						|
  bool isTargetNaCl64() const { return isTargetNaCl() && is64Bit(); }
 | 
						|
 | 
						|
  bool isTargetWindowsMSVC() const {
 | 
						|
    return TargetTriple.isWindowsMSVCEnvironment();
 | 
						|
  }
 | 
						|
 | 
						|
  bool isTargetKnownWindowsMSVC() const {
 | 
						|
    return TargetTriple.isKnownWindowsMSVCEnvironment();
 | 
						|
  }
 | 
						|
 | 
						|
  bool isTargetWindowsCygwin() const {
 | 
						|
    return TargetTriple.isWindowsCygwinEnvironment();
 | 
						|
  }
 | 
						|
 | 
						|
  bool isTargetWindowsGNU() const {
 | 
						|
    return TargetTriple.isWindowsGNUEnvironment();
 | 
						|
  }
 | 
						|
 | 
						|
  bool isTargetWindowsItanium() const {
 | 
						|
    return TargetTriple.isWindowsItaniumEnvironment();
 | 
						|
  }
 | 
						|
 | 
						|
  bool isTargetCygMing() const { return TargetTriple.isOSCygMing(); }
 | 
						|
 | 
						|
  bool isOSWindows() const { return TargetTriple.isOSWindows(); }
 | 
						|
 | 
						|
  bool isTargetWin64() const {
 | 
						|
    return In64BitMode && TargetTriple.isOSWindows();
 | 
						|
  }
 | 
						|
 | 
						|
  bool isTargetWin32() const {
 | 
						|
    return !In64BitMode && (isTargetCygMing() || isTargetKnownWindowsMSVC());
 | 
						|
  }
 | 
						|
 | 
						|
  bool isPICStyleSet() const { return PICStyle != PICStyles::None; }
 | 
						|
  bool isPICStyleGOT() const { return PICStyle == PICStyles::GOT; }
 | 
						|
  bool isPICStyleRIPRel() const { return PICStyle == PICStyles::RIPRel; }
 | 
						|
 | 
						|
  bool isPICStyleStubPIC() const {
 | 
						|
    return PICStyle == PICStyles::StubPIC;
 | 
						|
  }
 | 
						|
 | 
						|
  bool isPICStyleStubNoDynamic() const {
 | 
						|
    return PICStyle == PICStyles::StubDynamicNoPIC;
 | 
						|
  }
 | 
						|
  bool isPICStyleStubAny() const {
 | 
						|
    return PICStyle == PICStyles::StubDynamicNoPIC ||
 | 
						|
           PICStyle == PICStyles::StubPIC;
 | 
						|
  }
 | 
						|
 | 
						|
  bool isCallingConvWin64(CallingConv::ID CC) const {
 | 
						|
    return (isTargetWin64() && CC != CallingConv::X86_64_SysV) ||
 | 
						|
           CC == CallingConv::X86_64_Win64;
 | 
						|
  }
 | 
						|
 | 
						|
  /// ClassifyGlobalReference - Classify a global variable reference for the
 | 
						|
  /// current subtarget according to how we should reference it in a non-pcrel
 | 
						|
  /// context.
 | 
						|
  unsigned char ClassifyGlobalReference(const GlobalValue *GV,
 | 
						|
                                        const TargetMachine &TM)const;
 | 
						|
 | 
						|
  /// Classify a blockaddress reference for the current subtarget according to
 | 
						|
  /// how we should reference it in a non-pcrel context.
 | 
						|
  unsigned char ClassifyBlockAddressReference() const;
 | 
						|
 | 
						|
  /// Return true if the subtarget allows calls to immediate address.
 | 
						|
  bool IsLegalToCallImmediateAddr(const TargetMachine &TM) const;
 | 
						|
 | 
						|
  /// This function returns the name of a function which has an interface
 | 
						|
  /// like the non-standard bzero function, if such a function exists on
 | 
						|
  /// the current subtarget and it is considered prefereable over
 | 
						|
  /// memset with zero passed as the second argument. Otherwise it
 | 
						|
  /// returns null.
 | 
						|
  const char *getBZeroEntry() const;
 | 
						|
 | 
						|
  /// This function returns true if the target has sincos() routine in its
 | 
						|
  /// compiler runtime or math libraries.
 | 
						|
  bool hasSinCos() const;
 | 
						|
 | 
						|
  /// Enable the MachineScheduler pass for all X86 subtargets.
 | 
						|
  bool enableMachineScheduler() const override { return true; }
 | 
						|
 | 
						|
  bool enableEarlyIfConversion() const override;
 | 
						|
 | 
						|
  /// Return the instruction itineraries based on the subtarget selection.
 | 
						|
  const InstrItineraryData *getInstrItineraryData() const override {
 | 
						|
    return &InstrItins;
 | 
						|
  }
 | 
						|
 | 
						|
  AntiDepBreakMode getAntiDepBreakMode() const override {
 | 
						|
    return TargetSubtargetInfo::ANTIDEP_CRITICAL;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
} // End llvm namespace
 | 
						|
 | 
						|
#endif
 |