llvm-6502/lib/CodeGen/LiveIntervalAnalysis.cpp
Alkis Evlogimenos 6b4edbaaf9 Change weight into a float so that we can take into account the
nesting level when computing it. Right now the allocator uses:

    w = sum_over_defs_uses( 10 ^ nesting level );


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@10569 91177308-0d34-0410-b5e6-96231b3b80d8
2003-12-21 20:19:10 +00:00

396 lines
14 KiB
C++

//===-- LiveIntervals.cpp - Live Interval Analysis ------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the LiveInterval analysis pass which is used
// by the Linear Scan Register allocator. This pass linearizes the
// basic blocks of the function in DFS order and uses the
// LiveVariables pass to conservatively compute live intervals for
// each virtual and physical register.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "liveintervals"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/Function.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/Target/MRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegInfo.h"
#include "llvm/Support/CFG.h"
#include "Support/Debug.h"
#include "Support/DepthFirstIterator.h"
#include "Support/Statistic.h"
#include <cmath>
#include <iostream>
#include <limits>
using namespace llvm;
namespace {
RegisterAnalysis<LiveIntervals> X("liveintervals",
"Live Interval Analysis");
Statistic<> numIntervals("liveintervals", "Number of intervals");
};
void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const
{
AU.addPreserved<LiveVariables>();
AU.addRequired<LiveVariables>();
AU.addPreservedID(PHIEliminationID);
AU.addRequiredID(PHIEliminationID);
AU.addRequiredID(TwoAddressInstructionPassID);
AU.addRequired<LoopInfo>();
MachineFunctionPass::getAnalysisUsage(AU);
}
/// runOnMachineFunction - Register allocate the whole function
///
bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
DEBUG(std::cerr << "Machine Function\n");
mf_ = &fn;
tm_ = &fn.getTarget();
mri_ = tm_->getRegisterInfo();
lv_ = &getAnalysis<LiveVariables>();
allocatableRegisters_.clear();
mbbi2mbbMap_.clear();
mi2iMap_.clear();
r2iMap_.clear();
r2iMap_.clear();
intervals_.clear();
// mark allocatable registers
allocatableRegisters_.resize(MRegisterInfo::FirstVirtualRegister);
// Loop over all of the register classes...
for (MRegisterInfo::regclass_iterator
rci = mri_->regclass_begin(), rce = mri_->regclass_end();
rci != rce; ++rci) {
// Loop over all of the allocatable registers in the function...
for (TargetRegisterClass::iterator
i = (*rci)->allocation_order_begin(*mf_),
e = (*rci)->allocation_order_end(*mf_); i != e; ++i) {
allocatableRegisters_[*i] = true; // The reg is allocatable!
}
}
// number MachineInstrs
unsigned miIndex = 0;
for (MachineFunction::iterator mbb = mf_->begin(), mbbEnd = mf_->end();
mbb != mbbEnd; ++mbb) {
const std::pair<MachineBasicBlock*, unsigned>& entry =
lv_->getMachineBasicBlockInfo(&*mbb);
bool inserted = mbbi2mbbMap_.insert(std::make_pair(entry.second,
entry.first)).second;
assert(inserted && "multiple index -> MachineBasicBlock");
for (MachineBasicBlock::iterator mi = mbb->begin(), miEnd = mbb->end();
mi != miEnd; ++mi) {
inserted = mi2iMap_.insert(std::make_pair(*mi, miIndex)).second;
assert(inserted && "multiple MachineInstr -> index mappings");
++miIndex;
}
}
computeIntervals();
return true;
}
void LiveIntervals::printRegName(unsigned reg) const
{
if (reg < MRegisterInfo::FirstVirtualRegister)
std::cerr << mri_->getName(reg);
else
std::cerr << '%' << reg;
}
void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock* mbb,
MachineBasicBlock::iterator mi,
unsigned reg)
{
DEBUG(std::cerr << "\t\t\tregister: ";printRegName(reg); std::cerr << '\n');
unsigned instrIndex = getInstructionIndex(*mi);
LiveVariables::VarInfo& vi = lv_->getVarInfo(reg);
Interval* interval = 0;
Reg2IntervalMap::iterator r2iit = r2iMap_.find(reg);
if (r2iit == r2iMap_.end()) {
// add new interval
intervals_.push_back(Interval(reg));
// update interval index for this register
r2iMap_[reg] = intervals_.size() - 1;
interval = &intervals_.back();
}
else {
interval = &intervals_[r2iit->second];
}
for (MbbIndex2MbbMap::iterator
it = mbbi2mbbMap_.begin(), itEnd = mbbi2mbbMap_.end();
it != itEnd; ++it) {
unsigned liveBlockIndex = it->first;
MachineBasicBlock* liveBlock = it->second;
if (liveBlockIndex < vi.AliveBlocks.size() &&
vi.AliveBlocks[liveBlockIndex]) {
unsigned start = getInstructionIndex(liveBlock->front());
unsigned end = getInstructionIndex(liveBlock->back()) + 1;
interval->addRange(start, end);
}
}
bool killedInDefiningBasicBlock = false;
for (int i = 0, e = vi.Kills.size(); i != e; ++i) {
MachineBasicBlock* killerBlock = vi.Kills[i].first;
MachineInstr* killerInstr = vi.Kills[i].second;
unsigned start = (mbb == killerBlock ?
instrIndex :
getInstructionIndex(killerBlock->front()));
unsigned end = getInstructionIndex(killerInstr) + 1;
if (start < end) {
killedInDefiningBasicBlock |= mbb == killerBlock;
interval->addRange(start, end);
}
}
if (!killedInDefiningBasicBlock) {
unsigned end = getInstructionIndex(mbb->back()) + 1;
interval->addRange(instrIndex, end);
}
}
void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock* mbb,
MachineBasicBlock::iterator mi,
unsigned reg)
{
DEBUG(std::cerr << "\t\t\tregister: ";printRegName(reg); std::cerr << '\n');
if (!lv_->getAllocatablePhysicalRegisters()[reg]) {
DEBUG(std::cerr << "\t\t\t\tnon allocatable register: ignoring\n");
return;
}
unsigned start = getInstructionIndex(*mi);
unsigned end = start;
for (MachineBasicBlock::iterator e = mbb->end(); mi != e; ++mi) {
for (LiveVariables::killed_iterator
ki = lv_->dead_begin(*mi),
ke = lv_->dead_end(*mi);
ki != ke; ++ki) {
if (reg == ki->second) {
end = getInstructionIndex(ki->first) + 1;
goto exit;
}
}
for (LiveVariables::killed_iterator
ki = lv_->killed_begin(*mi),
ke = lv_->killed_end(*mi);
ki != ke; ++ki) {
if (reg == ki->second) {
end = getInstructionIndex(ki->first) + 1;
goto exit;
}
}
}
exit:
assert(start < end && "did not find end of interval?");
Reg2IntervalMap::iterator r2iit = r2iMap_.find(reg);
if (r2iit != r2iMap_.end()) {
unsigned ii = r2iit->second;
Interval& interval = intervals_[ii];
interval.addRange(start, end);
}
else {
intervals_.push_back(Interval(reg));
Interval& interval = intervals_.back();
// update interval index for this register
r2iMap_[reg] = intervals_.size() - 1;
interval.addRange(start, end);
}
}
void LiveIntervals::handleRegisterDef(MachineBasicBlock* mbb,
MachineBasicBlock::iterator mi,
unsigned reg)
{
if (reg < MRegisterInfo::FirstVirtualRegister) {
if (allocatableRegisters_[reg]) {
handlePhysicalRegisterDef(mbb, mi, reg);
}
}
else {
handleVirtualRegisterDef(mbb, mi, reg);
}
}
unsigned LiveIntervals::getInstructionIndex(MachineInstr* instr) const
{
assert(mi2iMap_.find(instr) != mi2iMap_.end() &&
"instruction not assigned a number");
return mi2iMap_.find(instr)->second;
}
/// computeIntervals - computes the live intervals for virtual
/// registers. for some ordering of the machine instructions [1,N] a
/// live interval is an interval [i, j] where 1 <= i <= j <= N for
/// which a variable is live
void LiveIntervals::computeIntervals()
{
DEBUG(std::cerr << "computing live intervals:\n");
const LoopInfo& loopInfo = getAnalysis<LoopInfo>();
for (MbbIndex2MbbMap::iterator
it = mbbi2mbbMap_.begin(), itEnd = mbbi2mbbMap_.end();
it != itEnd; ++it) {
MachineBasicBlock* mbb = it->second;
DEBUG(std::cerr << "machine basic block: "
<< mbb->getBasicBlock()->getName() << "\n");
unsigned loopDepth = loopInfo.getLoopDepth(mbb->getBasicBlock());
for (MachineBasicBlock::iterator mi = mbb->begin(), miEnd = mbb->end();
mi != miEnd; ++mi) {
MachineInstr* instr = *mi;
const TargetInstrDescriptor& tid =
tm_->getInstrInfo().get(instr->getOpcode());
DEBUG(std::cerr << "\t\tinstruction["
<< getInstructionIndex(instr) << "]: ";
instr->print(std::cerr, *tm_););
// handle implicit defs
for (const unsigned* id = tid.ImplicitDefs; *id; ++id) {
unsigned physReg = *id;
handlePhysicalRegisterDef(mbb, mi, physReg);
}
// handle explicit defs
for (int i = instr->getNumOperands() - 1; i >= 0; --i) {
MachineOperand& mop = instr->getOperand(i);
if (!mop.isRegister())
continue;
unsigned reg = mop.getAllocatedRegNum();
// handle defs - build intervals
if (mop.isDef()) {
if (reg < MRegisterInfo::FirstVirtualRegister)
handlePhysicalRegisterDef(mbb, mi, reg);
else
handleVirtualRegisterDef(mbb, mi, reg);
}
// update weights
Reg2IntervalMap::iterator r2iit = r2iMap_.find(reg);
if (r2iit != r2iMap_.end() &&
reg >= MRegisterInfo::FirstVirtualRegister)
intervals_[r2iit->second].weight += pow(10.0F, loopDepth);
}
}
}
std::sort(intervals_.begin(), intervals_.end(), StartPointComp());
DEBUG(std::copy(intervals_.begin(), intervals_.end(),
std::ostream_iterator<Interval>(std::cerr, "\n")));
}
LiveIntervals::Interval::Interval(unsigned r)
: reg(r),
weight((r < MRegisterInfo::FirstVirtualRegister ?
std::numeric_limits<float>::max() : 0.0F))
{
}
void LiveIntervals::Interval::addRange(unsigned start, unsigned end)
{
DEBUG(std::cerr << "\t\t\t\tadding range: [" << start <<','<< end << "]\n");
//assert(start < end && "invalid range?");
Range range = std::make_pair(start, end);
Ranges::iterator it =
ranges.insert(std::upper_bound(ranges.begin(), ranges.end(), range),
range);
DEBUG(std::cerr << "\t\t\t\tbefore merge forward: " << *this << '\n');
mergeRangesForward(it);
DEBUG(std::cerr << "\t\t\t\tbefore merge backward: " << *this << '\n');
mergeRangesBackward(it);
DEBUG(std::cerr << "\t\t\t\tafter merging: " << *this << '\n');
}
void LiveIntervals::Interval::mergeRangesForward(Ranges::iterator it)
{
for (Ranges::iterator next = it + 1;
next != ranges.end() && it->second >= next->first; ) {
it->second = std::max(it->second, next->second);
next = ranges.erase(next);
}
}
void LiveIntervals::Interval::mergeRangesBackward(Ranges::iterator it)
{
for (Ranges::iterator prev = it - 1;
it != ranges.begin() && it->first <= prev->second; ) {
it->first = std::min(it->first, prev->first);
it->second = std::max(it->second, prev->second);
it = ranges.erase(prev);
prev = it - 1;
}
}
bool LiveIntervals::Interval::liveAt(unsigned index) const
{
Ranges::const_iterator r = ranges.begin();
while (r != ranges.end() && index < r->second) {
if (index >= r->first)
return true;
++r;
}
return false;
}
bool LiveIntervals::Interval::overlaps(const Interval& other) const
{
std::vector<bool> bitMap(end(), false);
for (Ranges::const_iterator r = ranges.begin(); r != ranges.end(); ++r) {
for (unsigned i = r->first; i < r->second; ++i)
bitMap[i] = true;
}
for (Ranges::const_iterator r = other.ranges.begin();
r != other.ranges.end(); ++r) {
for (unsigned i = r->first;
i < r->second && i < bitMap.size(); ++i)
if (bitMap[i])
return true;
}
return false;
}
std::ostream& llvm::operator<<(std::ostream& os,
const LiveIntervals::Interval& li)
{
os << "%reg" << li.reg << ',' << li.weight << " = ";
for (LiveIntervals::Interval::Ranges::const_iterator
i = li.ranges.begin(), e = li.ranges.end(); i != e; ++i) {
os << "[" << i->first << "," << i->second << "]";
}
return os;
}