llvm-6502/include/llvm/CodeGen/MachineInstr.h
2002-10-28 04:30:20 +00:00

423 lines
15 KiB
C++

//===-- llvm/CodeGen/MachineInstr.h - MachineInstr class ---------*- C++ -*--=//
//
// This file contains the declaration of the MachineInstr class, which is the
// basic representation for all target dependant machine instructions used by
// the back end.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_MACHINEINSTR_H
#define LLVM_CODEGEN_MACHINEINSTR_H
#include "llvm/Annotation.h"
#include "Support/iterator"
#include "Support/NonCopyable.h"
#include <vector>
class Value;
class Function;
typedef int MachineOpCode;
typedef int OpCodeMask;
typedef int InstrSchedClass;
//---------------------------------------------------------------------------
// class MachineOperand
//
// Purpose:
// Representation of each machine instruction operand.
// This class is designed so that you can allocate a vector of operands
// first and initialize each one later.
//
// E.g, for this VM instruction:
// ptr = alloca type, numElements
// we generate 2 machine instructions on the SPARC:
//
// mul Constant, Numelements -> Reg
// add %sp, Reg -> Ptr
//
// Each instruction has 3 operands, listed above. Of those:
// - Reg, NumElements, and Ptr are of operand type MO_Register.
// - Constant is of operand type MO_SignExtendedImmed on the SPARC.
//
// For the register operands, the virtual register type is as follows:
//
// - Reg will be of virtual register type MO_MInstrVirtualReg. The field
// MachineInstr* minstr will point to the instruction that computes reg.
//
// - %sp will be of virtual register type MO_MachineReg.
// The field regNum identifies the machine register.
//
// - NumElements will be of virtual register type MO_VirtualReg.
// The field Value* value identifies the value.
//
// - Ptr will also be of virtual register type MO_VirtualReg.
// Again, the field Value* value identifies the value.
//
//---------------------------------------------------------------------------
class MachineOperand {
public:
enum MachineOperandType {
MO_VirtualRegister, // virtual register for *value
MO_MachineRegister, // pre-assigned machine register `regNum'
MO_CCRegister,
MO_SignExtendedImmed,
MO_UnextendedImmed,
MO_PCRelativeDisp,
};
private:
// Bit fields of the flags variable used for different operand properties
static const char DEFFLAG = 0x1; // this is a def of the operand
static const char DEFUSEFLAG = 0x2; // this is both a def and a use
static const char HIFLAG32 = 0x4; // operand is %hi32(value_or_immedVal)
static const char LOFLAG32 = 0x8; // operand is %lo32(value_or_immedVal)
static const char HIFLAG64 = 0x10; // operand is %hi64(value_or_immedVal)
static const char LOFLAG64 = 0x20; // operand is %lo64(value_or_immedVal)
private:
union {
Value* value; // BasicBlockVal for a label operand.
// ConstantVal for a non-address immediate.
// Virtual register for an SSA operand,
// including hidden operands required for
// the generated machine code.
int64_t immedVal; // constant value for an explicit constant
};
MachineOperandType opType:8; // Pack into 8 bits efficiently after flags.
char flags; // see bit field definitions above
int regNum; // register number for an explicit register
// will be set for a value after reg allocation
public:
MachineOperand() : immedVal(0), opType(MO_VirtualRegister),
flags(0), regNum(-1) {}
MachineOperand(const MachineOperand &M)
: immedVal(M.immedVal), opType(M.opType), flags(M.flags), regNum(M.regNum) {
}
~MachineOperand() {}
// Accessor methods. Caller is responsible for checking the
// operand type before invoking the corresponding accessor.
//
MachineOperandType getOperandType() const { return opType; }
inline Value* getVRegValue () const {
assert(opType == MO_VirtualRegister || opType == MO_CCRegister ||
opType == MO_PCRelativeDisp);
return value;
}
inline Value* getVRegValueOrNull() const {
return (opType == MO_VirtualRegister || opType == MO_CCRegister ||
opType == MO_PCRelativeDisp)? value : NULL;
}
inline int getMachineRegNum() const {
assert(opType == MO_MachineRegister);
return regNum;
}
inline int64_t getImmedValue () const {
assert(opType == MO_SignExtendedImmed || opType == MO_UnextendedImmed);
return immedVal;
}
bool opIsDef () const { return flags & DEFFLAG; }
bool opIsDefAndUse () const { return flags & DEFUSEFLAG; }
bool opHiBits32 () const { return flags & HIFLAG32; }
bool opLoBits32 () const { return flags & LOFLAG32; }
bool opHiBits64 () const { return flags & HIFLAG64; }
bool opLoBits64 () const { return flags & LOFLAG64; }
// used to check if a machine register has been allocated to this operand
inline bool hasAllocatedReg() const {
return (regNum >= 0 &&
(opType == MO_VirtualRegister || opType == MO_CCRegister ||
opType == MO_MachineRegister));
}
// used to get the reg number if when one is allocated
inline int getAllocatedRegNum() const {
assert(opType == MO_VirtualRegister || opType == MO_CCRegister ||
opType == MO_MachineRegister);
return regNum;
}
friend std::ostream& operator<<(std::ostream& os, const MachineOperand& mop);
private:
// Construction methods needed for fine-grain control.
// These must be accessed via coresponding methods in MachineInstr.
void markDef() { flags |= DEFFLAG; }
void markDefAndUse() { flags |= DEFUSEFLAG; }
void markHi32() { flags |= HIFLAG32; }
void markLo32() { flags |= LOFLAG32; }
void markHi64() { flags |= HIFLAG64; }
void markLo64() { flags |= LOFLAG64; }
// Replaces the Value with its corresponding physical register after
// register allocation is complete
void setRegForValue(int reg) {
assert(opType == MO_VirtualRegister || opType == MO_CCRegister ||
opType == MO_MachineRegister);
regNum = reg;
}
friend class MachineInstr;
};
//---------------------------------------------------------------------------
// class MachineInstr
//
// Purpose:
// Representation of each machine instruction.
//
// MachineOpCode must be an enum, defined separately for each target.
// E.g., It is defined in SparcInstructionSelection.h for the SPARC.
//
// opCodeMask is used to record variants of an instruction.
// E.g., each branch instruction on SPARC has 2 flags (i.e., 4 variants):
// ANNUL: if 1: Annul delay slot instruction.
// PREDICT-NOT-TAKEN: if 1: predict branch not taken.
// Instead of creating 4 different opcodes for BNZ, we create a single
// opcode and set bits in opCodeMask for each of these flags.
//
// There are 2 kinds of operands:
//
// (1) Explicit operands of the machine instruction in vector operands[]
//
// (2) "Implicit operands" are values implicitly used or defined by the
// machine instruction, such as arguments to a CALL, return value of
// a CALL (if any), and return value of a RETURN.
//---------------------------------------------------------------------------
class MachineInstr : public Annotable, // MachineInstrs are annotable
public NonCopyable { // Disable copy operations
MachineOpCode opCode; // the opcode
OpCodeMask opCodeMask; // extra bits for variants of an opcode
std::vector<MachineOperand> operands; // the operands
struct ImplicitRef {
Value *Val;
bool isDef, isDefAndUse;
ImplicitRef(Value *V, bool D, bool DU) : Val(V), isDef(D), isDefAndUse(DU){}
};
// implicitRefs - Values implicitly referenced by this machine instruction
// (eg, call args)
std::vector<ImplicitRef> implicitRefs;
// regsUsed - all machine registers used for this instruction, including regs
// used to save values across the instruction. This is a bitset of registers.
std::vector<bool> regsUsed;
public:
/*ctor*/ MachineInstr (MachineOpCode _opCode,
OpCodeMask _opCodeMask = 0);
/*ctor*/ MachineInstr (MachineOpCode _opCode,
unsigned numOperands,
OpCodeMask _opCodeMask = 0);
inline ~MachineInstr () {}
//
// Support to rewrite a machine instruction in place: for now, simply
// replace() and then set new operands with Set.*Operand methods below.
//
void replace (MachineOpCode _opCode,
unsigned numOperands,
OpCodeMask _opCodeMask = 0x0);
//
// The opcode.
//
const MachineOpCode getOpCode() const { return opCode; }
//
// Information about explicit operands of the instruction
//
unsigned getNumOperands() const { return operands.size(); }
const MachineOperand& getOperand(unsigned i) const {
assert(i < operands.size() && "getOperand() out of range!");
return operands[i];
}
MachineOperand& getOperand(unsigned i) {
assert(i < operands.size() && "getOperand() out of range!");
return operands[i];
}
MachineOperand::MachineOperandType getOperandType(unsigned i) const {
return getOperand(i).getOperandType();
}
bool operandIsDefined(unsigned i) const {
return getOperand(i).opIsDef();
}
bool operandIsDefinedAndUsed(unsigned i) const {
return getOperand(i).opIsDefAndUse();
}
//
// Information about implicit operands of the instruction
//
unsigned getNumImplicitRefs() const{ return implicitRefs.size();}
const Value* getImplicitRef(unsigned i) const {
assert(i < implicitRefs.size() && "getImplicitRef() out of range!");
return implicitRefs[i].Val;
}
Value* getImplicitRef(unsigned i) {
assert(i < implicitRefs.size() && "getImplicitRef() out of range!");
return implicitRefs[i].Val;
}
bool implicitRefIsDefined(unsigned i) const {
assert(i < implicitRefs.size() && "implicitRefIsDefined() out of range!");
return implicitRefs[i].isDef;
}
bool implicitRefIsDefinedAndUsed(unsigned i) const {
assert(i < implicitRefs.size() && "implicitRefIsDef&Used() out of range!");
return implicitRefs[i].isDefAndUse;
}
void addImplicitRef(Value* V, bool isDef=false, bool isDefAndUse=false) {
implicitRefs.push_back(ImplicitRef(V, isDef, isDefAndUse));
}
void setImplicitRef(unsigned i, Value* V, bool isDef=false,
bool isDefAndUse=false) {
assert(i < implicitRefs.size() && "setImplicitRef() out of range!");
implicitRefs[i] = ImplicitRef(V, isDef, isDefAndUse);
}
//
// Information about registers used in this instruction
//
const std::vector<bool> &getRegsUsed() const { return regsUsed; }
// insertUsedReg - Add a register to the Used registers set...
void insertUsedReg(unsigned Reg) {
if (Reg >= regsUsed.size())
regsUsed.resize(Reg+1);
regsUsed[Reg] = true;
}
//
// Debugging support
//
void dump() const;
friend std::ostream& operator<<(std::ostream& os, const MachineInstr& minstr);
//
// Define iterators to access the Value operands of the Machine Instruction.
// begin() and end() are defined to produce these iterators...
//
template<class _MI, class _V> class ValOpIterator;
typedef ValOpIterator<const MachineInstr*,const Value*> const_val_op_iterator;
typedef ValOpIterator< MachineInstr*, Value*> val_op_iterator;
// Access to set the operands when building the machine instruction
//
void SetMachineOperandVal(unsigned i,
MachineOperand::MachineOperandType operandType,
Value* V, bool isDef=false, bool isDefAndUse=false);
void SetMachineOperandConst(unsigned i,
MachineOperand::MachineOperandType operandType,
int64_t intValue);
void SetMachineOperandReg(unsigned i, int regNum, bool isDef=false,
bool isDefAndUse=false, bool isCCReg=false);
unsigned substituteValue(const Value* oldVal, Value* newVal,
bool defsOnly = true);
void setOperandHi32(unsigned i) { operands[i].markHi32(); }
void setOperandLo32(unsigned i) { operands[i].markLo32(); }
void setOperandHi64(unsigned i) { operands[i].markHi64(); }
void setOperandLo64(unsigned i) { operands[i].markLo64(); }
// SetRegForOperand - Replaces the Value for the operand with its allocated
// physical register after register allocation is complete.
//
void SetRegForOperand(unsigned i, int regNum);
//
// Iterator to enumerate machine operands.
//
template<class MITy, class VTy>
class ValOpIterator : public forward_iterator<VTy, ptrdiff_t> {
unsigned i;
MITy MI;
void skipToNextVal() {
while (i < MI->getNumOperands() &&
!((MI->getOperandType(i) == MachineOperand::MO_VirtualRegister ||
MI->getOperandType(i) == MachineOperand::MO_CCRegister)
&& MI->getOperand(i).getVRegValue() != 0))
++i;
}
inline ValOpIterator(MITy mi, unsigned I) : i(I), MI(mi) {
skipToNextVal();
}
public:
typedef ValOpIterator<MITy, VTy> _Self;
inline VTy operator*() const {
return MI->getOperand(i).getVRegValue();
}
const MachineOperand &getMachineOperand() const { return MI->getOperand(i);}
MachineOperand &getMachineOperand() { return MI->getOperand(i);}
inline VTy operator->() const { return operator*(); }
inline bool isDef() const { return MI->getOperand(i).opIsDef(); }
inline bool isDefAndUse() const { return MI->getOperand(i).opIsDefAndUse();}
inline _Self& operator++() { i++; skipToNextVal(); return *this; }
inline _Self operator++(int) { _Self tmp = *this; ++*this; return tmp; }
inline bool operator==(const _Self &y) const {
return i == y.i;
}
inline bool operator!=(const _Self &y) const {
return !operator==(y);
}
static _Self begin(MITy MI) {
return _Self(MI, 0);
}
static _Self end(MITy MI) {
return _Self(MI, MI->getNumOperands());
}
};
// define begin() and end()
val_op_iterator begin() { return val_op_iterator::begin(this); }
val_op_iterator end() { return val_op_iterator::end(this); }
const_val_op_iterator begin() const {
return const_val_op_iterator::begin(this);
}
const_val_op_iterator end() const {
return const_val_op_iterator::end(this);
}
};
//---------------------------------------------------------------------------
// Debugging Support
//---------------------------------------------------------------------------
std::ostream& operator<<(std::ostream& os, const MachineInstr& minstr);
std::ostream& operator<<(std::ostream& os, const MachineOperand& mop);
void PrintMachineInstructions(const Function *F);
#endif