mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@92760 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			786 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			786 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass performs various transformations related to eliminating memcpy
 | |
| // calls, or transforming sets of stores into memset's.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "memcpyopt"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/IntrinsicInst.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/LLVMContext.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/Dominators.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/MemoryDependenceAnalysis.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/GetElementPtrTypeIterator.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include <list>
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted");
 | |
| STATISTIC(NumMemSetInfer, "Number of memsets inferred");
 | |
| STATISTIC(NumMoveToCpy,   "Number of memmoves converted to memcpy");
 | |
| 
 | |
| /// isBytewiseValue - If the specified value can be set by repeating the same
 | |
| /// byte in memory, return the i8 value that it is represented with.  This is
 | |
| /// true for all i8 values obviously, but is also true for i32 0, i32 -1,
 | |
| /// i16 0xF0F0, double 0.0 etc.  If the value can't be handled with a repeated
 | |
| /// byte store (e.g. i16 0x1234), return null.
 | |
| static Value *isBytewiseValue(Value *V) {
 | |
|   LLVMContext &Context = V->getContext();
 | |
|   
 | |
|   // All byte-wide stores are splatable, even of arbitrary variables.
 | |
|   if (V->getType()->isInteger(8)) return V;
 | |
|   
 | |
|   // Constant float and double values can be handled as integer values if the
 | |
|   // corresponding integer value is "byteable".  An important case is 0.0. 
 | |
|   if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
 | |
|     if (CFP->getType()->isFloatTy())
 | |
|       V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(Context));
 | |
|     if (CFP->getType()->isDoubleTy())
 | |
|       V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(Context));
 | |
|     // Don't handle long double formats, which have strange constraints.
 | |
|   }
 | |
|   
 | |
|   // We can handle constant integers that are power of two in size and a 
 | |
|   // multiple of 8 bits.
 | |
|   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
 | |
|     unsigned Width = CI->getBitWidth();
 | |
|     if (isPowerOf2_32(Width) && Width > 8) {
 | |
|       // We can handle this value if the recursive binary decomposition is the
 | |
|       // same at all levels.
 | |
|       APInt Val = CI->getValue();
 | |
|       APInt Val2;
 | |
|       while (Val.getBitWidth() != 8) {
 | |
|         unsigned NextWidth = Val.getBitWidth()/2;
 | |
|         Val2  = Val.lshr(NextWidth);
 | |
|         Val2.trunc(Val.getBitWidth()/2);
 | |
|         Val.trunc(Val.getBitWidth()/2);
 | |
| 
 | |
|         // If the top/bottom halves aren't the same, reject it.
 | |
|         if (Val != Val2)
 | |
|           return 0;
 | |
|       }
 | |
|       return ConstantInt::get(Context, Val);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Conceptually, we could handle things like:
 | |
|   //   %a = zext i8 %X to i16
 | |
|   //   %b = shl i16 %a, 8
 | |
|   //   %c = or i16 %a, %b
 | |
|   // but until there is an example that actually needs this, it doesn't seem
 | |
|   // worth worrying about.
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| static int64_t GetOffsetFromIndex(const GetElementPtrInst *GEP, unsigned Idx,
 | |
|                                   bool &VariableIdxFound, TargetData &TD) {
 | |
|   // Skip over the first indices.
 | |
|   gep_type_iterator GTI = gep_type_begin(GEP);
 | |
|   for (unsigned i = 1; i != Idx; ++i, ++GTI)
 | |
|     /*skip along*/;
 | |
|   
 | |
|   // Compute the offset implied by the rest of the indices.
 | |
|   int64_t Offset = 0;
 | |
|   for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
 | |
|     ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
 | |
|     if (OpC == 0)
 | |
|       return VariableIdxFound = true;
 | |
|     if (OpC->isZero()) continue;  // No offset.
 | |
| 
 | |
|     // Handle struct indices, which add their field offset to the pointer.
 | |
|     if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
 | |
|       Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     // Otherwise, we have a sequential type like an array or vector.  Multiply
 | |
|     // the index by the ElementSize.
 | |
|     uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
 | |
|     Offset += Size*OpC->getSExtValue();
 | |
|   }
 | |
| 
 | |
|   return Offset;
 | |
| }
 | |
| 
 | |
| /// IsPointerOffset - Return true if Ptr1 is provably equal to Ptr2 plus a
 | |
| /// constant offset, and return that constant offset.  For example, Ptr1 might
 | |
| /// be &A[42], and Ptr2 might be &A[40].  In this case offset would be -8.
 | |
| static bool IsPointerOffset(Value *Ptr1, Value *Ptr2, int64_t &Offset,
 | |
|                             TargetData &TD) {
 | |
|   // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
 | |
|   // base.  After that base, they may have some number of common (and
 | |
|   // potentially variable) indices.  After that they handle some constant
 | |
|   // offset, which determines their offset from each other.  At this point, we
 | |
|   // handle no other case.
 | |
|   GetElementPtrInst *GEP1 = dyn_cast<GetElementPtrInst>(Ptr1);
 | |
|   GetElementPtrInst *GEP2 = dyn_cast<GetElementPtrInst>(Ptr2);
 | |
|   if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0))
 | |
|     return false;
 | |
|   
 | |
|   // Skip any common indices and track the GEP types.
 | |
|   unsigned Idx = 1;
 | |
|   for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
 | |
|     if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
 | |
|       break;
 | |
| 
 | |
|   bool VariableIdxFound = false;
 | |
|   int64_t Offset1 = GetOffsetFromIndex(GEP1, Idx, VariableIdxFound, TD);
 | |
|   int64_t Offset2 = GetOffsetFromIndex(GEP2, Idx, VariableIdxFound, TD);
 | |
|   if (VariableIdxFound) return false;
 | |
|   
 | |
|   Offset = Offset2-Offset1;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// MemsetRange - Represents a range of memset'd bytes with the ByteVal value.
 | |
| /// This allows us to analyze stores like:
 | |
| ///   store 0 -> P+1
 | |
| ///   store 0 -> P+0
 | |
| ///   store 0 -> P+3
 | |
| ///   store 0 -> P+2
 | |
| /// which sometimes happens with stores to arrays of structs etc.  When we see
 | |
| /// the first store, we make a range [1, 2).  The second store extends the range
 | |
| /// to [0, 2).  The third makes a new range [2, 3).  The fourth store joins the
 | |
| /// two ranges into [0, 3) which is memset'able.
 | |
| namespace {
 | |
| struct MemsetRange {
 | |
|   // Start/End - A semi range that describes the span that this range covers.
 | |
|   // The range is closed at the start and open at the end: [Start, End).  
 | |
|   int64_t Start, End;
 | |
| 
 | |
|   /// StartPtr - The getelementptr instruction that points to the start of the
 | |
|   /// range.
 | |
|   Value *StartPtr;
 | |
|   
 | |
|   /// Alignment - The known alignment of the first store.
 | |
|   unsigned Alignment;
 | |
|   
 | |
|   /// TheStores - The actual stores that make up this range.
 | |
|   SmallVector<StoreInst*, 16> TheStores;
 | |
|   
 | |
|   bool isProfitableToUseMemset(const TargetData &TD) const;
 | |
| 
 | |
| };
 | |
| } // end anon namespace
 | |
| 
 | |
| bool MemsetRange::isProfitableToUseMemset(const TargetData &TD) const {
 | |
|   // If we found more than 8 stores to merge or 64 bytes, use memset.
 | |
|   if (TheStores.size() >= 8 || End-Start >= 64) return true;
 | |
|   
 | |
|   // Assume that the code generator is capable of merging pairs of stores
 | |
|   // together if it wants to.
 | |
|   if (TheStores.size() <= 2) return false;
 | |
|   
 | |
|   // If we have fewer than 8 stores, it can still be worthwhile to do this.
 | |
|   // For example, merging 4 i8 stores into an i32 store is useful almost always.
 | |
|   // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the
 | |
|   // memset will be split into 2 32-bit stores anyway) and doing so can
 | |
|   // pessimize the llvm optimizer.
 | |
|   //
 | |
|   // Since we don't have perfect knowledge here, make some assumptions: assume
 | |
|   // the maximum GPR width is the same size as the pointer size and assume that
 | |
|   // this width can be stored.  If so, check to see whether we will end up
 | |
|   // actually reducing the number of stores used.
 | |
|   unsigned Bytes = unsigned(End-Start);
 | |
|   unsigned NumPointerStores = Bytes/TD.getPointerSize();
 | |
|   
 | |
|   // Assume the remaining bytes if any are done a byte at a time.
 | |
|   unsigned NumByteStores = Bytes - NumPointerStores*TD.getPointerSize();
 | |
|   
 | |
|   // If we will reduce the # stores (according to this heuristic), do the
 | |
|   // transformation.  This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32
 | |
|   // etc.
 | |
|   return TheStores.size() > NumPointerStores+NumByteStores;
 | |
| }    
 | |
| 
 | |
| 
 | |
| namespace {
 | |
| class MemsetRanges {
 | |
|   /// Ranges - A sorted list of the memset ranges.  We use std::list here
 | |
|   /// because each element is relatively large and expensive to copy.
 | |
|   std::list<MemsetRange> Ranges;
 | |
|   typedef std::list<MemsetRange>::iterator range_iterator;
 | |
|   TargetData &TD;
 | |
| public:
 | |
|   MemsetRanges(TargetData &td) : TD(td) {}
 | |
|   
 | |
|   typedef std::list<MemsetRange>::const_iterator const_iterator;
 | |
|   const_iterator begin() const { return Ranges.begin(); }
 | |
|   const_iterator end() const { return Ranges.end(); }
 | |
|   bool empty() const { return Ranges.empty(); }
 | |
|   
 | |
|   void addStore(int64_t OffsetFromFirst, StoreInst *SI);
 | |
| };
 | |
|   
 | |
| } // end anon namespace
 | |
| 
 | |
| 
 | |
| /// addStore - Add a new store to the MemsetRanges data structure.  This adds a
 | |
| /// new range for the specified store at the specified offset, merging into
 | |
| /// existing ranges as appropriate.
 | |
| void MemsetRanges::addStore(int64_t Start, StoreInst *SI) {
 | |
|   int64_t End = Start+TD.getTypeStoreSize(SI->getOperand(0)->getType());
 | |
|   
 | |
|   // Do a linear search of the ranges to see if this can be joined and/or to
 | |
|   // find the insertion point in the list.  We keep the ranges sorted for
 | |
|   // simplicity here.  This is a linear search of a linked list, which is ugly,
 | |
|   // however the number of ranges is limited, so this won't get crazy slow.
 | |
|   range_iterator I = Ranges.begin(), E = Ranges.end();
 | |
|   
 | |
|   while (I != E && Start > I->End)
 | |
|     ++I;
 | |
|   
 | |
|   // We now know that I == E, in which case we didn't find anything to merge
 | |
|   // with, or that Start <= I->End.  If End < I->Start or I == E, then we need
 | |
|   // to insert a new range.  Handle this now.
 | |
|   if (I == E || End < I->Start) {
 | |
|     MemsetRange &R = *Ranges.insert(I, MemsetRange());
 | |
|     R.Start        = Start;
 | |
|     R.End          = End;
 | |
|     R.StartPtr     = SI->getPointerOperand();
 | |
|     R.Alignment    = SI->getAlignment();
 | |
|     R.TheStores.push_back(SI);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // This store overlaps with I, add it.
 | |
|   I->TheStores.push_back(SI);
 | |
|   
 | |
|   // At this point, we may have an interval that completely contains our store.
 | |
|   // If so, just add it to the interval and return.
 | |
|   if (I->Start <= Start && I->End >= End)
 | |
|     return;
 | |
|   
 | |
|   // Now we know that Start <= I->End and End >= I->Start so the range overlaps
 | |
|   // but is not entirely contained within the range.
 | |
|   
 | |
|   // See if the range extends the start of the range.  In this case, it couldn't
 | |
|   // possibly cause it to join the prior range, because otherwise we would have
 | |
|   // stopped on *it*.
 | |
|   if (Start < I->Start) {
 | |
|     I->Start = Start;
 | |
|     I->StartPtr = SI->getPointerOperand();
 | |
|     I->Alignment = SI->getAlignment();
 | |
|   }
 | |
|     
 | |
|   // Now we know that Start <= I->End and Start >= I->Start (so the startpoint
 | |
|   // is in or right at the end of I), and that End >= I->Start.  Extend I out to
 | |
|   // End.
 | |
|   if (End > I->End) {
 | |
|     I->End = End;
 | |
|     range_iterator NextI = I;
 | |
|     while (++NextI != E && End >= NextI->Start) {
 | |
|       // Merge the range in.
 | |
|       I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end());
 | |
|       if (NextI->End > I->End)
 | |
|         I->End = NextI->End;
 | |
|       Ranges.erase(NextI);
 | |
|       NextI = I;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                         MemCpyOpt Pass
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
|   class MemCpyOpt : public FunctionPass {
 | |
|     bool runOnFunction(Function &F);
 | |
|   public:
 | |
|     static char ID; // Pass identification, replacement for typeid
 | |
|     MemCpyOpt() : FunctionPass(&ID) {}
 | |
| 
 | |
|   private:
 | |
|     // This transformation requires dominator postdominator info
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AU.setPreservesCFG();
 | |
|       AU.addRequired<DominatorTree>();
 | |
|       AU.addRequired<MemoryDependenceAnalysis>();
 | |
|       AU.addRequired<AliasAnalysis>();
 | |
|       AU.addPreserved<AliasAnalysis>();
 | |
|       AU.addPreserved<MemoryDependenceAnalysis>();
 | |
|     }
 | |
|   
 | |
|     // Helper fuctions
 | |
|     bool processStore(StoreInst *SI, BasicBlock::iterator &BBI);
 | |
|     bool processMemCpy(MemCpyInst *M);
 | |
|     bool processMemMove(MemMoveInst *M);
 | |
|     bool performCallSlotOptzn(MemCpyInst *cpy, CallInst *C);
 | |
|     bool iterateOnFunction(Function &F);
 | |
|   };
 | |
|   
 | |
|   char MemCpyOpt::ID = 0;
 | |
| }
 | |
| 
 | |
| // createMemCpyOptPass - The public interface to this file...
 | |
| FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOpt(); }
 | |
| 
 | |
| static RegisterPass<MemCpyOpt> X("memcpyopt",
 | |
|                                  "MemCpy Optimization");
 | |
| 
 | |
| 
 | |
| 
 | |
| /// processStore - When GVN is scanning forward over instructions, we look for
 | |
| /// some other patterns to fold away.  In particular, this looks for stores to
 | |
| /// neighboring locations of memory.  If it sees enough consequtive ones
 | |
| /// (currently 4) it attempts to merge them together into a memcpy/memset.
 | |
| bool MemCpyOpt::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
 | |
|   if (SI->isVolatile()) return false;
 | |
|   
 | |
|   LLVMContext &Context = SI->getContext();
 | |
| 
 | |
|   // There are two cases that are interesting for this code to handle: memcpy
 | |
|   // and memset.  Right now we only handle memset.
 | |
|   
 | |
|   // Ensure that the value being stored is something that can be memset'able a
 | |
|   // byte at a time like "0" or "-1" or any width, as well as things like
 | |
|   // 0xA0A0A0A0 and 0.0.
 | |
|   Value *ByteVal = isBytewiseValue(SI->getOperand(0));
 | |
|   if (!ByteVal)
 | |
|     return false;
 | |
| 
 | |
|   TargetData *TD = getAnalysisIfAvailable<TargetData>();
 | |
|   if (!TD) return false;
 | |
|   AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
 | |
|   Module *M = SI->getParent()->getParent()->getParent();
 | |
| 
 | |
|   // Okay, so we now have a single store that can be splatable.  Scan to find
 | |
|   // all subsequent stores of the same value to offset from the same pointer.
 | |
|   // Join these together into ranges, so we can decide whether contiguous blocks
 | |
|   // are stored.
 | |
|   MemsetRanges Ranges(*TD);
 | |
|   
 | |
|   Value *StartPtr = SI->getPointerOperand();
 | |
|   
 | |
|   BasicBlock::iterator BI = SI;
 | |
|   for (++BI; !isa<TerminatorInst>(BI); ++BI) {
 | |
|     if (isa<CallInst>(BI) || isa<InvokeInst>(BI)) { 
 | |
|       // If the call is readnone, ignore it, otherwise bail out.  We don't even
 | |
|       // allow readonly here because we don't want something like:
 | |
|       // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
 | |
|       if (AA.getModRefBehavior(CallSite::get(BI)) ==
 | |
|             AliasAnalysis::DoesNotAccessMemory)
 | |
|         continue;
 | |
|       
 | |
|       // TODO: If this is a memset, try to join it in.
 | |
|       
 | |
|       break;
 | |
|     } else if (isa<VAArgInst>(BI) || isa<LoadInst>(BI))
 | |
|       break;
 | |
| 
 | |
|     // If this is a non-store instruction it is fine, ignore it.
 | |
|     StoreInst *NextStore = dyn_cast<StoreInst>(BI);
 | |
|     if (NextStore == 0) continue;
 | |
|     
 | |
|     // If this is a store, see if we can merge it in.
 | |
|     if (NextStore->isVolatile()) break;
 | |
|     
 | |
|     // Check to see if this stored value is of the same byte-splattable value.
 | |
|     if (ByteVal != isBytewiseValue(NextStore->getOperand(0)))
 | |
|       break;
 | |
| 
 | |
|     // Check to see if this store is to a constant offset from the start ptr.
 | |
|     int64_t Offset;
 | |
|     if (!IsPointerOffset(StartPtr, NextStore->getPointerOperand(), Offset, *TD))
 | |
|       break;
 | |
| 
 | |
|     Ranges.addStore(Offset, NextStore);
 | |
|   }
 | |
| 
 | |
|   // If we have no ranges, then we just had a single store with nothing that
 | |
|   // could be merged in.  This is a very common case of course.
 | |
|   if (Ranges.empty())
 | |
|     return false;
 | |
|   
 | |
|   // If we had at least one store that could be merged in, add the starting
 | |
|   // store as well.  We try to avoid this unless there is at least something
 | |
|   // interesting as a small compile-time optimization.
 | |
|   Ranges.addStore(0, SI);
 | |
|   
 | |
|   Function *MemSetF = 0;
 | |
|   
 | |
|   // Now that we have full information about ranges, loop over the ranges and
 | |
|   // emit memset's for anything big enough to be worthwhile.
 | |
|   bool MadeChange = false;
 | |
|   for (MemsetRanges::const_iterator I = Ranges.begin(), E = Ranges.end();
 | |
|        I != E; ++I) {
 | |
|     const MemsetRange &Range = *I;
 | |
| 
 | |
|     if (Range.TheStores.size() == 1) continue;
 | |
|     
 | |
|     // If it is profitable to lower this range to memset, do so now.
 | |
|     if (!Range.isProfitableToUseMemset(*TD))
 | |
|       continue;
 | |
|     
 | |
|     // Otherwise, we do want to transform this!  Create a new memset.  We put
 | |
|     // the memset right before the first instruction that isn't part of this
 | |
|     // memset block.  This ensure that the memset is dominated by any addressing
 | |
|     // instruction needed by the start of the block.
 | |
|     BasicBlock::iterator InsertPt = BI;
 | |
|   
 | |
|     if (MemSetF == 0) {
 | |
|       const Type *Ty = Type::getInt64Ty(Context);
 | |
|       MemSetF = Intrinsic::getDeclaration(M, Intrinsic::memset, &Ty, 1);
 | |
|     }
 | |
|     
 | |
|     // Get the starting pointer of the block.
 | |
|     StartPtr = Range.StartPtr;
 | |
|   
 | |
|     // Cast the start ptr to be i8* as memset requires.
 | |
|     const Type *i8Ptr = Type::getInt8PtrTy(Context);
 | |
|     if (StartPtr->getType() != i8Ptr)
 | |
|       StartPtr = new BitCastInst(StartPtr, i8Ptr, StartPtr->getName(),
 | |
|                                  InsertPt);
 | |
|   
 | |
|     Value *Ops[] = {
 | |
|       StartPtr, ByteVal,   // Start, value
 | |
|       // size
 | |
|       ConstantInt::get(Type::getInt64Ty(Context), Range.End-Range.Start),
 | |
|       // align
 | |
|       ConstantInt::get(Type::getInt32Ty(Context), Range.Alignment)
 | |
|     };
 | |
|     Value *C = CallInst::Create(MemSetF, Ops, Ops+4, "", InsertPt);
 | |
|     DEBUG(dbgs() << "Replace stores:\n";
 | |
|           for (unsigned i = 0, e = Range.TheStores.size(); i != e; ++i)
 | |
|             dbgs() << *Range.TheStores[i];
 | |
|           dbgs() << "With: " << *C); C=C;
 | |
|   
 | |
|     // Don't invalidate the iterator
 | |
|     BBI = BI;
 | |
|   
 | |
|     // Zap all the stores.
 | |
|     for (SmallVector<StoreInst*, 16>::const_iterator
 | |
|          SI = Range.TheStores.begin(),
 | |
|          SE = Range.TheStores.end(); SI != SE; ++SI)
 | |
|       (*SI)->eraseFromParent();
 | |
|     ++NumMemSetInfer;
 | |
|     MadeChange = true;
 | |
|   }
 | |
|   
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// performCallSlotOptzn - takes a memcpy and a call that it depends on,
 | |
| /// and checks for the possibility of a call slot optimization by having
 | |
| /// the call write its result directly into the destination of the memcpy.
 | |
| bool MemCpyOpt::performCallSlotOptzn(MemCpyInst *cpy, CallInst *C) {
 | |
|   // The general transformation to keep in mind is
 | |
|   //
 | |
|   //   call @func(..., src, ...)
 | |
|   //   memcpy(dest, src, ...)
 | |
|   //
 | |
|   // ->
 | |
|   //
 | |
|   //   memcpy(dest, src, ...)
 | |
|   //   call @func(..., dest, ...)
 | |
|   //
 | |
|   // Since moving the memcpy is technically awkward, we additionally check that
 | |
|   // src only holds uninitialized values at the moment of the call, meaning that
 | |
|   // the memcpy can be discarded rather than moved.
 | |
| 
 | |
|   // Deliberately get the source and destination with bitcasts stripped away,
 | |
|   // because we'll need to do type comparisons based on the underlying type.
 | |
|   Value *cpyDest = cpy->getDest();
 | |
|   Value *cpySrc = cpy->getSource();
 | |
|   CallSite CS = CallSite::get(C);
 | |
| 
 | |
|   // We need to be able to reason about the size of the memcpy, so we require
 | |
|   // that it be a constant.
 | |
|   ConstantInt *cpyLength = dyn_cast<ConstantInt>(cpy->getLength());
 | |
|   if (!cpyLength)
 | |
|     return false;
 | |
| 
 | |
|   // Require that src be an alloca.  This simplifies the reasoning considerably.
 | |
|   AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc);
 | |
|   if (!srcAlloca)
 | |
|     return false;
 | |
| 
 | |
|   // Check that all of src is copied to dest.
 | |
|   TargetData *TD = getAnalysisIfAvailable<TargetData>();
 | |
|   if (!TD) return false;
 | |
| 
 | |
|   ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
 | |
|   if (!srcArraySize)
 | |
|     return false;
 | |
| 
 | |
|   uint64_t srcSize = TD->getTypeAllocSize(srcAlloca->getAllocatedType()) *
 | |
|     srcArraySize->getZExtValue();
 | |
| 
 | |
|   if (cpyLength->getZExtValue() < srcSize)
 | |
|     return false;
 | |
| 
 | |
|   // Check that accessing the first srcSize bytes of dest will not cause a
 | |
|   // trap.  Otherwise the transform is invalid since it might cause a trap
 | |
|   // to occur earlier than it otherwise would.
 | |
|   if (AllocaInst *A = dyn_cast<AllocaInst>(cpyDest)) {
 | |
|     // The destination is an alloca.  Check it is larger than srcSize.
 | |
|     ConstantInt *destArraySize = dyn_cast<ConstantInt>(A->getArraySize());
 | |
|     if (!destArraySize)
 | |
|       return false;
 | |
| 
 | |
|     uint64_t destSize = TD->getTypeAllocSize(A->getAllocatedType()) *
 | |
|       destArraySize->getZExtValue();
 | |
| 
 | |
|     if (destSize < srcSize)
 | |
|       return false;
 | |
|   } else if (Argument *A = dyn_cast<Argument>(cpyDest)) {
 | |
|     // If the destination is an sret parameter then only accesses that are
 | |
|     // outside of the returned struct type can trap.
 | |
|     if (!A->hasStructRetAttr())
 | |
|       return false;
 | |
| 
 | |
|     const Type *StructTy = cast<PointerType>(A->getType())->getElementType();
 | |
|     uint64_t destSize = TD->getTypeAllocSize(StructTy);
 | |
| 
 | |
|     if (destSize < srcSize)
 | |
|       return false;
 | |
|   } else {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Check that src is not accessed except via the call and the memcpy.  This
 | |
|   // guarantees that it holds only undefined values when passed in (so the final
 | |
|   // memcpy can be dropped), that it is not read or written between the call and
 | |
|   // the memcpy, and that writing beyond the end of it is undefined.
 | |
|   SmallVector<User*, 8> srcUseList(srcAlloca->use_begin(),
 | |
|                                    srcAlloca->use_end());
 | |
|   while (!srcUseList.empty()) {
 | |
|     User *UI = srcUseList.pop_back_val();
 | |
| 
 | |
|     if (isa<BitCastInst>(UI)) {
 | |
|       for (User::use_iterator I = UI->use_begin(), E = UI->use_end();
 | |
|            I != E; ++I)
 | |
|         srcUseList.push_back(*I);
 | |
|     } else if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(UI)) {
 | |
|       if (G->hasAllZeroIndices())
 | |
|         for (User::use_iterator I = UI->use_begin(), E = UI->use_end();
 | |
|              I != E; ++I)
 | |
|           srcUseList.push_back(*I);
 | |
|       else
 | |
|         return false;
 | |
|     } else if (UI != C && UI != cpy) {
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Since we're changing the parameter to the callsite, we need to make sure
 | |
|   // that what would be the new parameter dominates the callsite.
 | |
|   DominatorTree &DT = getAnalysis<DominatorTree>();
 | |
|   if (Instruction *cpyDestInst = dyn_cast<Instruction>(cpyDest))
 | |
|     if (!DT.dominates(cpyDestInst, C))
 | |
|       return false;
 | |
| 
 | |
|   // In addition to knowing that the call does not access src in some
 | |
|   // unexpected manner, for example via a global, which we deduce from
 | |
|   // the use analysis, we also need to know that it does not sneakily
 | |
|   // access dest.  We rely on AA to figure this out for us.
 | |
|   AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
 | |
|   if (AA.getModRefInfo(C, cpy->getRawDest(), srcSize) !=
 | |
|       AliasAnalysis::NoModRef)
 | |
|     return false;
 | |
| 
 | |
|   // All the checks have passed, so do the transformation.
 | |
|   bool changedArgument = false;
 | |
|   for (unsigned i = 0; i < CS.arg_size(); ++i)
 | |
|     if (CS.getArgument(i)->stripPointerCasts() == cpySrc) {
 | |
|       if (cpySrc->getType() != cpyDest->getType())
 | |
|         cpyDest = CastInst::CreatePointerCast(cpyDest, cpySrc->getType(),
 | |
|                                               cpyDest->getName(), C);
 | |
|       changedArgument = true;
 | |
|       if (CS.getArgument(i)->getType() == cpyDest->getType())
 | |
|         CS.setArgument(i, cpyDest);
 | |
|       else
 | |
|         CS.setArgument(i, CastInst::CreatePointerCast(cpyDest, 
 | |
|                           CS.getArgument(i)->getType(), cpyDest->getName(), C));
 | |
|     }
 | |
| 
 | |
|   if (!changedArgument)
 | |
|     return false;
 | |
| 
 | |
|   // Drop any cached information about the call, because we may have changed
 | |
|   // its dependence information by changing its parameter.
 | |
|   MemoryDependenceAnalysis &MD = getAnalysis<MemoryDependenceAnalysis>();
 | |
|   MD.removeInstruction(C);
 | |
| 
 | |
|   // Remove the memcpy
 | |
|   MD.removeInstruction(cpy);
 | |
|   cpy->eraseFromParent();
 | |
|   NumMemCpyInstr++;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// processMemCpy - perform simplication of memcpy's.  If we have memcpy A which
 | |
| /// copies X to Y, and memcpy B which copies Y to Z, then we can rewrite B to be
 | |
| /// a memcpy from X to Z (or potentially a memmove, depending on circumstances).
 | |
| ///  This allows later passes to remove the first memcpy altogether.
 | |
| bool MemCpyOpt::processMemCpy(MemCpyInst *M) {
 | |
|   MemoryDependenceAnalysis &MD = getAnalysis<MemoryDependenceAnalysis>();
 | |
| 
 | |
|   // The are two possible optimizations we can do for memcpy:
 | |
|   //   a) memcpy-memcpy xform which exposes redundance for DSE.
 | |
|   //   b) call-memcpy xform for return slot optimization.
 | |
|   MemDepResult dep = MD.getDependency(M);
 | |
|   if (!dep.isClobber())
 | |
|     return false;
 | |
|   if (!isa<MemCpyInst>(dep.getInst())) {
 | |
|     if (CallInst *C = dyn_cast<CallInst>(dep.getInst()))
 | |
|       return performCallSlotOptzn(M, C);
 | |
|     return false;
 | |
|   }
 | |
|   
 | |
|   MemCpyInst *MDep = cast<MemCpyInst>(dep.getInst());
 | |
|   
 | |
|   // We can only transforms memcpy's where the dest of one is the source of the
 | |
|   // other
 | |
|   if (M->getSource() != MDep->getDest())
 | |
|     return false;
 | |
|   
 | |
|   // Second, the length of the memcpy's must be the same, or the preceeding one
 | |
|   // must be larger than the following one.
 | |
|   ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength());
 | |
|   ConstantInt *C2 = dyn_cast<ConstantInt>(M->getLength());
 | |
|   if (!C1 || !C2)
 | |
|     return false;
 | |
|   
 | |
|   uint64_t DepSize = C1->getValue().getZExtValue();
 | |
|   uint64_t CpySize = C2->getValue().getZExtValue();
 | |
|   
 | |
|   if (DepSize < CpySize)
 | |
|     return false;
 | |
|   
 | |
|   // Finally, we have to make sure that the dest of the second does not
 | |
|   // alias the source of the first
 | |
|   AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
 | |
|   if (AA.alias(M->getRawDest(), CpySize, MDep->getRawSource(), DepSize) !=
 | |
|       AliasAnalysis::NoAlias)
 | |
|     return false;
 | |
|   else if (AA.alias(M->getRawDest(), CpySize, M->getRawSource(), CpySize) !=
 | |
|            AliasAnalysis::NoAlias)
 | |
|     return false;
 | |
|   else if (AA.alias(MDep->getRawDest(), DepSize, MDep->getRawSource(), DepSize)
 | |
|            != AliasAnalysis::NoAlias)
 | |
|     return false;
 | |
|   
 | |
|   // If all checks passed, then we can transform these memcpy's
 | |
|   const Type *Ty = M->getLength()->getType();
 | |
|   Function *MemCpyFun = Intrinsic::getDeclaration(
 | |
|                                  M->getParent()->getParent()->getParent(),
 | |
|                                  M->getIntrinsicID(), &Ty, 1);
 | |
|     
 | |
|   Value *Args[4] = {
 | |
|     M->getRawDest(), MDep->getRawSource(), M->getLength(), M->getAlignmentCst()
 | |
|   };
 | |
|   
 | |
|   CallInst *C = CallInst::Create(MemCpyFun, Args, Args+4, "", M);
 | |
|   
 | |
|   
 | |
|   // If C and M don't interfere, then this is a valid transformation.  If they
 | |
|   // did, this would mean that the two sources overlap, which would be bad.
 | |
|   if (MD.getDependency(C) == dep) {
 | |
|     MD.removeInstruction(M);
 | |
|     M->eraseFromParent();
 | |
|     NumMemCpyInstr++;
 | |
|     return true;
 | |
|   }
 | |
|   
 | |
|   // Otherwise, there was no point in doing this, so we remove the call we
 | |
|   // inserted and act like nothing happened.
 | |
|   MD.removeInstruction(C);
 | |
|   C->eraseFromParent();
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// processMemMove - Transforms memmove calls to memcpy calls when the src/dst
 | |
| /// are guaranteed not to alias.
 | |
| bool MemCpyOpt::processMemMove(MemMoveInst *M) {
 | |
|   AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
 | |
| 
 | |
|   // If the memmove is a constant size, use it for the alias query, this allows
 | |
|   // us to optimize things like: memmove(P, P+64, 64);
 | |
|   uint64_t MemMoveSize = ~0ULL;
 | |
|   if (ConstantInt *Len = dyn_cast<ConstantInt>(M->getLength()))
 | |
|     MemMoveSize = Len->getZExtValue();
 | |
|   
 | |
|   // See if the pointers alias.
 | |
|   if (AA.alias(M->getRawDest(), MemMoveSize, M->getRawSource(), MemMoveSize) !=
 | |
|       AliasAnalysis::NoAlias)
 | |
|     return false;
 | |
|   
 | |
|   DEBUG(dbgs() << "MemCpyOpt: Optimizing memmove -> memcpy: " << *M << "\n");
 | |
|   
 | |
|   // If not, then we know we can transform this.
 | |
|   Module *Mod = M->getParent()->getParent()->getParent();
 | |
|   const Type *Ty = M->getLength()->getType();
 | |
|   M->setOperand(0, Intrinsic::getDeclaration(Mod, Intrinsic::memcpy, &Ty, 1));
 | |
| 
 | |
|   // MemDep may have over conservative information about this instruction, just
 | |
|   // conservatively flush it from the cache.
 | |
|   getAnalysis<MemoryDependenceAnalysis>().removeInstruction(M);
 | |
| 
 | |
|   ++NumMoveToCpy;
 | |
|   return true;
 | |
| }
 | |
|   
 | |
| 
 | |
| // MemCpyOpt::iterateOnFunction - Executes one iteration of GVN.
 | |
| bool MemCpyOpt::iterateOnFunction(Function &F) {
 | |
|   bool MadeChange = false;
 | |
| 
 | |
|   // Walk all instruction in the function.
 | |
|   for (Function::iterator BB = F.begin(), BBE = F.end(); BB != BBE; ++BB) {
 | |
|     for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
 | |
|          BI != BE;) {
 | |
|       // Avoid invalidating the iterator.
 | |
|       Instruction *I = BI++;
 | |
|       
 | |
|       if (StoreInst *SI = dyn_cast<StoreInst>(I))
 | |
|         MadeChange |= processStore(SI, BI);
 | |
|       else if (MemCpyInst *M = dyn_cast<MemCpyInst>(I))
 | |
|         MadeChange |= processMemCpy(M);
 | |
|       else if (MemMoveInst *M = dyn_cast<MemMoveInst>(I)) {
 | |
|         if (processMemMove(M)) {
 | |
|           --BI;         // Reprocess the new memcpy.
 | |
|           MadeChange = true;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| // MemCpyOpt::runOnFunction - This is the main transformation entry point for a
 | |
| // function.
 | |
| //
 | |
| bool MemCpyOpt::runOnFunction(Function &F) {
 | |
|   bool MadeChange = false;
 | |
|   while (1) {
 | |
|     if (!iterateOnFunction(F))
 | |
|       break;
 | |
|     MadeChange = true;
 | |
|   }
 | |
|   
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 |