llvm-6502/lib/CodeGen/AsmPrinter.cpp
Zhou Sheng 6b6b6ef167 For PR1043:
Merge ConstantIntegral and ConstantBool into ConstantInt.
Remove ConstantIntegral and ConstantBool from LLVM.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@33073 91177308-0d34-0410-b5e6-96231b3b80d8
2007-01-11 12:24:14 +00:00

950 lines
34 KiB
C++

//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the AsmPrinter class.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Constants.h"
#include "llvm/Module.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/Support/Mangler.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Streams.h"
#include "llvm/Target/TargetAsmInfo.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetMachine.h"
#include <cerrno>
using namespace llvm;
AsmPrinter::AsmPrinter(std::ostream &o, TargetMachine &tm,
const TargetAsmInfo *T)
: FunctionNumber(0), O(o), TM(tm), TAI(T)
{}
std::string AsmPrinter::getSectionForFunction(const Function &F) const {
return TAI->getTextSection();
}
/// SwitchToTextSection - Switch to the specified text section of the executable
/// if we are not already in it!
///
void AsmPrinter::SwitchToTextSection(const char *NewSection,
const GlobalValue *GV) {
std::string NS;
if (GV && GV->hasSection())
NS = TAI->getSwitchToSectionDirective() + GV->getSection();
else
NS = NewSection;
// If we're already in this section, we're done.
if (CurrentSection == NS) return;
// Close the current section, if applicable.
if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << "\n";
CurrentSection = NS;
if (!CurrentSection.empty())
O << CurrentSection << TAI->getTextSectionStartSuffix() << '\n';
}
/// SwitchToDataSection - Switch to the specified data section of the executable
/// if we are not already in it!
///
void AsmPrinter::SwitchToDataSection(const char *NewSection,
const GlobalValue *GV) {
std::string NS;
if (GV && GV->hasSection())
NS = TAI->getSwitchToSectionDirective() + GV->getSection();
else
NS = NewSection;
// If we're already in this section, we're done.
if (CurrentSection == NS) return;
// Close the current section, if applicable.
if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << "\n";
CurrentSection = NS;
if (!CurrentSection.empty())
O << CurrentSection << TAI->getDataSectionStartSuffix() << '\n';
}
bool AsmPrinter::doInitialization(Module &M) {
Mang = new Mangler(M, TAI->getGlobalPrefix());
if (!M.getModuleInlineAsm().empty())
O << TAI->getCommentString() << " Start of file scope inline assembly\n"
<< M.getModuleInlineAsm()
<< "\n" << TAI->getCommentString()
<< " End of file scope inline assembly\n";
SwitchToDataSection(""); // Reset back to no section.
if (MachineDebugInfo *DebugInfo = getAnalysisToUpdate<MachineDebugInfo>()) {
DebugInfo->AnalyzeModule(M);
}
return false;
}
bool AsmPrinter::doFinalization(Module &M) {
if (TAI->getWeakRefDirective()) {
if (ExtWeakSymbols.begin() != ExtWeakSymbols.end())
SwitchToDataSection("");
for (std::set<const GlobalValue*>::iterator i = ExtWeakSymbols.begin(),
e = ExtWeakSymbols.end(); i != e; ++i) {
const GlobalValue *GV = *i;
std::string Name = Mang->getValueName(GV);
O << TAI->getWeakRefDirective() << Name << "\n";
}
}
delete Mang; Mang = 0;
return false;
}
void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
// What's my mangled name?
CurrentFnName = Mang->getValueName(MF.getFunction());
IncrementFunctionNumber();
}
/// EmitConstantPool - Print to the current output stream assembly
/// representations of the constants in the constant pool MCP. This is
/// used to print out constants which have been "spilled to memory" by
/// the code generator.
///
void AsmPrinter::EmitConstantPool(MachineConstantPool *MCP) {
const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
if (CP.empty()) return;
// Some targets require 4-, 8-, and 16- byte constant literals to be placed
// in special sections.
std::vector<std::pair<MachineConstantPoolEntry,unsigned> > FourByteCPs;
std::vector<std::pair<MachineConstantPoolEntry,unsigned> > EightByteCPs;
std::vector<std::pair<MachineConstantPoolEntry,unsigned> > SixteenByteCPs;
std::vector<std::pair<MachineConstantPoolEntry,unsigned> > OtherCPs;
std::vector<std::pair<MachineConstantPoolEntry,unsigned> > TargetCPs;
for (unsigned i = 0, e = CP.size(); i != e; ++i) {
MachineConstantPoolEntry CPE = CP[i];
const Type *Ty = CPE.getType();
if (TAI->getFourByteConstantSection() &&
TM.getTargetData()->getTypeSize(Ty) == 4)
FourByteCPs.push_back(std::make_pair(CPE, i));
else if (TAI->getEightByteConstantSection() &&
TM.getTargetData()->getTypeSize(Ty) == 8)
EightByteCPs.push_back(std::make_pair(CPE, i));
else if (TAI->getSixteenByteConstantSection() &&
TM.getTargetData()->getTypeSize(Ty) == 16)
SixteenByteCPs.push_back(std::make_pair(CPE, i));
else
OtherCPs.push_back(std::make_pair(CPE, i));
}
unsigned Alignment = MCP->getConstantPoolAlignment();
EmitConstantPool(Alignment, TAI->getFourByteConstantSection(), FourByteCPs);
EmitConstantPool(Alignment, TAI->getEightByteConstantSection(), EightByteCPs);
EmitConstantPool(Alignment, TAI->getSixteenByteConstantSection(),
SixteenByteCPs);
EmitConstantPool(Alignment, TAI->getConstantPoolSection(), OtherCPs);
}
void AsmPrinter::EmitConstantPool(unsigned Alignment, const char *Section,
std::vector<std::pair<MachineConstantPoolEntry,unsigned> > &CP) {
if (CP.empty()) return;
SwitchToDataSection(Section);
EmitAlignment(Alignment);
for (unsigned i = 0, e = CP.size(); i != e; ++i) {
O << TAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_'
<< CP[i].second << ":\t\t\t\t\t" << TAI->getCommentString() << " ";
WriteTypeSymbolic(O, CP[i].first.getType(), 0) << '\n';
if (CP[i].first.isMachineConstantPoolEntry())
EmitMachineConstantPoolValue(CP[i].first.Val.MachineCPVal);
else
EmitGlobalConstant(CP[i].first.Val.ConstVal);
if (i != e-1) {
const Type *Ty = CP[i].first.getType();
unsigned EntSize =
TM.getTargetData()->getTypeSize(Ty);
unsigned ValEnd = CP[i].first.getOffset() + EntSize;
// Emit inter-object padding for alignment.
EmitZeros(CP[i+1].first.getOffset()-ValEnd);
}
}
}
/// EmitJumpTableInfo - Print assembly representations of the jump tables used
/// by the current function to the current output stream.
///
void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo *MJTI,
MachineFunction &MF) {
const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
if (JT.empty()) return;
bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
// Use JumpTableDirective otherwise honor the entry size from the jump table
// info.
const char *JTEntryDirective = TAI->getJumpTableDirective();
bool HadJTEntryDirective = JTEntryDirective != NULL;
if (!HadJTEntryDirective) {
JTEntryDirective = MJTI->getEntrySize() == 4 ?
TAI->getData32bitsDirective() : TAI->getData64bitsDirective();
}
// Pick the directive to use to print the jump table entries, and switch to
// the appropriate section.
TargetLowering *LoweringInfo = TM.getTargetLowering();
const char* JumpTableDataSection = TAI->getJumpTableDataSection();
if ((IsPic && !(LoweringInfo && LoweringInfo->usesGlobalOffsetTable())) ||
!JumpTableDataSection) {
// In PIC mode, we need to emit the jump table to the same section as the
// function body itself, otherwise the label differences won't make sense.
// We should also do if the section name is NULL.
const Function *F = MF.getFunction();
SwitchToTextSection(getSectionForFunction(*F).c_str(), F);
} else {
SwitchToDataSection(JumpTableDataSection);
}
EmitAlignment(Log2_32(MJTI->getAlignment()));
for (unsigned i = 0, e = JT.size(); i != e; ++i) {
const std::vector<MachineBasicBlock*> &JTBBs = JT[i].MBBs;
// If this jump table was deleted, ignore it.
if (JTBBs.empty()) continue;
// For PIC codegen, if possible we want to use the SetDirective to reduce
// the number of relocations the assembler will generate for the jump table.
// Set directives are all printed before the jump table itself.
std::set<MachineBasicBlock*> EmittedSets;
if (TAI->getSetDirective() && IsPic)
for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
if (EmittedSets.insert(JTBBs[ii]).second)
printSetLabel(i, JTBBs[ii]);
O << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
<< '_' << i << ":\n";
for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
O << JTEntryDirective << ' ';
// If we have emitted set directives for the jump table entries, print
// them rather than the entries themselves. If we're emitting PIC, then
// emit the table entries as differences between two text section labels.
// If we're emitting non-PIC code, then emit the entries as direct
// references to the target basic blocks.
if (!EmittedSets.empty()) {
O << TAI->getPrivateGlobalPrefix() << getFunctionNumber()
<< '_' << i << "_set_" << JTBBs[ii]->getNumber();
} else if (IsPic) {
printBasicBlockLabel(JTBBs[ii], false, false);
//If the arch uses custom Jump Table directives, don't calc relative to JT
if (!HadJTEntryDirective)
O << '-' << TAI->getPrivateGlobalPrefix() << "JTI"
<< getFunctionNumber() << '_' << i;
} else {
printBasicBlockLabel(JTBBs[ii], false, false);
}
O << '\n';
}
}
}
/// EmitSpecialLLVMGlobal - Check to see if the specified global is a
/// special global used by LLVM. If so, emit it and return true, otherwise
/// do nothing and return false.
bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
// Ignore debug and non-emitted data.
if (GV->getSection() == "llvm.metadata") return true;
if (!GV->hasAppendingLinkage()) return false;
assert(GV->hasInitializer() && "Not a special LLVM global!");
if (GV->getName() == "llvm.used") {
if (TAI->getUsedDirective() != 0) // No need to emit this at all.
EmitLLVMUsedList(GV->getInitializer());
return true;
}
if (GV->getName() == "llvm.global_ctors" && GV->use_empty()) {
SwitchToDataSection(TAI->getStaticCtorsSection());
EmitAlignment(2, 0);
EmitXXStructorList(GV->getInitializer());
return true;
}
if (GV->getName() == "llvm.global_dtors" && GV->use_empty()) {
SwitchToDataSection(TAI->getStaticDtorsSection());
EmitAlignment(2, 0);
EmitXXStructorList(GV->getInitializer());
return true;
}
return false;
}
/// EmitLLVMUsedList - For targets that define a TAI::UsedDirective, mark each
/// global in the specified llvm.used list as being used with this directive.
void AsmPrinter::EmitLLVMUsedList(Constant *List) {
const char *Directive = TAI->getUsedDirective();
// Should be an array of 'sbyte*'.
ConstantArray *InitList = dyn_cast<ConstantArray>(List);
if (InitList == 0) return;
for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
O << Directive;
EmitConstantValueOnly(InitList->getOperand(i));
O << "\n";
}
}
/// EmitXXStructorList - Emit the ctor or dtor list. This just prints out the
/// function pointers, ignoring the init priority.
void AsmPrinter::EmitXXStructorList(Constant *List) {
// Should be an array of '{ int, void ()* }' structs. The first value is the
// init priority, which we ignore.
if (!isa<ConstantArray>(List)) return;
ConstantArray *InitList = cast<ConstantArray>(List);
for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
if (CS->getNumOperands() != 2) return; // Not array of 2-element structs.
if (CS->getOperand(1)->isNullValue())
return; // Found a null terminator, exit printing.
// Emit the function pointer.
EmitGlobalConstant(CS->getOperand(1));
}
}
/// getGlobalLinkName - Returns the asm/link name of of the specified
/// global variable. Should be overridden by each target asm printer to
/// generate the appropriate value.
const std::string AsmPrinter::getGlobalLinkName(const GlobalVariable *GV) const{
std::string LinkName;
if (isa<Function>(GV)) {
LinkName += TAI->getFunctionAddrPrefix();
LinkName += Mang->getValueName(GV);
LinkName += TAI->getFunctionAddrSuffix();
} else {
LinkName += TAI->getGlobalVarAddrPrefix();
LinkName += Mang->getValueName(GV);
LinkName += TAI->getGlobalVarAddrSuffix();
}
return LinkName;
}
// EmitAlignment - Emit an alignment directive to the specified power of two.
void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV) const {
if (GV && GV->getAlignment())
NumBits = Log2_32(GV->getAlignment());
if (NumBits == 0) return; // No need to emit alignment.
if (TAI->getAlignmentIsInBytes()) NumBits = 1 << NumBits;
O << TAI->getAlignDirective() << NumBits << "\n";
}
/// EmitZeros - Emit a block of zeros.
///
void AsmPrinter::EmitZeros(uint64_t NumZeros) const {
if (NumZeros) {
if (TAI->getZeroDirective()) {
O << TAI->getZeroDirective() << NumZeros;
if (TAI->getZeroDirectiveSuffix())
O << TAI->getZeroDirectiveSuffix();
O << "\n";
} else {
for (; NumZeros; --NumZeros)
O << TAI->getData8bitsDirective() << "0\n";
}
}
}
// Print out the specified constant, without a storage class. Only the
// constants valid in constant expressions can occur here.
void AsmPrinter::EmitConstantValueOnly(const Constant *CV) {
if (CV->isNullValue() || isa<UndefValue>(CV))
O << "0";
else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
if (CI->getType() == Type::BoolTy) {
assert(CI->getBoolValue());
O << "1";
} else O << CI->getSExtValue();
} else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
// This is a constant address for a global variable or function. Use the
// name of the variable or function as the address value, possibly
// decorating it with GlobalVarAddrPrefix/Suffix or
// FunctionAddrPrefix/Suffix (these all default to "" )
if (isa<Function>(GV)) {
O << TAI->getFunctionAddrPrefix()
<< Mang->getValueName(GV)
<< TAI->getFunctionAddrSuffix();
} else {
O << TAI->getGlobalVarAddrPrefix()
<< Mang->getValueName(GV)
<< TAI->getGlobalVarAddrSuffix();
}
} else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
const TargetData *TD = TM.getTargetData();
switch(CE->getOpcode()) {
case Instruction::GetElementPtr: {
// generate a symbolic expression for the byte address
const Constant *ptrVal = CE->getOperand(0);
std::vector<Value*> idxVec(CE->op_begin()+1, CE->op_end());
if (int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), idxVec)) {
if (Offset)
O << "(";
EmitConstantValueOnly(ptrVal);
if (Offset > 0)
O << ") + " << Offset;
else if (Offset < 0)
O << ") - " << -Offset;
} else {
EmitConstantValueOnly(ptrVal);
}
break;
}
case Instruction::Trunc:
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPTrunc:
case Instruction::FPExt:
case Instruction::UIToFP:
case Instruction::SIToFP:
case Instruction::FPToUI:
case Instruction::FPToSI:
assert(0 && "FIXME: Don't yet support this kind of constant cast expr");
break;
case Instruction::BitCast:
return EmitConstantValueOnly(CE->getOperand(0));
case Instruction::IntToPtr: {
// Handle casts to pointers by changing them into casts to the appropriate
// integer type. This promotes constant folding and simplifies this code.
Constant *Op = CE->getOperand(0);
Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(), false/*ZExt*/);
return EmitConstantValueOnly(Op);
}
case Instruction::PtrToInt: {
// Support only foldable casts to/from pointers that can be eliminated by
// changing the pointer to the appropriately sized integer type.
Constant *Op = CE->getOperand(0);
const Type *Ty = CE->getType();
// We can emit the pointer value into this slot if the slot is an
// integer slot greater or equal to the size of the pointer.
if (Ty->isIntegral() &&
Ty->getPrimitiveSize() >= TD->getTypeSize(Op->getType()))
return EmitConstantValueOnly(Op);
assert(0 && "FIXME: Don't yet support this kind of constant cast expr");
EmitConstantValueOnly(Op);
break;
}
case Instruction::Add:
O << "(";
EmitConstantValueOnly(CE->getOperand(0));
O << ") + (";
EmitConstantValueOnly(CE->getOperand(1));
O << ")";
break;
default:
assert(0 && "Unsupported operator!");
}
} else {
assert(0 && "Unknown constant value!");
}
}
/// toOctal - Convert the low order bits of X into an octal digit.
///
static inline char toOctal(int X) {
return (X&7)+'0';
}
/// printAsCString - Print the specified array as a C compatible string, only if
/// the predicate isString is true.
///
static void printAsCString(std::ostream &O, const ConstantArray *CVA,
unsigned LastElt) {
assert(CVA->isString() && "Array is not string compatible!");
O << "\"";
for (unsigned i = 0; i != LastElt; ++i) {
unsigned char C =
(unsigned char)cast<ConstantInt>(CVA->getOperand(i))->getZExtValue();
if (C == '"') {
O << "\\\"";
} else if (C == '\\') {
O << "\\\\";
} else if (isprint(C)) {
O << C;
} else {
switch(C) {
case '\b': O << "\\b"; break;
case '\f': O << "\\f"; break;
case '\n': O << "\\n"; break;
case '\r': O << "\\r"; break;
case '\t': O << "\\t"; break;
default:
O << '\\';
O << toOctal(C >> 6);
O << toOctal(C >> 3);
O << toOctal(C >> 0);
break;
}
}
}
O << "\"";
}
/// EmitString - Emit a zero-byte-terminated string constant.
///
void AsmPrinter::EmitString(const ConstantArray *CVA) const {
unsigned NumElts = CVA->getNumOperands();
if (TAI->getAscizDirective() && NumElts &&
cast<ConstantInt>(CVA->getOperand(NumElts-1))->getZExtValue() == 0) {
O << TAI->getAscizDirective();
printAsCString(O, CVA, NumElts-1);
} else {
O << TAI->getAsciiDirective();
printAsCString(O, CVA, NumElts);
}
O << "\n";
}
/// EmitGlobalConstant - Print a general LLVM constant to the .s file.
///
void AsmPrinter::EmitGlobalConstant(const Constant *CV) {
const TargetData *TD = TM.getTargetData();
if (CV->isNullValue() || isa<UndefValue>(CV)) {
EmitZeros(TD->getTypeSize(CV->getType()));
return;
} else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
if (CVA->isString()) {
EmitString(CVA);
} else { // Not a string. Print the values in successive locations
for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i)
EmitGlobalConstant(CVA->getOperand(i));
}
return;
} else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
// Print the fields in successive locations. Pad to align if needed!
const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType());
uint64_t sizeSoFar = 0;
for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) {
const Constant* field = CVS->getOperand(i);
// Check if padding is needed and insert one or more 0s.
uint64_t fieldSize = TD->getTypeSize(field->getType());
uint64_t padSize = ((i == e-1? cvsLayout->StructSize
: cvsLayout->MemberOffsets[i+1])
- cvsLayout->MemberOffsets[i]) - fieldSize;
sizeSoFar += fieldSize + padSize;
// Now print the actual field value
EmitGlobalConstant(field);
// Insert the field padding unless it's zero bytes...
EmitZeros(padSize);
}
assert(sizeSoFar == cvsLayout->StructSize &&
"Layout of constant struct may be incorrect!");
return;
} else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
// FP Constants are printed as integer constants to avoid losing
// precision...
double Val = CFP->getValue();
if (CFP->getType() == Type::DoubleTy) {
if (TAI->getData64bitsDirective())
O << TAI->getData64bitsDirective() << DoubleToBits(Val) << "\t"
<< TAI->getCommentString() << " double value: " << Val << "\n";
else if (TD->isBigEndian()) {
O << TAI->getData32bitsDirective() << unsigned(DoubleToBits(Val) >> 32)
<< "\t" << TAI->getCommentString()
<< " double most significant word " << Val << "\n";
O << TAI->getData32bitsDirective() << unsigned(DoubleToBits(Val))
<< "\t" << TAI->getCommentString()
<< " double least significant word " << Val << "\n";
} else {
O << TAI->getData32bitsDirective() << unsigned(DoubleToBits(Val))
<< "\t" << TAI->getCommentString()
<< " double least significant word " << Val << "\n";
O << TAI->getData32bitsDirective() << unsigned(DoubleToBits(Val) >> 32)
<< "\t" << TAI->getCommentString()
<< " double most significant word " << Val << "\n";
}
return;
} else {
O << TAI->getData32bitsDirective() << FloatToBits(Val)
<< "\t" << TAI->getCommentString() << " float " << Val << "\n";
return;
}
} else if (CV->getType() == Type::Int64Ty) {
if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
uint64_t Val = CI->getZExtValue();
if (TAI->getData64bitsDirective())
O << TAI->getData64bitsDirective() << Val << "\n";
else if (TD->isBigEndian()) {
O << TAI->getData32bitsDirective() << unsigned(Val >> 32)
<< "\t" << TAI->getCommentString()
<< " Double-word most significant word " << Val << "\n";
O << TAI->getData32bitsDirective() << unsigned(Val)
<< "\t" << TAI->getCommentString()
<< " Double-word least significant word " << Val << "\n";
} else {
O << TAI->getData32bitsDirective() << unsigned(Val)
<< "\t" << TAI->getCommentString()
<< " Double-word least significant word " << Val << "\n";
O << TAI->getData32bitsDirective() << unsigned(Val >> 32)
<< "\t" << TAI->getCommentString()
<< " Double-word most significant word " << Val << "\n";
}
return;
}
} else if (const ConstantPacked *CP = dyn_cast<ConstantPacked>(CV)) {
const PackedType *PTy = CP->getType();
for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I)
EmitGlobalConstant(CP->getOperand(I));
return;
}
const Type *type = CV->getType();
printDataDirective(type);
EmitConstantValueOnly(CV);
O << "\n";
}
void
AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
// Target doesn't support this yet!
abort();
}
/// PrintSpecial - Print information related to the specified machine instr
/// that is independent of the operand, and may be independent of the instr
/// itself. This can be useful for portably encoding the comment character
/// or other bits of target-specific knowledge into the asmstrings. The
/// syntax used is ${:comment}. Targets can override this to add support
/// for their own strange codes.
void AsmPrinter::PrintSpecial(const MachineInstr *MI, const char *Code) {
if (!strcmp(Code, "private")) {
O << TAI->getPrivateGlobalPrefix();
} else if (!strcmp(Code, "comment")) {
O << TAI->getCommentString();
} else if (!strcmp(Code, "uid")) {
// Assign a unique ID to this machine instruction.
static const MachineInstr *LastMI = 0;
static unsigned Counter = 0U-1;
// If this is a new machine instruction, bump the counter.
if (LastMI != MI) { ++Counter; LastMI = MI; }
O << Counter;
} else {
cerr << "Unknown special formatter '" << Code
<< "' for machine instr: " << *MI;
exit(1);
}
}
/// printInlineAsm - This method formats and prints the specified machine
/// instruction that is an inline asm.
void AsmPrinter::printInlineAsm(const MachineInstr *MI) const {
unsigned NumOperands = MI->getNumOperands();
// Count the number of register definitions.
unsigned NumDefs = 0;
for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef();
++NumDefs)
assert(NumDefs != NumOperands-1 && "No asm string?");
assert(MI->getOperand(NumDefs).isExternalSymbol() && "No asm string?");
// Disassemble the AsmStr, printing out the literal pieces, the operands, etc.
const char *AsmStr = MI->getOperand(NumDefs).getSymbolName();
// If this asmstr is empty, don't bother printing the #APP/#NOAPP markers.
if (AsmStr[0] == 0) {
O << "\n"; // Tab already printed, avoid double indenting next instr.
return;
}
O << TAI->getInlineAsmStart() << "\n\t";
// The variant of the current asmprinter: FIXME: change.
int AsmPrinterVariant = 0;
int CurVariant = -1; // The number of the {.|.|.} region we are in.
const char *LastEmitted = AsmStr; // One past the last character emitted.
while (*LastEmitted) {
switch (*LastEmitted) {
default: {
// Not a special case, emit the string section literally.
const char *LiteralEnd = LastEmitted+1;
while (*LiteralEnd && *LiteralEnd != '{' && *LiteralEnd != '|' &&
*LiteralEnd != '}' && *LiteralEnd != '$' && *LiteralEnd != '\n')
++LiteralEnd;
if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
O.write(LastEmitted, LiteralEnd-LastEmitted);
LastEmitted = LiteralEnd;
break;
}
case '\n':
++LastEmitted; // Consume newline character.
O << "\n\t"; // Indent code with newline.
break;
case '$': {
++LastEmitted; // Consume '$' character.
bool Done = true;
// Handle escapes.
switch (*LastEmitted) {
default: Done = false; break;
case '$': // $$ -> $
if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
O << '$';
++LastEmitted; // Consume second '$' character.
break;
case '(': // $( -> same as GCC's { character.
++LastEmitted; // Consume '(' character.
if (CurVariant != -1) {
cerr << "Nested variants found in inline asm string: '"
<< AsmStr << "'\n";
exit(1);
}
CurVariant = 0; // We're in the first variant now.
break;
case '|':
++LastEmitted; // consume '|' character.
if (CurVariant == -1) {
cerr << "Found '|' character outside of variant in inline asm "
<< "string: '" << AsmStr << "'\n";
exit(1);
}
++CurVariant; // We're in the next variant.
break;
case ')': // $) -> same as GCC's } char.
++LastEmitted; // consume ')' character.
if (CurVariant == -1) {
cerr << "Found '}' character outside of variant in inline asm "
<< "string: '" << AsmStr << "'\n";
exit(1);
}
CurVariant = -1;
break;
}
if (Done) break;
bool HasCurlyBraces = false;
if (*LastEmitted == '{') { // ${variable}
++LastEmitted; // Consume '{' character.
HasCurlyBraces = true;
}
const char *IDStart = LastEmitted;
char *IDEnd;
long Val = strtol(IDStart, &IDEnd, 10); // We only accept numbers for IDs.
if (!isdigit(*IDStart) || (Val == 0 && errno == EINVAL)) {
cerr << "Bad $ operand number in inline asm string: '"
<< AsmStr << "'\n";
exit(1);
}
LastEmitted = IDEnd;
char Modifier[2] = { 0, 0 };
if (HasCurlyBraces) {
// If we have curly braces, check for a modifier character. This
// supports syntax like ${0:u}, which correspond to "%u0" in GCC asm.
if (*LastEmitted == ':') {
++LastEmitted; // Consume ':' character.
if (*LastEmitted == 0) {
cerr << "Bad ${:} expression in inline asm string: '"
<< AsmStr << "'\n";
exit(1);
}
Modifier[0] = *LastEmitted;
++LastEmitted; // Consume modifier character.
}
if (*LastEmitted != '}') {
cerr << "Bad ${} expression in inline asm string: '"
<< AsmStr << "'\n";
exit(1);
}
++LastEmitted; // Consume '}' character.
}
if ((unsigned)Val >= NumOperands-1) {
cerr << "Invalid $ operand number in inline asm string: '"
<< AsmStr << "'\n";
exit(1);
}
// Okay, we finally have a value number. Ask the target to print this
// operand!
if (CurVariant == -1 || CurVariant == AsmPrinterVariant) {
unsigned OpNo = 1;
bool Error = false;
// Scan to find the machine operand number for the operand.
for (; Val; --Val) {
if (OpNo >= MI->getNumOperands()) break;
unsigned OpFlags = MI->getOperand(OpNo).getImmedValue();
OpNo += (OpFlags >> 3) + 1;
}
if (OpNo >= MI->getNumOperands()) {
Error = true;
} else {
unsigned OpFlags = MI->getOperand(OpNo).getImmedValue();
++OpNo; // Skip over the ID number.
AsmPrinter *AP = const_cast<AsmPrinter*>(this);
if ((OpFlags & 7) == 4 /*ADDR MODE*/) {
Error = AP->PrintAsmMemoryOperand(MI, OpNo, AsmPrinterVariant,
Modifier[0] ? Modifier : 0);
} else {
Error = AP->PrintAsmOperand(MI, OpNo, AsmPrinterVariant,
Modifier[0] ? Modifier : 0);
}
}
if (Error) {
cerr << "Invalid operand found in inline asm: '"
<< AsmStr << "'\n";
MI->dump();
exit(1);
}
}
break;
}
}
}
O << "\n\t" << TAI->getInlineAsmEnd() << "\n";
}
/// PrintAsmOperand - Print the specified operand of MI, an INLINEASM
/// instruction, using the specified assembler variant. Targets should
/// overried this to format as appropriate.
bool AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
unsigned AsmVariant, const char *ExtraCode) {
// Target doesn't support this yet!
return true;
}
bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
unsigned AsmVariant,
const char *ExtraCode) {
// Target doesn't support this yet!
return true;
}
/// printBasicBlockLabel - This method prints the label for the specified
/// MachineBasicBlock
void AsmPrinter::printBasicBlockLabel(const MachineBasicBlock *MBB,
bool printColon,
bool printComment) const {
O << TAI->getPrivateGlobalPrefix() << "BB" << FunctionNumber << "_"
<< MBB->getNumber();
if (printColon)
O << ':';
if (printComment && MBB->getBasicBlock())
O << '\t' << TAI->getCommentString() << MBB->getBasicBlock()->getName();
}
/// printSetLabel - This method prints a set label for the specified
/// MachineBasicBlock
void AsmPrinter::printSetLabel(unsigned uid,
const MachineBasicBlock *MBB) const {
if (!TAI->getSetDirective())
return;
O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix()
<< getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ',';
printBasicBlockLabel(MBB, false, false);
O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
<< '_' << uid << '\n';
}
void AsmPrinter::printSetLabel(unsigned uid, unsigned uid2,
const MachineBasicBlock *MBB) const {
if (!TAI->getSetDirective())
return;
O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix()
<< getFunctionNumber() << '_' << uid << '_' << uid2
<< "_set_" << MBB->getNumber() << ',';
printBasicBlockLabel(MBB, false, false);
O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
<< '_' << uid << '_' << uid2 << '\n';
}
/// printDataDirective - This method prints the asm directive for the
/// specified type.
void AsmPrinter::printDataDirective(const Type *type) {
const TargetData *TD = TM.getTargetData();
switch (type->getTypeID()) {
case Type::BoolTyID:
case Type::Int8TyID:
O << TAI->getData8bitsDirective();
break;
case Type::Int16TyID:
O << TAI->getData16bitsDirective();
break;
case Type::PointerTyID:
if (TD->getPointerSize() == 8) {
assert(TAI->getData64bitsDirective() &&
"Target cannot handle 64-bit pointer exprs!");
O << TAI->getData64bitsDirective();
break;
}
//Fall through for pointer size == int size
case Type::Int32TyID:
O << TAI->getData32bitsDirective();
break;
case Type::Int64TyID:
assert(TAI->getData64bitsDirective() &&
"Target cannot handle 64-bit constant exprs!");
O << TAI->getData64bitsDirective();
break;
case Type::FloatTyID: case Type::DoubleTyID:
assert (0 && "Should have already output floating point constant.");
default:
assert (0 && "Can't handle printing this type of thing");
break;
}
}