mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-19 04:32:19 +00:00
d2ce9392dc
This patch adds support to recognize patterns such as fadd,fsub,fadd,fsub.../add,sub,add,sub... and vectorizes them as vector shuffles if they are profitable. These patterns of vector shuffle can later be converted to instructions such as addsubpd etc on X86. Thanks to Arnold and Hal for the reviews. http://reviews.llvm.org/D4015 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211339 91177308-0d34-0410-b5e6-96231b3b80d8
587 lines
22 KiB
C++
587 lines
22 KiB
C++
//===-- ARMTargetTransformInfo.cpp - ARM specific TTI pass ----------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
/// \file
|
|
/// This file implements a TargetTransformInfo analysis pass specific to the
|
|
/// ARM target machine. It uses the target's detailed information to provide
|
|
/// more precise answers to certain TTI queries, while letting the target
|
|
/// independent and default TTI implementations handle the rest.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "ARM.h"
|
|
#include "ARMTargetMachine.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Target/CostTable.h"
|
|
#include "llvm/Target/TargetLowering.h"
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "armtti"
|
|
|
|
// Declare the pass initialization routine locally as target-specific passes
|
|
// don't have a target-wide initialization entry point, and so we rely on the
|
|
// pass constructor initialization.
|
|
namespace llvm {
|
|
void initializeARMTTIPass(PassRegistry &);
|
|
}
|
|
|
|
namespace {
|
|
|
|
class ARMTTI final : public ImmutablePass, public TargetTransformInfo {
|
|
const ARMBaseTargetMachine *TM;
|
|
const ARMSubtarget *ST;
|
|
const ARMTargetLowering *TLI;
|
|
|
|
/// Estimate the overhead of scalarizing an instruction. Insert and Extract
|
|
/// are set if the result needs to be inserted and/or extracted from vectors.
|
|
unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const;
|
|
|
|
public:
|
|
ARMTTI() : ImmutablePass(ID), TM(nullptr), ST(nullptr), TLI(nullptr) {
|
|
llvm_unreachable("This pass cannot be directly constructed");
|
|
}
|
|
|
|
ARMTTI(const ARMBaseTargetMachine *TM)
|
|
: ImmutablePass(ID), TM(TM), ST(TM->getSubtargetImpl()),
|
|
TLI(TM->getTargetLowering()) {
|
|
initializeARMTTIPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
void initializePass() override {
|
|
pushTTIStack(this);
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
TargetTransformInfo::getAnalysisUsage(AU);
|
|
}
|
|
|
|
/// Pass identification.
|
|
static char ID;
|
|
|
|
/// Provide necessary pointer adjustments for the two base classes.
|
|
void *getAdjustedAnalysisPointer(const void *ID) override {
|
|
if (ID == &TargetTransformInfo::ID)
|
|
return (TargetTransformInfo*)this;
|
|
return this;
|
|
}
|
|
|
|
/// \name Scalar TTI Implementations
|
|
/// @{
|
|
using TargetTransformInfo::getIntImmCost;
|
|
unsigned getIntImmCost(const APInt &Imm, Type *Ty) const override;
|
|
|
|
/// @}
|
|
|
|
|
|
/// \name Vector TTI Implementations
|
|
/// @{
|
|
|
|
unsigned getNumberOfRegisters(bool Vector) const override {
|
|
if (Vector) {
|
|
if (ST->hasNEON())
|
|
return 16;
|
|
return 0;
|
|
}
|
|
|
|
if (ST->isThumb1Only())
|
|
return 8;
|
|
return 13;
|
|
}
|
|
|
|
unsigned getRegisterBitWidth(bool Vector) const override {
|
|
if (Vector) {
|
|
if (ST->hasNEON())
|
|
return 128;
|
|
return 0;
|
|
}
|
|
|
|
return 32;
|
|
}
|
|
|
|
unsigned getMaximumUnrollFactor() const override {
|
|
// These are out of order CPUs:
|
|
if (ST->isCortexA15() || ST->isSwift())
|
|
return 2;
|
|
return 1;
|
|
}
|
|
|
|
unsigned getShuffleCost(ShuffleKind Kind, Type *Tp,
|
|
int Index, Type *SubTp) const override;
|
|
|
|
unsigned getCastInstrCost(unsigned Opcode, Type *Dst,
|
|
Type *Src) const override;
|
|
|
|
unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
|
|
Type *CondTy) const override;
|
|
|
|
unsigned getVectorInstrCost(unsigned Opcode, Type *Val,
|
|
unsigned Index) const override;
|
|
|
|
unsigned getAddressComputationCost(Type *Val,
|
|
bool IsComplex) const override;
|
|
|
|
unsigned
|
|
getArithmeticInstrCost(unsigned Opcode, Type *Ty,
|
|
OperandValueKind Op1Info = OK_AnyValue,
|
|
OperandValueKind Op2Info = OK_AnyValue) const override;
|
|
|
|
unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
|
|
unsigned AddressSpace) const override;
|
|
/// @}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
INITIALIZE_AG_PASS(ARMTTI, TargetTransformInfo, "armtti",
|
|
"ARM Target Transform Info", true, true, false)
|
|
char ARMTTI::ID = 0;
|
|
|
|
ImmutablePass *
|
|
llvm::createARMTargetTransformInfoPass(const ARMBaseTargetMachine *TM) {
|
|
return new ARMTTI(TM);
|
|
}
|
|
|
|
|
|
unsigned ARMTTI::getIntImmCost(const APInt &Imm, Type *Ty) const {
|
|
assert(Ty->isIntegerTy());
|
|
|
|
unsigned Bits = Ty->getPrimitiveSizeInBits();
|
|
if (Bits == 0 || Bits > 32)
|
|
return 4;
|
|
|
|
int32_t SImmVal = Imm.getSExtValue();
|
|
uint32_t ZImmVal = Imm.getZExtValue();
|
|
if (!ST->isThumb()) {
|
|
if ((SImmVal >= 0 && SImmVal < 65536) ||
|
|
(ARM_AM::getSOImmVal(ZImmVal) != -1) ||
|
|
(ARM_AM::getSOImmVal(~ZImmVal) != -1))
|
|
return 1;
|
|
return ST->hasV6T2Ops() ? 2 : 3;
|
|
}
|
|
if (ST->isThumb2()) {
|
|
if ((SImmVal >= 0 && SImmVal < 65536) ||
|
|
(ARM_AM::getT2SOImmVal(ZImmVal) != -1) ||
|
|
(ARM_AM::getT2SOImmVal(~ZImmVal) != -1))
|
|
return 1;
|
|
return ST->hasV6T2Ops() ? 2 : 3;
|
|
}
|
|
// Thumb1.
|
|
if (SImmVal >= 0 && SImmVal < 256)
|
|
return 1;
|
|
if ((~ZImmVal < 256) || ARM_AM::isThumbImmShiftedVal(ZImmVal))
|
|
return 2;
|
|
// Load from constantpool.
|
|
return 3;
|
|
}
|
|
|
|
unsigned ARMTTI::getCastInstrCost(unsigned Opcode, Type *Dst,
|
|
Type *Src) const {
|
|
int ISD = TLI->InstructionOpcodeToISD(Opcode);
|
|
assert(ISD && "Invalid opcode");
|
|
|
|
// Single to/from double precision conversions.
|
|
static const CostTblEntry<MVT::SimpleValueType> NEONFltDblTbl[] = {
|
|
// Vector fptrunc/fpext conversions.
|
|
{ ISD::FP_ROUND, MVT::v2f64, 2 },
|
|
{ ISD::FP_EXTEND, MVT::v2f32, 2 },
|
|
{ ISD::FP_EXTEND, MVT::v4f32, 4 }
|
|
};
|
|
|
|
if (Src->isVectorTy() && ST->hasNEON() && (ISD == ISD::FP_ROUND ||
|
|
ISD == ISD::FP_EXTEND)) {
|
|
std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Src);
|
|
int Idx = CostTableLookup(NEONFltDblTbl, ISD, LT.second);
|
|
if (Idx != -1)
|
|
return LT.first * NEONFltDblTbl[Idx].Cost;
|
|
}
|
|
|
|
EVT SrcTy = TLI->getValueType(Src);
|
|
EVT DstTy = TLI->getValueType(Dst);
|
|
|
|
if (!SrcTy.isSimple() || !DstTy.isSimple())
|
|
return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
|
|
|
|
// Some arithmetic, load and store operations have specific instructions
|
|
// to cast up/down their types automatically at no extra cost.
|
|
// TODO: Get these tables to know at least what the related operations are.
|
|
static const TypeConversionCostTblEntry<MVT::SimpleValueType>
|
|
NEONVectorConversionTbl[] = {
|
|
{ ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 0 },
|
|
{ ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 0 },
|
|
{ ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 1 },
|
|
{ ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 1 },
|
|
{ ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 0 },
|
|
{ ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1 },
|
|
|
|
// The number of vmovl instructions for the extension.
|
|
{ ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
|
|
{ ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
|
|
{ ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
|
|
{ ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
|
|
{ ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
|
|
{ ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
|
|
{ ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
|
|
{ ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
|
|
{ ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
|
|
{ ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
|
|
|
|
// Operations that we legalize using splitting.
|
|
{ ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 6 },
|
|
{ ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 3 },
|
|
|
|
// Vector float <-> i32 conversions.
|
|
{ ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
|
|
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
|
|
|
|
{ ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 },
|
|
{ ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 2 },
|
|
{ ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
|
|
{ ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 },
|
|
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 },
|
|
{ ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 },
|
|
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 },
|
|
{ ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
|
|
{ ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
|
|
{ ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
|
|
{ ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 2 },
|
|
{ ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i16, 8 },
|
|
{ ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i16, 8 },
|
|
{ ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i32, 4 },
|
|
{ ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i32, 4 },
|
|
|
|
{ ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 },
|
|
{ ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
|
|
{ ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 3 },
|
|
{ ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f32, 3 },
|
|
{ ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 },
|
|
{ ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 },
|
|
|
|
// Vector double <-> i32 conversions.
|
|
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
|
|
|
|
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 },
|
|
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 3 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 3 },
|
|
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
|
|
|
|
{ ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 },
|
|
{ ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 },
|
|
{ ISD::FP_TO_SINT, MVT::v8i16, MVT::v8f32, 4 },
|
|
{ ISD::FP_TO_UINT, MVT::v8i16, MVT::v8f32, 4 },
|
|
{ ISD::FP_TO_SINT, MVT::v16i16, MVT::v16f32, 8 },
|
|
{ ISD::FP_TO_UINT, MVT::v16i16, MVT::v16f32, 8 }
|
|
};
|
|
|
|
if (SrcTy.isVector() && ST->hasNEON()) {
|
|
int Idx = ConvertCostTableLookup(NEONVectorConversionTbl, ISD,
|
|
DstTy.getSimpleVT(), SrcTy.getSimpleVT());
|
|
if (Idx != -1)
|
|
return NEONVectorConversionTbl[Idx].Cost;
|
|
}
|
|
|
|
// Scalar float to integer conversions.
|
|
static const TypeConversionCostTblEntry<MVT::SimpleValueType>
|
|
NEONFloatConversionTbl[] = {
|
|
{ ISD::FP_TO_SINT, MVT::i1, MVT::f32, 2 },
|
|
{ ISD::FP_TO_UINT, MVT::i1, MVT::f32, 2 },
|
|
{ ISD::FP_TO_SINT, MVT::i1, MVT::f64, 2 },
|
|
{ ISD::FP_TO_UINT, MVT::i1, MVT::f64, 2 },
|
|
{ ISD::FP_TO_SINT, MVT::i8, MVT::f32, 2 },
|
|
{ ISD::FP_TO_UINT, MVT::i8, MVT::f32, 2 },
|
|
{ ISD::FP_TO_SINT, MVT::i8, MVT::f64, 2 },
|
|
{ ISD::FP_TO_UINT, MVT::i8, MVT::f64, 2 },
|
|
{ ISD::FP_TO_SINT, MVT::i16, MVT::f32, 2 },
|
|
{ ISD::FP_TO_UINT, MVT::i16, MVT::f32, 2 },
|
|
{ ISD::FP_TO_SINT, MVT::i16, MVT::f64, 2 },
|
|
{ ISD::FP_TO_UINT, MVT::i16, MVT::f64, 2 },
|
|
{ ISD::FP_TO_SINT, MVT::i32, MVT::f32, 2 },
|
|
{ ISD::FP_TO_UINT, MVT::i32, MVT::f32, 2 },
|
|
{ ISD::FP_TO_SINT, MVT::i32, MVT::f64, 2 },
|
|
{ ISD::FP_TO_UINT, MVT::i32, MVT::f64, 2 },
|
|
{ ISD::FP_TO_SINT, MVT::i64, MVT::f32, 10 },
|
|
{ ISD::FP_TO_UINT, MVT::i64, MVT::f32, 10 },
|
|
{ ISD::FP_TO_SINT, MVT::i64, MVT::f64, 10 },
|
|
{ ISD::FP_TO_UINT, MVT::i64, MVT::f64, 10 }
|
|
};
|
|
if (SrcTy.isFloatingPoint() && ST->hasNEON()) {
|
|
int Idx = ConvertCostTableLookup(NEONFloatConversionTbl, ISD,
|
|
DstTy.getSimpleVT(), SrcTy.getSimpleVT());
|
|
if (Idx != -1)
|
|
return NEONFloatConversionTbl[Idx].Cost;
|
|
}
|
|
|
|
// Scalar integer to float conversions.
|
|
static const TypeConversionCostTblEntry<MVT::SimpleValueType>
|
|
NEONIntegerConversionTbl[] = {
|
|
{ ISD::SINT_TO_FP, MVT::f32, MVT::i1, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::f32, MVT::i1, 2 },
|
|
{ ISD::SINT_TO_FP, MVT::f64, MVT::i1, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::f64, MVT::i1, 2 },
|
|
{ ISD::SINT_TO_FP, MVT::f32, MVT::i8, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::f32, MVT::i8, 2 },
|
|
{ ISD::SINT_TO_FP, MVT::f64, MVT::i8, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::f64, MVT::i8, 2 },
|
|
{ ISD::SINT_TO_FP, MVT::f32, MVT::i16, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::f32, MVT::i16, 2 },
|
|
{ ISD::SINT_TO_FP, MVT::f64, MVT::i16, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::f64, MVT::i16, 2 },
|
|
{ ISD::SINT_TO_FP, MVT::f32, MVT::i32, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::f32, MVT::i32, 2 },
|
|
{ ISD::SINT_TO_FP, MVT::f64, MVT::i32, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::f64, MVT::i32, 2 },
|
|
{ ISD::SINT_TO_FP, MVT::f32, MVT::i64, 10 },
|
|
{ ISD::UINT_TO_FP, MVT::f32, MVT::i64, 10 },
|
|
{ ISD::SINT_TO_FP, MVT::f64, MVT::i64, 10 },
|
|
{ ISD::UINT_TO_FP, MVT::f64, MVT::i64, 10 }
|
|
};
|
|
|
|
if (SrcTy.isInteger() && ST->hasNEON()) {
|
|
int Idx = ConvertCostTableLookup(NEONIntegerConversionTbl, ISD,
|
|
DstTy.getSimpleVT(), SrcTy.getSimpleVT());
|
|
if (Idx != -1)
|
|
return NEONIntegerConversionTbl[Idx].Cost;
|
|
}
|
|
|
|
// Scalar integer conversion costs.
|
|
static const TypeConversionCostTblEntry<MVT::SimpleValueType>
|
|
ARMIntegerConversionTbl[] = {
|
|
// i16 -> i64 requires two dependent operations.
|
|
{ ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 2 },
|
|
|
|
// Truncates on i64 are assumed to be free.
|
|
{ ISD::TRUNCATE, MVT::i32, MVT::i64, 0 },
|
|
{ ISD::TRUNCATE, MVT::i16, MVT::i64, 0 },
|
|
{ ISD::TRUNCATE, MVT::i8, MVT::i64, 0 },
|
|
{ ISD::TRUNCATE, MVT::i1, MVT::i64, 0 }
|
|
};
|
|
|
|
if (SrcTy.isInteger()) {
|
|
int Idx = ConvertCostTableLookup(ARMIntegerConversionTbl, ISD,
|
|
DstTy.getSimpleVT(), SrcTy.getSimpleVT());
|
|
if (Idx != -1)
|
|
return ARMIntegerConversionTbl[Idx].Cost;
|
|
}
|
|
|
|
return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
|
|
}
|
|
|
|
unsigned ARMTTI::getVectorInstrCost(unsigned Opcode, Type *ValTy,
|
|
unsigned Index) const {
|
|
// Penalize inserting into an D-subregister. We end up with a three times
|
|
// lower estimated throughput on swift.
|
|
if (ST->isSwift() &&
|
|
Opcode == Instruction::InsertElement &&
|
|
ValTy->isVectorTy() &&
|
|
ValTy->getScalarSizeInBits() <= 32)
|
|
return 3;
|
|
|
|
return TargetTransformInfo::getVectorInstrCost(Opcode, ValTy, Index);
|
|
}
|
|
|
|
unsigned ARMTTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
|
|
Type *CondTy) const {
|
|
|
|
int ISD = TLI->InstructionOpcodeToISD(Opcode);
|
|
// On NEON a a vector select gets lowered to vbsl.
|
|
if (ST->hasNEON() && ValTy->isVectorTy() && ISD == ISD::SELECT) {
|
|
// Lowering of some vector selects is currently far from perfect.
|
|
static const TypeConversionCostTblEntry<MVT::SimpleValueType>
|
|
NEONVectorSelectTbl[] = {
|
|
{ ISD::SELECT, MVT::v16i1, MVT::v16i16, 2*16 + 1 + 3*1 + 4*1 },
|
|
{ ISD::SELECT, MVT::v8i1, MVT::v8i32, 4*8 + 1*3 + 1*4 + 1*2 },
|
|
{ ISD::SELECT, MVT::v16i1, MVT::v16i32, 4*16 + 1*6 + 1*8 + 1*4 },
|
|
{ ISD::SELECT, MVT::v4i1, MVT::v4i64, 4*4 + 1*2 + 1 },
|
|
{ ISD::SELECT, MVT::v8i1, MVT::v8i64, 50 },
|
|
{ ISD::SELECT, MVT::v16i1, MVT::v16i64, 100 }
|
|
};
|
|
|
|
EVT SelCondTy = TLI->getValueType(CondTy);
|
|
EVT SelValTy = TLI->getValueType(ValTy);
|
|
if (SelCondTy.isSimple() && SelValTy.isSimple()) {
|
|
int Idx = ConvertCostTableLookup(NEONVectorSelectTbl, ISD,
|
|
SelCondTy.getSimpleVT(),
|
|
SelValTy.getSimpleVT());
|
|
if (Idx != -1)
|
|
return NEONVectorSelectTbl[Idx].Cost;
|
|
}
|
|
|
|
std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(ValTy);
|
|
return LT.first;
|
|
}
|
|
|
|
return TargetTransformInfo::getCmpSelInstrCost(Opcode, ValTy, CondTy);
|
|
}
|
|
|
|
unsigned ARMTTI::getAddressComputationCost(Type *Ty, bool IsComplex) const {
|
|
// Address computations in vectorized code with non-consecutive addresses will
|
|
// likely result in more instructions compared to scalar code where the
|
|
// computation can more often be merged into the index mode. The resulting
|
|
// extra micro-ops can significantly decrease throughput.
|
|
unsigned NumVectorInstToHideOverhead = 10;
|
|
|
|
if (Ty->isVectorTy() && IsComplex)
|
|
return NumVectorInstToHideOverhead;
|
|
|
|
// In many cases the address computation is not merged into the instruction
|
|
// addressing mode.
|
|
return 1;
|
|
}
|
|
|
|
unsigned ARMTTI::getShuffleCost(ShuffleKind Kind, Type *Tp, int Index,
|
|
Type *SubTp) const {
|
|
// We only handle costs of reverse and alternate shuffles for now.
|
|
if (Kind != SK_Reverse && Kind != SK_Alternate)
|
|
return TargetTransformInfo::getShuffleCost(Kind, Tp, Index, SubTp);
|
|
|
|
if (Kind == SK_Reverse) {
|
|
static const CostTblEntry<MVT::SimpleValueType> NEONShuffleTbl[] = {
|
|
// Reverse shuffle cost one instruction if we are shuffling within a
|
|
// double word (vrev) or two if we shuffle a quad word (vrev, vext).
|
|
{ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
|
|
{ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
|
|
{ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
|
|
{ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
|
|
|
|
{ISD::VECTOR_SHUFFLE, MVT::v4i32, 2},
|
|
{ISD::VECTOR_SHUFFLE, MVT::v4f32, 2},
|
|
{ISD::VECTOR_SHUFFLE, MVT::v8i16, 2},
|
|
{ISD::VECTOR_SHUFFLE, MVT::v16i8, 2}};
|
|
|
|
std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Tp);
|
|
|
|
int Idx = CostTableLookup(NEONShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second);
|
|
if (Idx == -1)
|
|
return TargetTransformInfo::getShuffleCost(Kind, Tp, Index, SubTp);
|
|
|
|
return LT.first * NEONShuffleTbl[Idx].Cost;
|
|
}
|
|
if (Kind == SK_Alternate) {
|
|
static const CostTblEntry<MVT::SimpleValueType> NEONAltShuffleTbl[] = {
|
|
// Alt shuffle cost table for ARM. Cost is the number of instructions
|
|
// required to create the shuffled vector.
|
|
|
|
{ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
|
|
{ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
|
|
{ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
|
|
{ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
|
|
|
|
{ISD::VECTOR_SHUFFLE, MVT::v4i32, 2},
|
|
{ISD::VECTOR_SHUFFLE, MVT::v4f32, 2},
|
|
{ISD::VECTOR_SHUFFLE, MVT::v4i16, 2},
|
|
|
|
{ISD::VECTOR_SHUFFLE, MVT::v8i16, 16},
|
|
|
|
{ISD::VECTOR_SHUFFLE, MVT::v16i8, 32}};
|
|
|
|
std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Tp);
|
|
int Idx =
|
|
CostTableLookup(NEONAltShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second);
|
|
if (Idx == -1)
|
|
return TargetTransformInfo::getShuffleCost(Kind, Tp, Index, SubTp);
|
|
return LT.first * NEONAltShuffleTbl[Idx].Cost;
|
|
}
|
|
return TargetTransformInfo::getShuffleCost(Kind, Tp, Index, SubTp);
|
|
}
|
|
|
|
unsigned ARMTTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
|
|
OperandValueKind Op1Info,
|
|
OperandValueKind Op2Info) const {
|
|
|
|
int ISDOpcode = TLI->InstructionOpcodeToISD(Opcode);
|
|
std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty);
|
|
|
|
const unsigned FunctionCallDivCost = 20;
|
|
const unsigned ReciprocalDivCost = 10;
|
|
static const CostTblEntry<MVT::SimpleValueType> CostTbl[] = {
|
|
// Division.
|
|
// These costs are somewhat random. Choose a cost of 20 to indicate that
|
|
// vectorizing devision (added function call) is going to be very expensive.
|
|
// Double registers types.
|
|
{ ISD::SDIV, MVT::v1i64, 1 * FunctionCallDivCost},
|
|
{ ISD::UDIV, MVT::v1i64, 1 * FunctionCallDivCost},
|
|
{ ISD::SREM, MVT::v1i64, 1 * FunctionCallDivCost},
|
|
{ ISD::UREM, MVT::v1i64, 1 * FunctionCallDivCost},
|
|
{ ISD::SDIV, MVT::v2i32, 2 * FunctionCallDivCost},
|
|
{ ISD::UDIV, MVT::v2i32, 2 * FunctionCallDivCost},
|
|
{ ISD::SREM, MVT::v2i32, 2 * FunctionCallDivCost},
|
|
{ ISD::UREM, MVT::v2i32, 2 * FunctionCallDivCost},
|
|
{ ISD::SDIV, MVT::v4i16, ReciprocalDivCost},
|
|
{ ISD::UDIV, MVT::v4i16, ReciprocalDivCost},
|
|
{ ISD::SREM, MVT::v4i16, 4 * FunctionCallDivCost},
|
|
{ ISD::UREM, MVT::v4i16, 4 * FunctionCallDivCost},
|
|
{ ISD::SDIV, MVT::v8i8, ReciprocalDivCost},
|
|
{ ISD::UDIV, MVT::v8i8, ReciprocalDivCost},
|
|
{ ISD::SREM, MVT::v8i8, 8 * FunctionCallDivCost},
|
|
{ ISD::UREM, MVT::v8i8, 8 * FunctionCallDivCost},
|
|
// Quad register types.
|
|
{ ISD::SDIV, MVT::v2i64, 2 * FunctionCallDivCost},
|
|
{ ISD::UDIV, MVT::v2i64, 2 * FunctionCallDivCost},
|
|
{ ISD::SREM, MVT::v2i64, 2 * FunctionCallDivCost},
|
|
{ ISD::UREM, MVT::v2i64, 2 * FunctionCallDivCost},
|
|
{ ISD::SDIV, MVT::v4i32, 4 * FunctionCallDivCost},
|
|
{ ISD::UDIV, MVT::v4i32, 4 * FunctionCallDivCost},
|
|
{ ISD::SREM, MVT::v4i32, 4 * FunctionCallDivCost},
|
|
{ ISD::UREM, MVT::v4i32, 4 * FunctionCallDivCost},
|
|
{ ISD::SDIV, MVT::v8i16, 8 * FunctionCallDivCost},
|
|
{ ISD::UDIV, MVT::v8i16, 8 * FunctionCallDivCost},
|
|
{ ISD::SREM, MVT::v8i16, 8 * FunctionCallDivCost},
|
|
{ ISD::UREM, MVT::v8i16, 8 * FunctionCallDivCost},
|
|
{ ISD::SDIV, MVT::v16i8, 16 * FunctionCallDivCost},
|
|
{ ISD::UDIV, MVT::v16i8, 16 * FunctionCallDivCost},
|
|
{ ISD::SREM, MVT::v16i8, 16 * FunctionCallDivCost},
|
|
{ ISD::UREM, MVT::v16i8, 16 * FunctionCallDivCost},
|
|
// Multiplication.
|
|
};
|
|
|
|
int Idx = -1;
|
|
|
|
if (ST->hasNEON())
|
|
Idx = CostTableLookup(CostTbl, ISDOpcode, LT.second);
|
|
|
|
if (Idx != -1)
|
|
return LT.first * CostTbl[Idx].Cost;
|
|
|
|
unsigned Cost =
|
|
TargetTransformInfo::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info);
|
|
|
|
// This is somewhat of a hack. The problem that we are facing is that SROA
|
|
// creates a sequence of shift, and, or instructions to construct values.
|
|
// These sequences are recognized by the ISel and have zero-cost. Not so for
|
|
// the vectorized code. Because we have support for v2i64 but not i64 those
|
|
// sequences look particularly beneficial to vectorize.
|
|
// To work around this we increase the cost of v2i64 operations to make them
|
|
// seem less beneficial.
|
|
if (LT.second == MVT::v2i64 &&
|
|
Op2Info == TargetTransformInfo::OK_UniformConstantValue)
|
|
Cost += 4;
|
|
|
|
return Cost;
|
|
}
|
|
|
|
unsigned ARMTTI::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
|
|
unsigned AddressSpace) const {
|
|
std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Src);
|
|
|
|
if (Src->isVectorTy() && Alignment != 16 &&
|
|
Src->getVectorElementType()->isDoubleTy()) {
|
|
// Unaligned loads/stores are extremely inefficient.
|
|
// We need 4 uops for vst.1/vld.1 vs 1uop for vldr/vstr.
|
|
return LT.first * 4;
|
|
}
|
|
return LT.first;
|
|
}
|