mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@47367 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			826 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			826 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- ExternalFunctions.cpp - Implement External Functions --------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| //  This file contains both code to deal with invoking "external" functions, but
 | |
| //  also contains code that implements "exported" external functions.
 | |
| //
 | |
| //  External functions in the interpreter are implemented by
 | |
| //  using the system's dynamic loader to look up the address of the function
 | |
| //  we want to invoke.  If a function is found, then one of the
 | |
| //  many lle_* wrapper functions in this file will translate its arguments from
 | |
| //  GenericValues to the types the function is actually expecting, before the
 | |
| //  function is called.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "Interpreter.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Module.h"
 | |
| #include "llvm/Support/Streams.h"
 | |
| #include "llvm/System/DynamicLibrary.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/Support/ManagedStatic.h"
 | |
| #include <csignal>
 | |
| #include <map>
 | |
| #include <cmath>
 | |
| #include <cstring>
 | |
| 
 | |
| #ifdef __linux__
 | |
| #include <cxxabi.h>
 | |
| #endif
 | |
| 
 | |
| using std::vector;
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| typedef GenericValue (*ExFunc)(FunctionType *, const vector<GenericValue> &);
 | |
| static ManagedStatic<std::map<const Function *, ExFunc> > Functions;
 | |
| static std::map<std::string, ExFunc> FuncNames;
 | |
| 
 | |
| static Interpreter *TheInterpreter;
 | |
| 
 | |
| static char getTypeID(const Type *Ty) {
 | |
|   switch (Ty->getTypeID()) {
 | |
|   case Type::VoidTyID:    return 'V';
 | |
|   case Type::IntegerTyID:
 | |
|     switch (cast<IntegerType>(Ty)->getBitWidth()) {
 | |
|       case 1:  return 'o';
 | |
|       case 8:  return 'B';
 | |
|       case 16: return 'S';
 | |
|       case 32: return 'I';
 | |
|       case 64: return 'L';
 | |
|       default: return 'N';
 | |
|     }
 | |
|   case Type::FloatTyID:   return 'F';
 | |
|   case Type::DoubleTyID:  return 'D';
 | |
|   case Type::PointerTyID: return 'P';
 | |
|   case Type::FunctionTyID:return 'M';
 | |
|   case Type::StructTyID:  return 'T';
 | |
|   case Type::ArrayTyID:   return 'A';
 | |
|   case Type::OpaqueTyID:  return 'O';
 | |
|   default: return 'U';
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Try to find address of external function given a Function object.
 | |
| // Please note, that interpreter doesn't know how to assemble a
 | |
| // real call in general case (this is JIT job), that's why it assumes,
 | |
| // that all external functions has the same (and pretty "general") signature.
 | |
| // The typical example of such functions are "lle_X_" ones.
 | |
| static ExFunc lookupFunction(const Function *F) {
 | |
|   // Function not found, look it up... start by figuring out what the
 | |
|   // composite function name should be.
 | |
|   std::string ExtName = "lle_";
 | |
|   const FunctionType *FT = F->getFunctionType();
 | |
|   for (unsigned i = 0, e = FT->getNumContainedTypes(); i != e; ++i)
 | |
|     ExtName += getTypeID(FT->getContainedType(i));
 | |
|   ExtName += "_" + F->getName();
 | |
| 
 | |
|   ExFunc FnPtr = FuncNames[ExtName];
 | |
|   if (FnPtr == 0)
 | |
|     FnPtr = FuncNames["lle_X_"+F->getName()];
 | |
|   if (FnPtr == 0)  // Try calling a generic function... if it exists...
 | |
|     FnPtr = (ExFunc)(intptr_t)sys::DynamicLibrary::SearchForAddressOfSymbol(
 | |
|             ("lle_X_"+F->getName()).c_str());
 | |
|   if (FnPtr == 0)
 | |
|     FnPtr = (ExFunc)(intptr_t)
 | |
|       sys::DynamicLibrary::SearchForAddressOfSymbol(F->getName());
 | |
|   if (FnPtr != 0)
 | |
|     Functions->insert(std::make_pair(F, FnPtr));  // Cache for later
 | |
|   return FnPtr;
 | |
| }
 | |
| 
 | |
| GenericValue Interpreter::callExternalFunction(Function *F,
 | |
|                                      const std::vector<GenericValue> &ArgVals) {
 | |
|   TheInterpreter = this;
 | |
| 
 | |
|   // Do a lookup to see if the function is in our cache... this should just be a
 | |
|   // deferred annotation!
 | |
|   std::map<const Function *, ExFunc>::iterator FI = Functions->find(F);
 | |
|   ExFunc Fn = (FI == Functions->end()) ? lookupFunction(F) : FI->second;
 | |
|   if (Fn == 0) {
 | |
|     cerr << "Tried to execute an unknown external function: "
 | |
|          << F->getType()->getDescription() << " " << F->getName() << "\n";
 | |
|     if (F->getName() == "__main")
 | |
|       return GenericValue();
 | |
|     abort();
 | |
|   }
 | |
| 
 | |
|   // TODO: FIXME when types are not const!
 | |
|   GenericValue Result = Fn(const_cast<FunctionType*>(F->getFunctionType()),
 | |
|                            ArgVals);
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Functions "exported" to the running application...
 | |
| //
 | |
| extern "C" {  // Don't add C++ manglings to llvm mangling :)
 | |
| 
 | |
| // void putchar(ubyte)
 | |
| GenericValue lle_X_putchar(FunctionType *FT, const vector<GenericValue> &Args){
 | |
|   cout << ((char)Args[0].IntVal.getZExtValue()) << std::flush;
 | |
|   return Args[0];
 | |
| }
 | |
| 
 | |
| // void _IO_putc(int c, FILE* fp)
 | |
| GenericValue lle_X__IO_putc(FunctionType *FT, const vector<GenericValue> &Args){
 | |
| #ifdef __linux__
 | |
|   _IO_putc((char)Args[0].IntVal.getZExtValue(), (FILE*) Args[1].PointerVal);
 | |
| #else
 | |
|   assert(0 && "Can't call _IO_putc on this platform");
 | |
| #endif
 | |
|   return Args[0];
 | |
| }
 | |
| 
 | |
| // void atexit(Function*)
 | |
| GenericValue lle_X_atexit(FunctionType *FT, const vector<GenericValue> &Args) {
 | |
|   assert(Args.size() == 1);
 | |
|   TheInterpreter->addAtExitHandler((Function*)GVTOP(Args[0]));
 | |
|   GenericValue GV;
 | |
|   GV.IntVal = 0;
 | |
|   return GV;
 | |
| }
 | |
| 
 | |
| // void exit(int)
 | |
| GenericValue lle_X_exit(FunctionType *FT, const vector<GenericValue> &Args) {
 | |
|   TheInterpreter->exitCalled(Args[0]);
 | |
|   return GenericValue();
 | |
| }
 | |
| 
 | |
| // void abort(void)
 | |
| GenericValue lle_X_abort(FunctionType *FT, const vector<GenericValue> &Args) {
 | |
|   raise (SIGABRT);
 | |
|   return GenericValue();
 | |
| }
 | |
| 
 | |
| // void *malloc(uint)
 | |
| GenericValue lle_X_malloc(FunctionType *FT, const vector<GenericValue> &Args) {
 | |
|   assert(Args.size() == 1 && "Malloc expects one argument!");
 | |
|   assert(isa<PointerType>(FT->getReturnType()) && "malloc must return pointer");
 | |
|   return PTOGV(malloc(Args[0].IntVal.getZExtValue()));
 | |
| }
 | |
| 
 | |
| // void *calloc(uint, uint)
 | |
| GenericValue lle_X_calloc(FunctionType *FT, const vector<GenericValue> &Args) {
 | |
|   assert(Args.size() == 2 && "calloc expects two arguments!");
 | |
|   assert(isa<PointerType>(FT->getReturnType()) && "calloc must return pointer");
 | |
|   return PTOGV(calloc(Args[0].IntVal.getZExtValue(), 
 | |
|                       Args[1].IntVal.getZExtValue()));
 | |
| }
 | |
| 
 | |
| // void *calloc(uint, uint)
 | |
| GenericValue lle_X_realloc(FunctionType *FT, const vector<GenericValue> &Args) {
 | |
|   assert(Args.size() == 2 && "calloc expects two arguments!");
 | |
|   assert(isa<PointerType>(FT->getReturnType()) &&"realloc must return pointer");
 | |
|   return PTOGV(realloc(GVTOP(Args[0]), Args[1].IntVal.getZExtValue()));
 | |
| }
 | |
| 
 | |
| // void free(void *)
 | |
| GenericValue lle_X_free(FunctionType *FT, const vector<GenericValue> &Args) {
 | |
|   assert(Args.size() == 1);
 | |
|   free(GVTOP(Args[0]));
 | |
|   return GenericValue();
 | |
| }
 | |
| 
 | |
| // int atoi(char *)
 | |
| GenericValue lle_X_atoi(FunctionType *FT, const vector<GenericValue> &Args) {
 | |
|   assert(Args.size() == 1);
 | |
|   GenericValue GV;
 | |
|   GV.IntVal = APInt(32, atoi((char*)GVTOP(Args[0])));
 | |
|   return GV;
 | |
| }
 | |
| 
 | |
| // double pow(double, double)
 | |
| GenericValue lle_X_pow(FunctionType *FT, const vector<GenericValue> &Args) {
 | |
|   assert(Args.size() == 2);
 | |
|   GenericValue GV;
 | |
|   GV.DoubleVal = pow(Args[0].DoubleVal, Args[1].DoubleVal);
 | |
|   return GV;
 | |
| }
 | |
| 
 | |
| // double sin(double)
 | |
| GenericValue lle_X_sin(FunctionType *FT, const vector<GenericValue> &Args) {
 | |
|   assert(Args.size() == 1);
 | |
|   GenericValue GV;
 | |
|   GV.DoubleVal = sin(Args[0].DoubleVal);
 | |
|   return GV;
 | |
| }
 | |
| 
 | |
| // double cos(double)
 | |
| GenericValue lle_X_cos(FunctionType *FT, const vector<GenericValue> &Args) {
 | |
|   assert(Args.size() == 1);
 | |
|   GenericValue GV;
 | |
|   GV.DoubleVal = cos(Args[0].DoubleVal);
 | |
|   return GV;
 | |
| }
 | |
| 
 | |
| // double exp(double)
 | |
| GenericValue lle_X_exp(FunctionType *FT, const vector<GenericValue> &Args) {
 | |
|   assert(Args.size() == 1);
 | |
|   GenericValue GV;
 | |
|   GV.DoubleVal = exp(Args[0].DoubleVal);
 | |
|   return GV;
 | |
| }
 | |
| 
 | |
| // double sqrt(double)
 | |
| GenericValue lle_X_sqrt(FunctionType *FT, const vector<GenericValue> &Args) {
 | |
|   assert(Args.size() == 1);
 | |
|   GenericValue GV;
 | |
|   GV.DoubleVal = sqrt(Args[0].DoubleVal);
 | |
|   return GV;
 | |
| }
 | |
| 
 | |
| // double log(double)
 | |
| GenericValue lle_X_log(FunctionType *FT, const vector<GenericValue> &Args) {
 | |
|   assert(Args.size() == 1);
 | |
|   GenericValue GV;
 | |
|   GV.DoubleVal = log(Args[0].DoubleVal);
 | |
|   return GV;
 | |
| }
 | |
| 
 | |
| // double floor(double)
 | |
| GenericValue lle_X_floor(FunctionType *FT, const vector<GenericValue> &Args) {
 | |
|   assert(Args.size() == 1);
 | |
|   GenericValue GV;
 | |
|   GV.DoubleVal = floor(Args[0].DoubleVal);
 | |
|   return GV;
 | |
| }
 | |
| 
 | |
| #ifdef HAVE_RAND48
 | |
| 
 | |
| // double drand48()
 | |
| GenericValue lle_X_drand48(FunctionType *FT, const vector<GenericValue> &Args) {
 | |
|   assert(Args.empty());
 | |
|   GenericValue GV;
 | |
|   GV.DoubleVal = drand48();
 | |
|   return GV;
 | |
| }
 | |
| 
 | |
| // long lrand48()
 | |
| GenericValue lle_X_lrand48(FunctionType *FT, const vector<GenericValue> &Args) {
 | |
|   assert(Args.empty());
 | |
|   GenericValue GV;
 | |
|   GV.IntVal = APInt(32, lrand48());
 | |
|   return GV;
 | |
| }
 | |
| 
 | |
| // void srand48(long)
 | |
| GenericValue lle_X_srand48(FunctionType *FT, const vector<GenericValue> &Args) {
 | |
|   assert(Args.size() == 1);
 | |
|   srand48(Args[0].IntVal.getZExtValue());
 | |
|   return GenericValue();
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| // int rand()
 | |
| GenericValue lle_X_rand(FunctionType *FT, const vector<GenericValue> &Args) {
 | |
|   assert(Args.empty());
 | |
|   GenericValue GV;
 | |
|   GV.IntVal = APInt(32, rand());
 | |
|   return GV;
 | |
| }
 | |
| 
 | |
| // void srand(uint)
 | |
| GenericValue lle_X_srand(FunctionType *FT, const vector<GenericValue> &Args) {
 | |
|   assert(Args.size() == 1);
 | |
|   srand(Args[0].IntVal.getZExtValue());
 | |
|   return GenericValue();
 | |
| }
 | |
| 
 | |
| // int puts(const char*)
 | |
| GenericValue lle_X_puts(FunctionType *FT, const vector<GenericValue> &Args) {
 | |
|   assert(Args.size() == 1);
 | |
|   GenericValue GV;
 | |
|   GV.IntVal = APInt(32, puts((char*)GVTOP(Args[0])));
 | |
|   return GV;
 | |
| }
 | |
| 
 | |
| // int sprintf(sbyte *, sbyte *, ...) - a very rough implementation to make
 | |
| // output useful.
 | |
| GenericValue lle_X_sprintf(FunctionType *FT, const vector<GenericValue> &Args) {
 | |
|   char *OutputBuffer = (char *)GVTOP(Args[0]);
 | |
|   const char *FmtStr = (const char *)GVTOP(Args[1]);
 | |
|   unsigned ArgNo = 2;
 | |
| 
 | |
|   // printf should return # chars printed.  This is completely incorrect, but
 | |
|   // close enough for now.
 | |
|   GenericValue GV; 
 | |
|   GV.IntVal = APInt(32, strlen(FmtStr));
 | |
|   while (1) {
 | |
|     switch (*FmtStr) {
 | |
|     case 0: return GV;             // Null terminator...
 | |
|     default:                       // Normal nonspecial character
 | |
|       sprintf(OutputBuffer++, "%c", *FmtStr++);
 | |
|       break;
 | |
|     case '\\': {                   // Handle escape codes
 | |
|       sprintf(OutputBuffer, "%c%c", *FmtStr, *(FmtStr+1));
 | |
|       FmtStr += 2; OutputBuffer += 2;
 | |
|       break;
 | |
|     }
 | |
|     case '%': {                    // Handle format specifiers
 | |
|       char FmtBuf[100] = "", Buffer[1000] = "";
 | |
|       char *FB = FmtBuf;
 | |
|       *FB++ = *FmtStr++;
 | |
|       char Last = *FB++ = *FmtStr++;
 | |
|       unsigned HowLong = 0;
 | |
|       while (Last != 'c' && Last != 'd' && Last != 'i' && Last != 'u' &&
 | |
|              Last != 'o' && Last != 'x' && Last != 'X' && Last != 'e' &&
 | |
|              Last != 'E' && Last != 'g' && Last != 'G' && Last != 'f' &&
 | |
|              Last != 'p' && Last != 's' && Last != '%') {
 | |
|         if (Last == 'l' || Last == 'L') HowLong++;  // Keep track of l's
 | |
|         Last = *FB++ = *FmtStr++;
 | |
|       }
 | |
|       *FB = 0;
 | |
| 
 | |
|       switch (Last) {
 | |
|       case '%':
 | |
|         sprintf(Buffer, FmtBuf); break;
 | |
|       case 'c':
 | |
|         sprintf(Buffer, FmtBuf, uint32_t(Args[ArgNo++].IntVal.getZExtValue()));
 | |
|         break;
 | |
|       case 'd': case 'i':
 | |
|       case 'u': case 'o':
 | |
|       case 'x': case 'X':
 | |
|         if (HowLong >= 1) {
 | |
|           if (HowLong == 1 &&
 | |
|               TheInterpreter->getTargetData()->getPointerSizeInBits() == 64 &&
 | |
|               sizeof(long) < sizeof(int64_t)) {
 | |
|             // Make sure we use %lld with a 64 bit argument because we might be
 | |
|             // compiling LLI on a 32 bit compiler.
 | |
|             unsigned Size = strlen(FmtBuf);
 | |
|             FmtBuf[Size] = FmtBuf[Size-1];
 | |
|             FmtBuf[Size+1] = 0;
 | |
|             FmtBuf[Size-1] = 'l';
 | |
|           }
 | |
|           sprintf(Buffer, FmtBuf, Args[ArgNo++].IntVal.getZExtValue());
 | |
|         } else
 | |
|           sprintf(Buffer, FmtBuf,uint32_t(Args[ArgNo++].IntVal.getZExtValue()));
 | |
|         break;
 | |
|       case 'e': case 'E': case 'g': case 'G': case 'f':
 | |
|         sprintf(Buffer, FmtBuf, Args[ArgNo++].DoubleVal); break;
 | |
|       case 'p':
 | |
|         sprintf(Buffer, FmtBuf, (void*)GVTOP(Args[ArgNo++])); break;
 | |
|       case 's':
 | |
|         sprintf(Buffer, FmtBuf, (char*)GVTOP(Args[ArgNo++])); break;
 | |
|       default:  cerr << "<unknown printf code '" << *FmtStr << "'!>";
 | |
|         ArgNo++; break;
 | |
|       }
 | |
|       strcpy(OutputBuffer, Buffer);
 | |
|       OutputBuffer += strlen(Buffer);
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   return GV;
 | |
| }
 | |
| 
 | |
| // int printf(sbyte *, ...) - a very rough implementation to make output useful.
 | |
| GenericValue lle_X_printf(FunctionType *FT, const vector<GenericValue> &Args) {
 | |
|   char Buffer[10000];
 | |
|   vector<GenericValue> NewArgs;
 | |
|   NewArgs.push_back(PTOGV((void*)&Buffer[0]));
 | |
|   NewArgs.insert(NewArgs.end(), Args.begin(), Args.end());
 | |
|   GenericValue GV = lle_X_sprintf(FT, NewArgs);
 | |
|   cout << Buffer;
 | |
|   return GV;
 | |
| }
 | |
| 
 | |
| static void ByteswapSCANFResults(const char *Fmt, void *Arg0, void *Arg1,
 | |
|                                  void *Arg2, void *Arg3, void *Arg4, void *Arg5,
 | |
|                                  void *Arg6, void *Arg7, void *Arg8) {
 | |
|   void *Args[] = { Arg0, Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8, 0 };
 | |
| 
 | |
|   // Loop over the format string, munging read values as appropriate (performs
 | |
|   // byteswaps as necessary).
 | |
|   unsigned ArgNo = 0;
 | |
|   while (*Fmt) {
 | |
|     if (*Fmt++ == '%') {
 | |
|       // Read any flag characters that may be present...
 | |
|       bool Suppress = false;
 | |
|       bool Half = false;
 | |
|       bool Long = false;
 | |
|       bool LongLong = false;  // long long or long double
 | |
| 
 | |
|       while (1) {
 | |
|         switch (*Fmt++) {
 | |
|         case '*': Suppress = true; break;
 | |
|         case 'a': /*Allocate = true;*/ break;  // We don't need to track this
 | |
|         case 'h': Half = true; break;
 | |
|         case 'l': Long = true; break;
 | |
|         case 'q':
 | |
|         case 'L': LongLong = true; break;
 | |
|         default:
 | |
|           if (Fmt[-1] > '9' || Fmt[-1] < '0')   // Ignore field width specs
 | |
|             goto Out;
 | |
|         }
 | |
|       }
 | |
|     Out:
 | |
| 
 | |
|       // Read the conversion character
 | |
|       if (!Suppress && Fmt[-1] != '%') { // Nothing to do?
 | |
|         unsigned Size = 0;
 | |
|         const Type *Ty = 0;
 | |
| 
 | |
|         switch (Fmt[-1]) {
 | |
|         case 'i': case 'o': case 'u': case 'x': case 'X': case 'n': case 'p':
 | |
|         case 'd':
 | |
|           if (Long || LongLong) {
 | |
|             Size = 8; Ty = Type::Int64Ty;
 | |
|           } else if (Half) {
 | |
|             Size = 4; Ty = Type::Int16Ty;
 | |
|           } else {
 | |
|             Size = 4; Ty = Type::Int32Ty;
 | |
|           }
 | |
|           break;
 | |
| 
 | |
|         case 'e': case 'g': case 'E':
 | |
|         case 'f':
 | |
|           if (Long || LongLong) {
 | |
|             Size = 8; Ty = Type::DoubleTy;
 | |
|           } else {
 | |
|             Size = 4; Ty = Type::FloatTy;
 | |
|           }
 | |
|           break;
 | |
| 
 | |
|         case 's': case 'c': case '[':  // No byteswap needed
 | |
|           Size = 1;
 | |
|           Ty = Type::Int8Ty;
 | |
|           break;
 | |
| 
 | |
|         default: break;
 | |
|         }
 | |
| 
 | |
|         if (Size) {
 | |
|           GenericValue GV;
 | |
|           void *Arg = Args[ArgNo++];
 | |
|           memcpy(&GV, Arg, Size);
 | |
|           TheInterpreter->StoreValueToMemory(GV, (GenericValue*)Arg, Ty);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // int sscanf(const char *format, ...);
 | |
| GenericValue lle_X_sscanf(FunctionType *FT, const vector<GenericValue> &args) {
 | |
|   assert(args.size() < 10 && "Only handle up to 10 args to sscanf right now!");
 | |
| 
 | |
|   char *Args[10];
 | |
|   for (unsigned i = 0; i < args.size(); ++i)
 | |
|     Args[i] = (char*)GVTOP(args[i]);
 | |
| 
 | |
|   GenericValue GV;
 | |
|   GV.IntVal = APInt(32, sscanf(Args[0], Args[1], Args[2], Args[3], Args[4],
 | |
|                         Args[5], Args[6], Args[7], Args[8], Args[9]));
 | |
|   ByteswapSCANFResults(Args[1], Args[2], Args[3], Args[4],
 | |
|                        Args[5], Args[6], Args[7], Args[8], Args[9], 0);
 | |
|   return GV;
 | |
| }
 | |
| 
 | |
| // int scanf(const char *format, ...);
 | |
| GenericValue lle_X_scanf(FunctionType *FT, const vector<GenericValue> &args) {
 | |
|   assert(args.size() < 10 && "Only handle up to 10 args to scanf right now!");
 | |
| 
 | |
|   char *Args[10];
 | |
|   for (unsigned i = 0; i < args.size(); ++i)
 | |
|     Args[i] = (char*)GVTOP(args[i]);
 | |
| 
 | |
|   GenericValue GV;
 | |
|   GV.IntVal = APInt(32, scanf( Args[0], Args[1], Args[2], Args[3], Args[4],
 | |
|                         Args[5], Args[6], Args[7], Args[8], Args[9]));
 | |
|   ByteswapSCANFResults(Args[0], Args[1], Args[2], Args[3], Args[4],
 | |
|                        Args[5], Args[6], Args[7], Args[8], Args[9]);
 | |
|   return GV;
 | |
| }
 | |
| 
 | |
| 
 | |
| // int clock(void) - Profiling implementation
 | |
| GenericValue lle_i_clock(FunctionType *FT, const vector<GenericValue> &Args) {
 | |
|   extern unsigned int clock(void);
 | |
|   GenericValue GV; 
 | |
|   GV.IntVal = APInt(32, clock());
 | |
|   return GV;
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // String Functions...
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // int strcmp(const char *S1, const char *S2);
 | |
| GenericValue lle_X_strcmp(FunctionType *FT, const vector<GenericValue> &Args) {
 | |
|   assert(Args.size() == 2);
 | |
|   GenericValue Ret;
 | |
|   Ret.IntVal = APInt(32, strcmp((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1])));
 | |
|   return Ret;
 | |
| }
 | |
| 
 | |
| // char *strcat(char *Dest, const char *src);
 | |
| GenericValue lle_X_strcat(FunctionType *FT, const vector<GenericValue> &Args) {
 | |
|   assert(Args.size() == 2);
 | |
|   assert(isa<PointerType>(FT->getReturnType()) &&"strcat must return pointer");
 | |
|   return PTOGV(strcat((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1])));
 | |
| }
 | |
| 
 | |
| // char *strcpy(char *Dest, const char *src);
 | |
| GenericValue lle_X_strcpy(FunctionType *FT, const vector<GenericValue> &Args) {
 | |
|   assert(Args.size() == 2);
 | |
|   assert(isa<PointerType>(FT->getReturnType()) &&"strcpy must return pointer");
 | |
|   return PTOGV(strcpy((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1])));
 | |
| }
 | |
| 
 | |
| static GenericValue size_t_to_GV (size_t n) {
 | |
|   GenericValue Ret;
 | |
|   if (sizeof (size_t) == sizeof (uint64_t)) {
 | |
|     Ret.IntVal = APInt(64, n);
 | |
|   } else {
 | |
|     assert (sizeof (size_t) == sizeof (unsigned int));
 | |
|     Ret.IntVal = APInt(32, n);
 | |
|   }
 | |
|   return Ret;
 | |
| }
 | |
| 
 | |
| static size_t GV_to_size_t (GenericValue GV) {
 | |
|   size_t count;
 | |
|   if (sizeof (size_t) == sizeof (uint64_t)) {
 | |
|     count = (size_t)GV.IntVal.getZExtValue();
 | |
|   } else {
 | |
|     assert (sizeof (size_t) == sizeof (unsigned int));
 | |
|     count = (size_t)GV.IntVal.getZExtValue();
 | |
|   }
 | |
|   return count;
 | |
| }
 | |
| 
 | |
| // size_t strlen(const char *src);
 | |
| GenericValue lle_X_strlen(FunctionType *FT, const vector<GenericValue> &Args) {
 | |
|   assert(Args.size() == 1);
 | |
|   size_t strlenResult = strlen ((char *) GVTOP (Args[0]));
 | |
|   return size_t_to_GV (strlenResult);
 | |
| }
 | |
| 
 | |
| // char *strdup(const char *src);
 | |
| GenericValue lle_X_strdup(FunctionType *FT, const vector<GenericValue> &Args) {
 | |
|   assert(Args.size() == 1);
 | |
|   assert(isa<PointerType>(FT->getReturnType()) && "strdup must return pointer");
 | |
|   return PTOGV(strdup((char*)GVTOP(Args[0])));
 | |
| }
 | |
| 
 | |
| // char *__strdup(const char *src);
 | |
| GenericValue lle_X___strdup(FunctionType *FT, const vector<GenericValue> &Args) {
 | |
|   assert(Args.size() == 1);
 | |
|   assert(isa<PointerType>(FT->getReturnType()) &&"_strdup must return pointer");
 | |
|   return PTOGV(strdup((char*)GVTOP(Args[0])));
 | |
| }
 | |
| 
 | |
| // void *memset(void *S, int C, size_t N)
 | |
| GenericValue lle_X_memset(FunctionType *FT, const vector<GenericValue> &Args) {
 | |
|   assert(Args.size() == 3);
 | |
|   size_t count = GV_to_size_t (Args[2]);
 | |
|   assert(isa<PointerType>(FT->getReturnType()) && "memset must return pointer");
 | |
|   return PTOGV(memset(GVTOP(Args[0]), uint32_t(Args[1].IntVal.getZExtValue()), 
 | |
|                       count));
 | |
| }
 | |
| 
 | |
| // void *memcpy(void *Dest, void *src, size_t Size);
 | |
| GenericValue lle_X_memcpy(FunctionType *FT, const vector<GenericValue> &Args) {
 | |
|   assert(Args.size() == 3);
 | |
|   assert(isa<PointerType>(FT->getReturnType()) && "memcpy must return pointer");
 | |
|   size_t count = GV_to_size_t (Args[2]);
 | |
|   return PTOGV(memcpy((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1]), count));
 | |
| }
 | |
| 
 | |
| // void *memcpy(void *Dest, void *src, size_t Size);
 | |
| GenericValue lle_X_memmove(FunctionType *FT, const vector<GenericValue> &Args) {
 | |
|   assert(Args.size() == 3);
 | |
|   assert(isa<PointerType>(FT->getReturnType()) && "memmove must return pointer");
 | |
|   size_t count = GV_to_size_t (Args[2]);
 | |
|   return PTOGV(memmove((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1]), count));
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // IO Functions...
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // getFILE - Turn a pointer in the host address space into a legit pointer in
 | |
| // the interpreter address space.  This is an identity transformation.
 | |
| #define getFILE(ptr) ((FILE*)ptr)
 | |
| 
 | |
| // FILE *fopen(const char *filename, const char *mode);
 | |
| GenericValue lle_X_fopen(FunctionType *FT, const vector<GenericValue> &Args) {
 | |
|   assert(Args.size() == 2);
 | |
|   assert(isa<PointerType>(FT->getReturnType()) && "fopen must return pointer");
 | |
|   return PTOGV(fopen((const char *)GVTOP(Args[0]),
 | |
|                      (const char *)GVTOP(Args[1])));
 | |
| }
 | |
| 
 | |
| // int fclose(FILE *F);
 | |
| GenericValue lle_X_fclose(FunctionType *FT, const vector<GenericValue> &Args) {
 | |
|   assert(Args.size() == 1);
 | |
|   GenericValue GV;
 | |
|   GV.IntVal = APInt(32, fclose(getFILE(GVTOP(Args[0]))));
 | |
|   return GV;
 | |
| }
 | |
| 
 | |
| // int feof(FILE *stream);
 | |
| GenericValue lle_X_feof(FunctionType *FT, const vector<GenericValue> &Args) {
 | |
|   assert(Args.size() == 1);
 | |
|   GenericValue GV;
 | |
| 
 | |
|   GV.IntVal = APInt(32, feof(getFILE(GVTOP(Args[0]))));
 | |
|   return GV;
 | |
| }
 | |
| 
 | |
| // size_t fread(void *ptr, size_t size, size_t nitems, FILE *stream);
 | |
| GenericValue lle_X_fread(FunctionType *FT, const vector<GenericValue> &Args) {
 | |
|   assert(Args.size() == 4);
 | |
|   size_t result;
 | |
| 
 | |
|   result = fread((void*)GVTOP(Args[0]), GV_to_size_t (Args[1]),
 | |
|                  GV_to_size_t (Args[2]), getFILE(GVTOP(Args[3])));
 | |
|   return size_t_to_GV (result);
 | |
| }
 | |
| 
 | |
| // size_t fwrite(const void *ptr, size_t size, size_t nitems, FILE *stream);
 | |
| GenericValue lle_X_fwrite(FunctionType *FT, const vector<GenericValue> &Args) {
 | |
|   assert(Args.size() == 4);
 | |
|   size_t result;
 | |
| 
 | |
|   result = fwrite((void*)GVTOP(Args[0]), GV_to_size_t (Args[1]),
 | |
|                   GV_to_size_t (Args[2]), getFILE(GVTOP(Args[3])));
 | |
|   return size_t_to_GV (result);
 | |
| }
 | |
| 
 | |
| // char *fgets(char *s, int n, FILE *stream);
 | |
| GenericValue lle_X_fgets(FunctionType *FT, const vector<GenericValue> &Args) {
 | |
|   assert(Args.size() == 3);
 | |
|   return PTOGV(fgets((char*)GVTOP(Args[0]), Args[1].IntVal.getZExtValue(),
 | |
|                      getFILE(GVTOP(Args[2]))));
 | |
| }
 | |
| 
 | |
| // FILE *freopen(const char *path, const char *mode, FILE *stream);
 | |
| GenericValue lle_X_freopen(FunctionType *FT, const vector<GenericValue> &Args) {
 | |
|   assert(Args.size() == 3);
 | |
|   assert(isa<PointerType>(FT->getReturnType()) &&"freopen must return pointer");
 | |
|   return PTOGV(freopen((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1]),
 | |
|                        getFILE(GVTOP(Args[2]))));
 | |
| }
 | |
| 
 | |
| // int fflush(FILE *stream);
 | |
| GenericValue lle_X_fflush(FunctionType *FT, const vector<GenericValue> &Args) {
 | |
|   assert(Args.size() == 1);
 | |
|   GenericValue GV;
 | |
|   GV.IntVal = APInt(32, fflush(getFILE(GVTOP(Args[0]))));
 | |
|   return GV;
 | |
| }
 | |
| 
 | |
| // int getc(FILE *stream);
 | |
| GenericValue lle_X_getc(FunctionType *FT, const vector<GenericValue> &Args) {
 | |
|   assert(Args.size() == 1);
 | |
|   GenericValue GV;
 | |
|   GV.IntVal = APInt(32, getc(getFILE(GVTOP(Args[0]))));
 | |
|   return GV;
 | |
| }
 | |
| 
 | |
| // int _IO_getc(FILE *stream);
 | |
| GenericValue lle_X__IO_getc(FunctionType *F, const vector<GenericValue> &Args) {
 | |
|   return lle_X_getc(F, Args);
 | |
| }
 | |
| 
 | |
| // int fputc(int C, FILE *stream);
 | |
| GenericValue lle_X_fputc(FunctionType *FT, const vector<GenericValue> &Args) {
 | |
|   assert(Args.size() == 2);
 | |
|   GenericValue GV;
 | |
|   GV.IntVal = APInt(32, fputc(Args[0].IntVal.getZExtValue(), 
 | |
|                               getFILE(GVTOP(Args[1]))));
 | |
|   return GV;
 | |
| }
 | |
| 
 | |
| // int ungetc(int C, FILE *stream);
 | |
| GenericValue lle_X_ungetc(FunctionType *FT, const vector<GenericValue> &Args) {
 | |
|   assert(Args.size() == 2);
 | |
|   GenericValue GV;
 | |
|   GV.IntVal = APInt(32, ungetc(Args[0].IntVal.getZExtValue(), 
 | |
|                                getFILE(GVTOP(Args[1]))));
 | |
|   return GV;
 | |
| }
 | |
| 
 | |
| // int ferror (FILE *stream);
 | |
| GenericValue lle_X_ferror(FunctionType *FT, const vector<GenericValue> &Args) {
 | |
|   assert(Args.size() == 1);
 | |
|   GenericValue GV;
 | |
|   GV.IntVal = APInt(32, ferror (getFILE(GVTOP(Args[0]))));
 | |
|   return GV;
 | |
| }
 | |
| 
 | |
| // int fprintf(FILE *,sbyte *, ...) - a very rough implementation to make output
 | |
| // useful.
 | |
| GenericValue lle_X_fprintf(FunctionType *FT, const vector<GenericValue> &Args) {
 | |
|   assert(Args.size() >= 2);
 | |
|   char Buffer[10000];
 | |
|   vector<GenericValue> NewArgs;
 | |
|   NewArgs.push_back(PTOGV(Buffer));
 | |
|   NewArgs.insert(NewArgs.end(), Args.begin()+1, Args.end());
 | |
|   GenericValue GV = lle_X_sprintf(FT, NewArgs);
 | |
| 
 | |
|   fputs(Buffer, getFILE(GVTOP(Args[0])));
 | |
|   return GV;
 | |
| }
 | |
| 
 | |
| // int __cxa_guard_acquire (__guard *g);
 | |
| GenericValue lle_X___cxa_guard_acquire(FunctionType *FT, 
 | |
|                                        const vector<GenericValue> &Args) {
 | |
|   assert(Args.size() == 1);
 | |
|   GenericValue GV;
 | |
| #ifdef __linux__
 | |
|   GV.IntVal = APInt(32, __cxxabiv1::__cxa_guard_acquire (
 | |
|                           (__cxxabiv1::__guard*)GVTOP(Args[0])));
 | |
| #else
 | |
|   assert(0 && "Can't call __cxa_guard_acquire on this platform");
 | |
| #endif
 | |
|   return GV;
 | |
| }
 | |
| 
 | |
| // void __cxa_guard_release (__guard *g);
 | |
| GenericValue lle_X___cxa_guard_release(FunctionType *FT, 
 | |
|                                        const vector<GenericValue> &Args) {
 | |
|   assert(Args.size() == 1);
 | |
| #ifdef __linux__
 | |
|   __cxxabiv1::__cxa_guard_release ((__cxxabiv1::__guard*)GVTOP(Args[0]));
 | |
| #else
 | |
|   assert(0 && "Can't call __cxa_guard_release on this platform");
 | |
| #endif
 | |
|   return GenericValue();
 | |
| }
 | |
| 
 | |
| } // End extern "C"
 | |
| 
 | |
| 
 | |
| void Interpreter::initializeExternalFunctions() {
 | |
|   FuncNames["lle_X_putchar"]      = lle_X_putchar;
 | |
|   FuncNames["lle_X__IO_putc"]     = lle_X__IO_putc;
 | |
|   FuncNames["lle_X_exit"]         = lle_X_exit;
 | |
|   FuncNames["lle_X_abort"]        = lle_X_abort;
 | |
|   FuncNames["lle_X_malloc"]       = lle_X_malloc;
 | |
|   FuncNames["lle_X_calloc"]       = lle_X_calloc;
 | |
|   FuncNames["lle_X_realloc"]      = lle_X_realloc;
 | |
|   FuncNames["lle_X_free"]         = lle_X_free;
 | |
|   FuncNames["lle_X_atoi"]         = lle_X_atoi;
 | |
|   FuncNames["lle_X_pow"]          = lle_X_pow;
 | |
|   FuncNames["lle_X_sin"]          = lle_X_sin;
 | |
|   FuncNames["lle_X_cos"]          = lle_X_cos;
 | |
|   FuncNames["lle_X_exp"]          = lle_X_exp;
 | |
|   FuncNames["lle_X_log"]          = lle_X_log;
 | |
|   FuncNames["lle_X_floor"]        = lle_X_floor;
 | |
|   FuncNames["lle_X_srand"]        = lle_X_srand;
 | |
|   FuncNames["lle_X_rand"]         = lle_X_rand;
 | |
| #ifdef HAVE_RAND48
 | |
|   FuncNames["lle_X_drand48"]      = lle_X_drand48;
 | |
|   FuncNames["lle_X_srand48"]      = lle_X_srand48;
 | |
|   FuncNames["lle_X_lrand48"]      = lle_X_lrand48;
 | |
| #endif
 | |
|   FuncNames["lle_X_sqrt"]         = lle_X_sqrt;
 | |
|   FuncNames["lle_X_puts"]         = lle_X_puts;
 | |
|   FuncNames["lle_X_printf"]       = lle_X_printf;
 | |
|   FuncNames["lle_X_sprintf"]      = lle_X_sprintf;
 | |
|   FuncNames["lle_X_sscanf"]       = lle_X_sscanf;
 | |
|   FuncNames["lle_X_scanf"]        = lle_X_scanf;
 | |
|   FuncNames["lle_i_clock"]        = lle_i_clock;
 | |
| 
 | |
|   FuncNames["lle_X_strcmp"]       = lle_X_strcmp;
 | |
|   FuncNames["lle_X_strcat"]       = lle_X_strcat;
 | |
|   FuncNames["lle_X_strcpy"]       = lle_X_strcpy;
 | |
|   FuncNames["lle_X_strlen"]       = lle_X_strlen;
 | |
|   FuncNames["lle_X___strdup"]     = lle_X___strdup;
 | |
|   FuncNames["lle_X_memset"]       = lle_X_memset;
 | |
|   FuncNames["lle_X_memcpy"]       = lle_X_memcpy;
 | |
|   FuncNames["lle_X_memmove"]      = lle_X_memmove;
 | |
| 
 | |
|   FuncNames["lle_X_fopen"]        = lle_X_fopen;
 | |
|   FuncNames["lle_X_fclose"]       = lle_X_fclose;
 | |
|   FuncNames["lle_X_feof"]         = lle_X_feof;
 | |
|   FuncNames["lle_X_fread"]        = lle_X_fread;
 | |
|   FuncNames["lle_X_fwrite"]       = lle_X_fwrite;
 | |
|   FuncNames["lle_X_fgets"]        = lle_X_fgets;
 | |
|   FuncNames["lle_X_fflush"]       = lle_X_fflush;
 | |
|   FuncNames["lle_X_fgetc"]        = lle_X_getc;
 | |
|   FuncNames["lle_X_getc"]         = lle_X_getc;
 | |
|   FuncNames["lle_X__IO_getc"]     = lle_X__IO_getc;
 | |
|   FuncNames["lle_X_fputc"]        = lle_X_fputc;
 | |
|   FuncNames["lle_X_ungetc"]       = lle_X_ungetc;
 | |
|   FuncNames["lle_X_fprintf"]      = lle_X_fprintf;
 | |
|   FuncNames["lle_X_freopen"]      = lle_X_freopen;
 | |
| 
 | |
|   FuncNames["lle_X___cxa_guard_acquire"] = lle_X___cxa_guard_acquire;
 | |
|   FuncNames["lle_X____cxa_guard_release"] = lle_X___cxa_guard_release;
 | |
| }
 | |
| 
 |