mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-17 06:33:21 +00:00
6dc0050f6d
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166153 91177308-0d34-0410-b5e6-96231b3b80d8
800 lines
27 KiB
C++
800 lines
27 KiB
C++
//===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This is a simple loop vectorizer. We currently only support single block
|
|
// loops. We have a very simple and restrictive legality check: we need to read
|
|
// and write from disjoint memory locations. We still don't have a cost model.
|
|
// This pass has three parts:
|
|
// 1. The main loop pass that drives the different parts.
|
|
// 2. LoopVectorizationLegality - A helper class that checks for the legality
|
|
// of the vectorization.
|
|
// 3. SingleBlockLoopVectorizer - A helper class that performs the actual
|
|
// widening of instructions.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
#define LV_NAME "loop-vectorize"
|
|
#define DEBUG_TYPE LV_NAME
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/LLVMContext.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Analysis/LoopPass.h"
|
|
#include "llvm/Value.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/Type.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/AliasSetTracker.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Analysis/ScalarEvolution.h"
|
|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
|
|
#include "llvm/Analysis/ScalarEvolutionExpander.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/DataLayout.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include <algorithm>
|
|
using namespace llvm;
|
|
|
|
static cl::opt<unsigned>
|
|
DefaultVectorizationFactor("default-loop-vectorize-width",
|
|
cl::init(4), cl::Hidden,
|
|
cl::desc("Set the default loop vectorization width"));
|
|
|
|
namespace {
|
|
|
|
/// Vectorize a simple loop. This class performs the widening of simple single
|
|
/// basic block loops into vectors. It does not perform any
|
|
/// vectorization-legality checks, and just does it. It widens the vectors
|
|
/// to a given vectorization factor (VF).
|
|
class SingleBlockLoopVectorizer {
|
|
public:
|
|
|
|
/// Ctor.
|
|
SingleBlockLoopVectorizer(Loop *OrigLoop, ScalarEvolution *Se, LoopInfo *Li,
|
|
unsigned VecWidth):
|
|
Orig(OrigLoop), SE(Se), LI(Li), VF(VecWidth),
|
|
Builder(0), Induction(0), OldInduction(0) { }
|
|
|
|
~SingleBlockLoopVectorizer() {
|
|
delete Builder;
|
|
}
|
|
|
|
// Perform the actual loop widening (vectorization).
|
|
void vectorize() {
|
|
///Create a new empty loop. Unlink the old loop and connect the new one.
|
|
copyEmptyLoop();
|
|
/// Widen each instruction in the old loop to a new one in the new loop.
|
|
vectorizeLoop();
|
|
// Delete the old loop.
|
|
deleteOldLoop();
|
|
}
|
|
|
|
private:
|
|
/// Create an empty loop, based on the loop ranges of the old loop.
|
|
void copyEmptyLoop();
|
|
/// Copy and widen the instructions from the old loop.
|
|
void vectorizeLoop();
|
|
/// Delete the old loop.
|
|
void deleteOldLoop();
|
|
|
|
/// This instruction is un-vectorizable. Implement it as a sequence
|
|
/// of scalars.
|
|
void scalarizeInstruction(Instruction *Instr);
|
|
|
|
/// Create a broadcast instruction. This method generates a broadcast
|
|
/// instruction (shuffle) for loop invariant values and for the induction
|
|
/// value. If this is the induction variable then we extend it to N, N+1, ...
|
|
/// this is needed because each iteration in the loop corresponds to a SIMD
|
|
/// element.
|
|
Value *getBroadcastInstrs(Value *V);
|
|
|
|
/// This is a helper function used by getBroadcastInstrs. It adds 0, 1, 2 ..
|
|
/// for each element in the vector. Starting from zero.
|
|
Value *getConsecutiveVector(Value* Val);
|
|
|
|
/// Check that the GEP operands are all uniform except for the last index
|
|
/// which has to be the induction variable.
|
|
bool isConsecutiveGep(GetElementPtrInst *Gep);
|
|
|
|
/// When we go over instructions in the basic block we rely on previous
|
|
/// values within the current basic block or on loop invariant values.
|
|
/// When we widen (vectorize) values we place them in the map. If the values
|
|
/// are not within the map, they have to be loop invariant, so we simply
|
|
/// broadcast them into a vector.
|
|
Value *getVectorValue(Value *V);
|
|
|
|
/// The original loop.
|
|
Loop *Orig;
|
|
// Scev analysis to use.
|
|
ScalarEvolution *SE;
|
|
// Loop Info.
|
|
LoopInfo *LI;
|
|
// The vectorization factor to use.
|
|
unsigned VF;
|
|
|
|
// The builder that we use
|
|
IRBuilder<> *Builder;
|
|
|
|
// --- Vectorization state ---
|
|
|
|
/// The new Induction variable which was added to the new block.
|
|
Instruction *Induction;
|
|
/// The induction variable of the old basic block.
|
|
Instruction *OldInduction;
|
|
// Maps scalars to widened vectors.
|
|
DenseMap<Value*, Value*> WidenMap;
|
|
};
|
|
|
|
|
|
/// Perform the vectorization legality check. This class does not look at the
|
|
/// profitability of vectorization, only the legality. At the moment the checks
|
|
/// are very simple and focus on single basic block loops with a constant
|
|
/// iteration count and no reductions.
|
|
class LoopVectorizationLegality {
|
|
public:
|
|
LoopVectorizationLegality(Loop *Lp, ScalarEvolution *Se, DataLayout *Dl):
|
|
TheLoop(Lp), SE(Se), DL(Dl) { }
|
|
|
|
/// Returns the maximum vectorization factor that we *can* use to vectorize
|
|
/// this loop. This does not mean that it is profitable to vectorize this
|
|
/// loop, only that it is legal to do so. This may be a large number. We
|
|
/// can vectorize to any SIMD width below this number.
|
|
unsigned getLoopMaxVF();
|
|
|
|
private:
|
|
/// Check if a single basic block loop is vectorizable.
|
|
/// At this point we know that this is a loop with a constant trip count
|
|
/// and we only need to check individual instructions.
|
|
bool canVectorizeBlock(BasicBlock &BB);
|
|
|
|
// Check if a pointer value is known to be disjoint.
|
|
// Example: Alloca, Global, NoAlias.
|
|
bool isKnownDisjoint(Value* Val);
|
|
|
|
/// The loop that we evaluate.
|
|
Loop *TheLoop;
|
|
/// Scev analysis.
|
|
ScalarEvolution *SE;
|
|
/// DataLayout analysis.
|
|
DataLayout *DL;
|
|
};
|
|
|
|
struct LoopVectorize : public LoopPass {
|
|
static char ID; // Pass identification, replacement for typeid
|
|
|
|
LoopVectorize() : LoopPass(ID) {
|
|
initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
AliasAnalysis *AA;
|
|
ScalarEvolution *SE;
|
|
DataLayout *DL;
|
|
LoopInfo *LI;
|
|
|
|
virtual bool runOnLoop(Loop *L, LPPassManager &LPM) {
|
|
// Only vectorize innermost loops.
|
|
if (!L->empty())
|
|
return false;
|
|
|
|
AA = &getAnalysis<AliasAnalysis>();
|
|
SE = &getAnalysis<ScalarEvolution>();
|
|
DL = getAnalysisIfAvailable<DataLayout>();
|
|
LI = &getAnalysis<LoopInfo>();
|
|
|
|
DEBUG(dbgs() << "LV: Checking a loop in \"" <<
|
|
L->getHeader()->getParent()->getName() << "\"\n");
|
|
|
|
// Check if it is legal to vectorize the loop.
|
|
LoopVectorizationLegality LVL(L, SE, DL);
|
|
unsigned MaxVF = LVL.getLoopMaxVF();
|
|
|
|
// Check that we can vectorize using the chosen vectorization width.
|
|
if ((MaxVF < DefaultVectorizationFactor) ||
|
|
(MaxVF % DefaultVectorizationFactor)) {
|
|
DEBUG(dbgs() << "LV: non-vectorizable MaxVF ("<< MaxVF << ").\n");
|
|
return false;
|
|
}
|
|
|
|
DEBUG(dbgs() << "LV: Found a vectorizable loop ("<< MaxVF << ").\n");
|
|
|
|
// If we decided that is is *legal* to vectorizer the loop. Do it.
|
|
SingleBlockLoopVectorizer LB(L, SE, LI, DefaultVectorizationFactor);
|
|
LB.vectorize();
|
|
|
|
// The loop is now vectorized. Remove it from LMP.
|
|
LPM.deleteLoopFromQueue(L);
|
|
return true;
|
|
}
|
|
|
|
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
|
LoopPass::getAnalysisUsage(AU);
|
|
AU.addRequiredID(LoopSimplifyID);
|
|
AU.addRequired<AliasAnalysis>();
|
|
AU.addRequired<LoopInfo>();
|
|
AU.addRequired<ScalarEvolution>();
|
|
}
|
|
|
|
};
|
|
|
|
Value *SingleBlockLoopVectorizer::getBroadcastInstrs(Value *V) {
|
|
// Instructions that access the old induction variable
|
|
// actually want to get the new one.
|
|
if (V == OldInduction)
|
|
V = Induction;
|
|
// Create the types.
|
|
LLVMContext &C = V->getContext();
|
|
Type *VTy = VectorType::get(V->getType(), VF);
|
|
Type *I32 = IntegerType::getInt32Ty(C);
|
|
Constant *Zero = ConstantInt::get(I32, 0);
|
|
Value *Zeros = ConstantAggregateZero::get(VectorType::get(I32, VF));
|
|
Value *UndefVal = UndefValue::get(VTy);
|
|
// Insert the value into a new vector.
|
|
Value *SingleElem = Builder->CreateInsertElement(UndefVal, V, Zero);
|
|
// Broadcast the scalar into all locations in the vector.
|
|
Value *Shuf = Builder->CreateShuffleVector(SingleElem, UndefVal, Zeros,
|
|
"broadcast");
|
|
// We are accessing the induction variable. Make sure to promote the
|
|
// index for each consecutive SIMD lane. This adds 0,1,2 ... to all lanes.
|
|
if (V == Induction)
|
|
return getConsecutiveVector(Shuf);
|
|
return Shuf;
|
|
}
|
|
|
|
Value *SingleBlockLoopVectorizer::getConsecutiveVector(Value* Val) {
|
|
assert(Val->getType()->isVectorTy() && "Must be a vector");
|
|
assert(Val->getType()->getScalarType()->isIntegerTy() &&
|
|
"Elem must be an integer");
|
|
// Create the types.
|
|
Type *ITy = Val->getType()->getScalarType();
|
|
VectorType *Ty = cast<VectorType>(Val->getType());
|
|
unsigned VLen = Ty->getNumElements();
|
|
SmallVector<Constant*, 8> Indices;
|
|
|
|
// Create a vector of consecutive numbers from zero to VF.
|
|
for (unsigned i = 0; i < VLen; ++i)
|
|
Indices.push_back(ConstantInt::get(ITy, i));
|
|
|
|
// Add the consecutive indices to the vector value.
|
|
Constant *Cv = ConstantVector::get(Indices);
|
|
assert(Cv->getType() == Val->getType() && "Invalid consecutive vec");
|
|
return Builder->CreateAdd(Val, Cv, "induction");
|
|
}
|
|
|
|
|
|
bool SingleBlockLoopVectorizer::isConsecutiveGep(GetElementPtrInst *Gep) {
|
|
if (!Gep)
|
|
return false;
|
|
|
|
unsigned NumOperands = Gep->getNumOperands();
|
|
Value *LastIndex = Gep->getOperand(NumOperands - 1);
|
|
|
|
// Check that all of the gep indices are uniform except for the last.
|
|
for (unsigned i = 0; i < NumOperands - 1; ++i)
|
|
if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), Orig))
|
|
return false;
|
|
|
|
// The last operand has to be the induction in order to emit
|
|
// a wide load/store.
|
|
const SCEV *Last = SE->getSCEV(LastIndex);
|
|
if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) {
|
|
const SCEV *Step = AR->getStepRecurrence(*SE);
|
|
|
|
// The memory is consecutive because the last index is consecutive
|
|
// and all other indices are loop invariant.
|
|
if (Step->isOne())
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
Value *SingleBlockLoopVectorizer::getVectorValue(Value *V) {
|
|
if (WidenMap.count(V))
|
|
return WidenMap[V];
|
|
return getBroadcastInstrs(V);
|
|
}
|
|
|
|
void SingleBlockLoopVectorizer::scalarizeInstruction(Instruction *Instr) {
|
|
assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
|
|
// Holds vector parameters or scalars, in case of uniform vals.
|
|
SmallVector<Value*, 8> Params;
|
|
|
|
// Find all of the vectorized parameters.
|
|
for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
|
|
Value *SrcOp = Instr->getOperand(op);
|
|
|
|
// If we are accessing the old induction variable, use the new one.
|
|
if (SrcOp == OldInduction) {
|
|
Params.push_back(getBroadcastInstrs(Induction));
|
|
continue;
|
|
}
|
|
|
|
// Try using previously calculated values.
|
|
Instruction *SrcInst = dyn_cast<Instruction>(SrcOp);
|
|
|
|
// If the src is an instruction that appeared earlier in the basic block
|
|
// then it should already be vectorized.
|
|
if (SrcInst && SrcInst->getParent() == Instr->getParent()) {
|
|
assert(WidenMap.count(SrcInst) && "Source operand is unavailable");
|
|
// The parameter is a vector value from earlier.
|
|
Params.push_back(WidenMap[SrcInst]);
|
|
} else {
|
|
// The parameter is a scalar from outside the loop. Maybe even a constant.
|
|
Params.push_back(SrcOp);
|
|
}
|
|
}
|
|
|
|
assert(Params.size() == Instr->getNumOperands() &&
|
|
"Invalid number of operands");
|
|
|
|
// Does this instruction return a value ?
|
|
bool IsVoidRetTy = Instr->getType()->isVoidTy();
|
|
Value *VecResults = 0;
|
|
|
|
// If we have a return value, create an empty vector. We place the scalarized
|
|
// instructions in this vector.
|
|
if (!IsVoidRetTy)
|
|
VecResults = UndefValue::get(VectorType::get(Instr->getType(), VF));
|
|
|
|
// For each scalar that we create.
|
|
for (unsigned i = 0; i < VF; ++i) {
|
|
Instruction *Cloned = Instr->clone();
|
|
if (!IsVoidRetTy)
|
|
Cloned->setName(Instr->getName() + ".cloned");
|
|
// Replace the operands of the cloned instrucions with extracted scalars.
|
|
for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
|
|
Value *Op = Params[op];
|
|
// Param is a vector. Need to extract the right lane.
|
|
if (Op->getType()->isVectorTy())
|
|
Op = Builder->CreateExtractElement(Op, Builder->getInt32(i));
|
|
Cloned->setOperand(op, Op);
|
|
}
|
|
|
|
// Place the cloned scalar in the new loop.
|
|
Builder->Insert(Cloned);
|
|
|
|
// If the original scalar returns a value we need to place it in a vector
|
|
// so that future users will be able to use it.
|
|
if (!IsVoidRetTy)
|
|
VecResults = Builder->CreateInsertElement(VecResults, Cloned,
|
|
Builder->getInt32(i));
|
|
}
|
|
|
|
if (!IsVoidRetTy)
|
|
WidenMap[Instr] = VecResults;
|
|
}
|
|
|
|
void SingleBlockLoopVectorizer::copyEmptyLoop() {
|
|
assert(Orig->getNumBlocks() == 1 && "Invalid loop");
|
|
BasicBlock *PH = Orig->getLoopPreheader();
|
|
BasicBlock *ExitBlock = Orig->getExitBlock();
|
|
assert(ExitBlock && "Invalid loop exit");
|
|
|
|
// Create a new single-basic block loop.
|
|
BasicBlock *BB = BasicBlock::Create(PH->getContext(), "vectorizedloop",
|
|
PH->getParent(), ExitBlock);
|
|
|
|
// Find the induction variable.
|
|
BasicBlock *OldBasicBlock = Orig->getHeader();
|
|
PHINode *OldInd = dyn_cast<PHINode>(OldBasicBlock->begin());
|
|
assert(OldInd && "We must have a single phi node.");
|
|
Type *IdxTy = OldInd->getType();
|
|
|
|
// Use this IR builder to create the loop instructions (Phi, Br, Cmp)
|
|
// inside the loop.
|
|
Builder = new IRBuilder<>(BB);
|
|
|
|
// Generate the induction variable.
|
|
PHINode *Phi = Builder->CreatePHI(IdxTy, 2, "index");
|
|
Constant *Zero = ConstantInt::get(IdxTy, 0);
|
|
Constant *Step = ConstantInt::get(IdxTy, VF);
|
|
|
|
// Find the loop boundaries.
|
|
const SCEV *ExitCount = SE->getExitCount(Orig, Orig->getHeader());
|
|
assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count");
|
|
|
|
// Get the trip count from the count by adding 1.
|
|
ExitCount = SE->getAddExpr(ExitCount,
|
|
SE->getConstant(ExitCount->getType(), 1));
|
|
|
|
// Expand the trip count and place the new instructions in the preheader.
|
|
// Notice that the pre-header does not change, only the loop body.
|
|
SCEVExpander Exp(*SE, "induction");
|
|
Instruction *Loc = Orig->getLoopPreheader()->getTerminator();
|
|
if (ExitCount->getType() != Phi->getType())
|
|
ExitCount = SE->getSignExtendExpr(ExitCount, Phi->getType());
|
|
Value *Count = Exp.expandCodeFor(ExitCount, Phi->getType(), Loc);
|
|
|
|
// Create i+1 and fill the PHINode.
|
|
Value *Next = Builder->CreateAdd(Phi, Step, "index.next");
|
|
Phi->addIncoming(Zero, PH);
|
|
Phi->addIncoming(Next, BB);
|
|
// Create the compare.
|
|
Value *ICmp = Builder->CreateICmpEQ(Next, Count);
|
|
Builder->CreateCondBr(ICmp, ExitBlock, BB);
|
|
// Fix preheader.
|
|
PH->getTerminator()->setSuccessor(0, BB);
|
|
Builder->SetInsertPoint(BB->getFirstInsertionPt());
|
|
|
|
// Save the induction variables.
|
|
Induction = Phi;
|
|
OldInduction = OldInd;
|
|
}
|
|
|
|
void SingleBlockLoopVectorizer::vectorizeLoop() {
|
|
BasicBlock &BB = *Orig->getHeader();
|
|
|
|
// For each instruction in the old loop.
|
|
for (BasicBlock::iterator it = BB.begin(), e = BB.end(); it != e; ++it) {
|
|
Instruction *Inst = it;
|
|
|
|
switch (Inst->getOpcode()) {
|
|
case Instruction::PHI:
|
|
case Instruction::Br:
|
|
// Nothing to do for PHIs and BR, since we already took care of the
|
|
// loop control flow instructions.
|
|
continue;
|
|
|
|
case Instruction::Add:
|
|
case Instruction::FAdd:
|
|
case Instruction::Sub:
|
|
case Instruction::FSub:
|
|
case Instruction::Mul:
|
|
case Instruction::FMul:
|
|
case Instruction::UDiv:
|
|
case Instruction::SDiv:
|
|
case Instruction::FDiv:
|
|
case Instruction::URem:
|
|
case Instruction::SRem:
|
|
case Instruction::FRem:
|
|
case Instruction::Shl:
|
|
case Instruction::LShr:
|
|
case Instruction::AShr:
|
|
case Instruction::And:
|
|
case Instruction::Or:
|
|
case Instruction::Xor: {
|
|
// Just widen binops.
|
|
BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst);
|
|
Value *A = getVectorValue(Inst->getOperand(0));
|
|
Value *B = getVectorValue(Inst->getOperand(1));
|
|
// Use this vector value for all users of the original instruction.
|
|
WidenMap[Inst] = Builder->CreateBinOp(BinOp->getOpcode(), A, B);
|
|
break;
|
|
}
|
|
case Instruction::Select: {
|
|
// Widen selects.
|
|
Value *A = getVectorValue(Inst->getOperand(0));
|
|
Value *B = getVectorValue(Inst->getOperand(1));
|
|
Value *C = getVectorValue(Inst->getOperand(2));
|
|
WidenMap[Inst] = Builder->CreateSelect(A, B, C);
|
|
break;
|
|
}
|
|
|
|
case Instruction::ICmp:
|
|
case Instruction::FCmp: {
|
|
// Widen compares. Generate vector compares.
|
|
bool FCmp = (Inst->getOpcode() == Instruction::FCmp);
|
|
CmpInst *Cmp = dyn_cast<CmpInst>(Inst);
|
|
Value *A = getVectorValue(Inst->getOperand(0));
|
|
Value *B = getVectorValue(Inst->getOperand(1));
|
|
if (FCmp)
|
|
WidenMap[Inst] = Builder->CreateFCmp(Cmp->getPredicate(), A, B);
|
|
else
|
|
WidenMap[Inst] = Builder->CreateICmp(Cmp->getPredicate(), A, B);
|
|
break;
|
|
}
|
|
|
|
case Instruction::Store: {
|
|
// Attempt to issue a wide store.
|
|
StoreInst *SI = dyn_cast<StoreInst>(Inst);
|
|
Type *StTy = VectorType::get(SI->getValueOperand()->getType(), VF);
|
|
Value *Ptr = SI->getPointerOperand();
|
|
unsigned Alignment = SI->getAlignment();
|
|
GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
|
|
// This store does not use GEPs.
|
|
if (!isConsecutiveGep(Gep)) {
|
|
scalarizeInstruction(Inst);
|
|
break;
|
|
}
|
|
|
|
// Create the new GEP with the new induction variable.
|
|
GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
|
|
unsigned NumOperands = Gep->getNumOperands();
|
|
Gep2->setOperand(NumOperands - 1, Induction);
|
|
Ptr = Builder->Insert(Gep2);
|
|
Ptr = Builder->CreateBitCast(Ptr, StTy->getPointerTo());
|
|
Value *Val = getVectorValue(SI->getValueOperand());
|
|
Builder->CreateStore(Val, Ptr)->setAlignment(Alignment);
|
|
break;
|
|
}
|
|
case Instruction::Load: {
|
|
// Attempt to issue a wide load.
|
|
LoadInst *LI = dyn_cast<LoadInst>(Inst);
|
|
Type *RetTy = VectorType::get(LI->getType(), VF);
|
|
Value *Ptr = LI->getPointerOperand();
|
|
unsigned Alignment = LI->getAlignment();
|
|
GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
|
|
|
|
// We don't have a gep. Scalarize the load.
|
|
if (!isConsecutiveGep(Gep)) {
|
|
scalarizeInstruction(Inst);
|
|
break;
|
|
}
|
|
|
|
// Create the new GEP with the new induction variable.
|
|
GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
|
|
unsigned NumOperands = Gep->getNumOperands();
|
|
Gep2->setOperand(NumOperands - 1, Induction);
|
|
Ptr = Builder->Insert(Gep2);
|
|
Ptr = Builder->CreateBitCast(Ptr, RetTy->getPointerTo());
|
|
LI = Builder->CreateLoad(Ptr);
|
|
LI->setAlignment(Alignment);
|
|
// Use this vector value for all users of the load.
|
|
WidenMap[Inst] = LI;
|
|
break;
|
|
}
|
|
case Instruction::ZExt:
|
|
case Instruction::SExt:
|
|
case Instruction::FPToUI:
|
|
case Instruction::FPToSI:
|
|
case Instruction::FPExt:
|
|
case Instruction::PtrToInt:
|
|
case Instruction::IntToPtr:
|
|
case Instruction::SIToFP:
|
|
case Instruction::UIToFP:
|
|
case Instruction::Trunc:
|
|
case Instruction::FPTrunc:
|
|
case Instruction::BitCast: {
|
|
/// Vectorize bitcasts.
|
|
CastInst *CI = dyn_cast<CastInst>(Inst);
|
|
Value *A = getVectorValue(Inst->getOperand(0));
|
|
Type *DestTy = VectorType::get(CI->getType()->getScalarType(), VF);
|
|
WidenMap[Inst] = Builder->CreateCast(CI->getOpcode(), A, DestTy);
|
|
break;
|
|
}
|
|
|
|
default:
|
|
/// All other instructions are unsupported. Scalarize them.
|
|
scalarizeInstruction(Inst);
|
|
break;
|
|
}// end of switch.
|
|
}// end of for_each instr.
|
|
}
|
|
|
|
void SingleBlockLoopVectorizer::deleteOldLoop() {
|
|
// The original basic block.
|
|
BasicBlock *BB = Orig->getHeader();
|
|
SE->forgetLoop(Orig);
|
|
|
|
LI->removeBlock(BB);
|
|
Orig->addBasicBlockToLoop(Induction->getParent(), LI->getBase());
|
|
|
|
// Remove the old loop block.
|
|
DeleteDeadBlock(BB);
|
|
}
|
|
|
|
unsigned LoopVectorizationLegality::getLoopMaxVF() {
|
|
if (!TheLoop->getLoopPreheader()) {
|
|
assert(false && "No preheader!!");
|
|
DEBUG(dbgs() << "LV: Loop not normalized." << "\n");
|
|
return 1;
|
|
}
|
|
|
|
// We can only vectorize single basic block loops.
|
|
unsigned NumBlocks = TheLoop->getNumBlocks();
|
|
if (NumBlocks != 1) {
|
|
DEBUG(dbgs() << "LV: Too many blocks:" << NumBlocks << "\n");
|
|
return 1;
|
|
}
|
|
|
|
// We need to have a loop header.
|
|
BasicBlock *BB = TheLoop->getHeader();
|
|
DEBUG(dbgs() << "LV: Found a loop: " << BB->getName() << "\n");
|
|
|
|
// Find the max vectorization factor.
|
|
unsigned MaxVF = SE->getSmallConstantTripMultiple(TheLoop, BB);
|
|
|
|
|
|
// Perform an early check. Do not scan the block if we did not find a loop.
|
|
if (MaxVF < 2) {
|
|
DEBUG(dbgs() << "LV: Can't find a vectorizable loop structure\n");
|
|
return 1;
|
|
}
|
|
|
|
// Go over each instruction and look at memory deps.
|
|
if (!canVectorizeBlock(*BB)) {
|
|
DEBUG(dbgs() << "LV: Can't vectorize this loop header\n");
|
|
return 1;
|
|
}
|
|
|
|
DEBUG(dbgs() << "LV: We can vectorize this loop! VF="<<MaxVF<<"\n");
|
|
|
|
// Okay! We can vectorize. Return the max trip multiple.
|
|
return MaxVF;
|
|
}
|
|
|
|
bool LoopVectorizationLegality::canVectorizeBlock(BasicBlock &BB) {
|
|
// Holds the read and write pointers that we find.
|
|
typedef SmallVector<Value*, 10> ValueVector;
|
|
ValueVector Reads;
|
|
ValueVector Writes;
|
|
|
|
unsigned NumPhis = 0;
|
|
for (BasicBlock::iterator it = BB.begin(), e = BB.end(); it != e; ++it) {
|
|
Instruction *I = it;
|
|
|
|
PHINode *Phi = dyn_cast<PHINode>(I);
|
|
if (Phi) {
|
|
NumPhis++;
|
|
// We only look at integer phi nodes.
|
|
if (!Phi->getType()->isIntegerTy()) {
|
|
DEBUG(dbgs() << "LV: Found an non-int PHI.\n");
|
|
return false;
|
|
}
|
|
|
|
// If we found an induction variable.
|
|
if (NumPhis > 1) {
|
|
DEBUG(dbgs() << "LV: Found more than one PHI.\n");
|
|
return false;
|
|
}
|
|
|
|
// This should not happen because the loop should be normalized.
|
|
if (Phi->getNumIncomingValues() != 2) {
|
|
DEBUG(dbgs() << "LV: Found an invalid PHI.\n");
|
|
return false;
|
|
}
|
|
|
|
// Check that the PHI is consecutive and starts at zero.
|
|
const SCEV *PhiScev = SE->getSCEV(Phi);
|
|
const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
|
|
if (!AR) {
|
|
DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
|
|
return false;
|
|
}
|
|
|
|
const SCEV *Step = AR->getStepRecurrence(*SE);
|
|
const SCEV *Start = AR->getStart();
|
|
|
|
if (!Step->isOne() || !Start->isZero()) {
|
|
DEBUG(dbgs() << "LV: PHI does not start at zero or steps by one.\n");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// If this is a load, record its pointer. If it is not a load, abort.
|
|
// Notice that we don't handle function calls that read or write.
|
|
if (I->mayReadFromMemory()) {
|
|
LoadInst *Ld = dyn_cast<LoadInst>(I);
|
|
if (!Ld) return false;
|
|
if (!Ld->isSimple()) {
|
|
DEBUG(dbgs() << "LV: Found a non-simple load.\n");
|
|
return false;
|
|
}
|
|
GetUnderlyingObjects(Ld->getPointerOperand(), Reads, DL);
|
|
}
|
|
|
|
// Record store pointers. Abort on all other instructions that write to
|
|
// memory.
|
|
if (I->mayWriteToMemory()) {
|
|
StoreInst *St = dyn_cast<StoreInst>(I);
|
|
if (!St) return false;
|
|
if (!St->isSimple()) {
|
|
DEBUG(dbgs() << "LV: Found a non-simple store.\n");
|
|
return false;
|
|
}
|
|
GetUnderlyingObjects(St->getPointerOperand(), Writes, DL);
|
|
}
|
|
|
|
// We still don't handle functions.
|
|
CallInst *CI = dyn_cast<CallInst>(I);
|
|
if (CI) {
|
|
DEBUG(dbgs() << "LV: Found a call site:"<<
|
|
CI->getCalledFunction()->getName() << "\n");
|
|
return false;
|
|
}
|
|
|
|
// We do not re-vectorize vectors.
|
|
if (!VectorType::isValidElementType(I->getType()) &&
|
|
!I->getType()->isVoidTy()) {
|
|
DEBUG(dbgs() << "LV: Found unvectorizable type." << "\n");
|
|
return false;
|
|
}
|
|
//Check that all of the users of the loop are inside the BB.
|
|
for (Value::use_iterator it = I->use_begin(), e = I->use_end();
|
|
it != e; ++it) {
|
|
Instruction *U = cast<Instruction>(*it);
|
|
BasicBlock *Parent = U->getParent();
|
|
if (Parent != &BB) {
|
|
DEBUG(dbgs() << "LV: Found an outside user for : "<< *U << "\n");
|
|
return false;
|
|
}
|
|
}
|
|
} // next instr.
|
|
|
|
// Check that the underlying objects of the reads and writes are either
|
|
// disjoint memory locations, or that they are no-alias arguments.
|
|
ValueVector::iterator r, re, w, we;
|
|
for (r = Reads.begin(), re = Reads.end(); r != re; ++r) {
|
|
if (!isKnownDisjoint(*r)) {
|
|
DEBUG(dbgs() << "LV: Found a bad read Ptr: "<< **r << "\n");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
for (w = Writes.begin(), we = Writes.end(); w != we; ++w) {
|
|
if (!isKnownDisjoint(*w)) {
|
|
DEBUG(dbgs() << "LV: Found a bad write Ptr: "<< **w << "\n");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Check that there are no multiple write locations to the same pointer.
|
|
SmallPtrSet<Value*, 8> BasePointers;
|
|
for (w = Writes.begin(), we = Writes.end(); w != we; ++w) {
|
|
if (BasePointers.count(*w)) {
|
|
DEBUG(dbgs() << "LV: Multiple writes to the same index :"<< **w << "\n");
|
|
return false;
|
|
}
|
|
BasePointers.insert(*w);
|
|
}
|
|
|
|
// Sort the writes vector so that we can use a binary search.
|
|
std::sort(Writes.begin(), Writes.end());
|
|
// Check that the reads and the writes are disjoint.
|
|
for (r = Reads.begin(), re = Reads.end(); r != re; ++r) {
|
|
if (std::binary_search(Writes.begin(), Writes.end(), *r)) {
|
|
DEBUG(dbgs() << "Vectorizer: Found a read/write ptr:"<< **r << "\n");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// All is okay.
|
|
return true;
|
|
}
|
|
|
|
/// Checks if the value is a Global variable or if it is an Arguments
|
|
/// marked with the NoAlias attribute.
|
|
bool LoopVectorizationLegality::isKnownDisjoint(Value* Val) {
|
|
assert(Val && "Invalid value");
|
|
if (dyn_cast<GlobalValue>(Val))
|
|
return true;
|
|
if (dyn_cast<AllocaInst>(Val))
|
|
return true;
|
|
Argument *A = dyn_cast<Argument>(Val);
|
|
if (!A)
|
|
return false;
|
|
return A->hasNoAliasAttr();
|
|
}
|
|
|
|
} // namespace
|
|
|
|
char LoopVectorize::ID = 0;
|
|
static const char lv_name[] = "Loop Vectorization";
|
|
INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
|
|
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
|
|
INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
|
|
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
|
|
INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
|
|
|
|
namespace llvm {
|
|
Pass *createLoopVectorizePass() {
|
|
return new LoopVectorize();
|
|
}
|
|
|
|
}
|
|
|