mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-03 14:21:30 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206142 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			551 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			551 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- llvm/Analysis/LoopInfoImpl.h - Natural Loop Calculator ---*- C++ -*-===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This is the generic implementation of LoopInfo used for both Loops and
 | 
						|
// MachineLoops.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#ifndef LLVM_ANALYSIS_LOOPINFOIMPL_H
 | 
						|
#define LLVM_ANALYSIS_LOOPINFOIMPL_H
 | 
						|
 | 
						|
#include "llvm/ADT/DepthFirstIterator.h"
 | 
						|
#include "llvm/ADT/PostOrderIterator.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// APIs for simple analysis of the loop. See header notes.
 | 
						|
 | 
						|
/// getExitingBlocks - Return all blocks inside the loop that have successors
 | 
						|
/// outside of the loop.  These are the blocks _inside of the current loop_
 | 
						|
/// which branch out.  The returned list is always unique.
 | 
						|
///
 | 
						|
template<class BlockT, class LoopT>
 | 
						|
void LoopBase<BlockT, LoopT>::
 | 
						|
getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const {
 | 
						|
  typedef GraphTraits<BlockT*> BlockTraits;
 | 
						|
  for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
 | 
						|
    for (typename BlockTraits::ChildIteratorType I =
 | 
						|
           BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
 | 
						|
         I != E; ++I)
 | 
						|
      if (!contains(*I)) {
 | 
						|
        // Not in current loop? It must be an exit block.
 | 
						|
        ExitingBlocks.push_back(*BI);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
}
 | 
						|
 | 
						|
/// getExitingBlock - If getExitingBlocks would return exactly one block,
 | 
						|
/// return that block. Otherwise return null.
 | 
						|
template<class BlockT, class LoopT>
 | 
						|
BlockT *LoopBase<BlockT, LoopT>::getExitingBlock() const {
 | 
						|
  SmallVector<BlockT*, 8> ExitingBlocks;
 | 
						|
  getExitingBlocks(ExitingBlocks);
 | 
						|
  if (ExitingBlocks.size() == 1)
 | 
						|
    return ExitingBlocks[0];
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// getExitBlocks - Return all of the successor blocks of this loop.  These
 | 
						|
/// are the blocks _outside of the current loop_ which are branched to.
 | 
						|
///
 | 
						|
template<class BlockT, class LoopT>
 | 
						|
void LoopBase<BlockT, LoopT>::
 | 
						|
getExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const {
 | 
						|
  typedef GraphTraits<BlockT*> BlockTraits;
 | 
						|
  for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
 | 
						|
    for (typename BlockTraits::ChildIteratorType I =
 | 
						|
           BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
 | 
						|
         I != E; ++I)
 | 
						|
      if (!contains(*I))
 | 
						|
        // Not in current loop? It must be an exit block.
 | 
						|
        ExitBlocks.push_back(*I);
 | 
						|
}
 | 
						|
 | 
						|
/// getExitBlock - If getExitBlocks would return exactly one block,
 | 
						|
/// return that block. Otherwise return null.
 | 
						|
template<class BlockT, class LoopT>
 | 
						|
BlockT *LoopBase<BlockT, LoopT>::getExitBlock() const {
 | 
						|
  SmallVector<BlockT*, 8> ExitBlocks;
 | 
						|
  getExitBlocks(ExitBlocks);
 | 
						|
  if (ExitBlocks.size() == 1)
 | 
						|
    return ExitBlocks[0];
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// getExitEdges - Return all pairs of (_inside_block_,_outside_block_).
 | 
						|
template<class BlockT, class LoopT>
 | 
						|
void LoopBase<BlockT, LoopT>::
 | 
						|
getExitEdges(SmallVectorImpl<Edge> &ExitEdges) const {
 | 
						|
  typedef GraphTraits<BlockT*> BlockTraits;
 | 
						|
  for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
 | 
						|
    for (typename BlockTraits::ChildIteratorType I =
 | 
						|
           BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
 | 
						|
         I != E; ++I)
 | 
						|
      if (!contains(*I))
 | 
						|
        // Not in current loop? It must be an exit block.
 | 
						|
        ExitEdges.push_back(Edge(*BI, *I));
 | 
						|
}
 | 
						|
 | 
						|
/// getLoopPreheader - If there is a preheader for this loop, return it.  A
 | 
						|
/// loop has a preheader if there is only one edge to the header of the loop
 | 
						|
/// from outside of the loop.  If this is the case, the block branching to the
 | 
						|
/// header of the loop is the preheader node.
 | 
						|
///
 | 
						|
/// This method returns null if there is no preheader for the loop.
 | 
						|
///
 | 
						|
template<class BlockT, class LoopT>
 | 
						|
BlockT *LoopBase<BlockT, LoopT>::getLoopPreheader() const {
 | 
						|
  // Keep track of nodes outside the loop branching to the header...
 | 
						|
  BlockT *Out = getLoopPredecessor();
 | 
						|
  if (!Out) return nullptr;
 | 
						|
 | 
						|
  // Make sure there is only one exit out of the preheader.
 | 
						|
  typedef GraphTraits<BlockT*> BlockTraits;
 | 
						|
  typename BlockTraits::ChildIteratorType SI = BlockTraits::child_begin(Out);
 | 
						|
  ++SI;
 | 
						|
  if (SI != BlockTraits::child_end(Out))
 | 
						|
    return nullptr;  // Multiple exits from the block, must not be a preheader.
 | 
						|
 | 
						|
  // The predecessor has exactly one successor, so it is a preheader.
 | 
						|
  return Out;
 | 
						|
}
 | 
						|
 | 
						|
/// getLoopPredecessor - If the given loop's header has exactly one unique
 | 
						|
/// predecessor outside the loop, return it. Otherwise return null.
 | 
						|
/// This is less strict that the loop "preheader" concept, which requires
 | 
						|
/// the predecessor to have exactly one successor.
 | 
						|
///
 | 
						|
template<class BlockT, class LoopT>
 | 
						|
BlockT *LoopBase<BlockT, LoopT>::getLoopPredecessor() const {
 | 
						|
  // Keep track of nodes outside the loop branching to the header...
 | 
						|
  BlockT *Out = nullptr;
 | 
						|
 | 
						|
  // Loop over the predecessors of the header node...
 | 
						|
  BlockT *Header = getHeader();
 | 
						|
  typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
 | 
						|
  for (typename InvBlockTraits::ChildIteratorType PI =
 | 
						|
         InvBlockTraits::child_begin(Header),
 | 
						|
         PE = InvBlockTraits::child_end(Header); PI != PE; ++PI) {
 | 
						|
    typename InvBlockTraits::NodeType *N = *PI;
 | 
						|
    if (!contains(N)) {     // If the block is not in the loop...
 | 
						|
      if (Out && Out != N)
 | 
						|
        return nullptr;     // Multiple predecessors outside the loop
 | 
						|
      Out = N;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Make sure there is only one exit out of the preheader.
 | 
						|
  assert(Out && "Header of loop has no predecessors from outside loop?");
 | 
						|
  return Out;
 | 
						|
}
 | 
						|
 | 
						|
/// getLoopLatch - If there is a single latch block for this loop, return it.
 | 
						|
/// A latch block is a block that contains a branch back to the header.
 | 
						|
template<class BlockT, class LoopT>
 | 
						|
BlockT *LoopBase<BlockT, LoopT>::getLoopLatch() const {
 | 
						|
  BlockT *Header = getHeader();
 | 
						|
  typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
 | 
						|
  typename InvBlockTraits::ChildIteratorType PI =
 | 
						|
    InvBlockTraits::child_begin(Header);
 | 
						|
  typename InvBlockTraits::ChildIteratorType PE =
 | 
						|
    InvBlockTraits::child_end(Header);
 | 
						|
  BlockT *Latch = nullptr;
 | 
						|
  for (; PI != PE; ++PI) {
 | 
						|
    typename InvBlockTraits::NodeType *N = *PI;
 | 
						|
    if (contains(N)) {
 | 
						|
      if (Latch) return nullptr;
 | 
						|
      Latch = N;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Latch;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// APIs for updating loop information after changing the CFG
 | 
						|
//
 | 
						|
 | 
						|
/// addBasicBlockToLoop - This method is used by other analyses to update loop
 | 
						|
/// information.  NewBB is set to be a new member of the current loop.
 | 
						|
/// Because of this, it is added as a member of all parent loops, and is added
 | 
						|
/// to the specified LoopInfo object as being in the current basic block.  It
 | 
						|
/// is not valid to replace the loop header with this method.
 | 
						|
///
 | 
						|
template<class BlockT, class LoopT>
 | 
						|
void LoopBase<BlockT, LoopT>::
 | 
						|
addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LIB) {
 | 
						|
  assert((Blocks.empty() || LIB[getHeader()] == this) &&
 | 
						|
         "Incorrect LI specified for this loop!");
 | 
						|
  assert(NewBB && "Cannot add a null basic block to the loop!");
 | 
						|
  assert(!LIB[NewBB] && "BasicBlock already in the loop!");
 | 
						|
 | 
						|
  LoopT *L = static_cast<LoopT *>(this);
 | 
						|
 | 
						|
  // Add the loop mapping to the LoopInfo object...
 | 
						|
  LIB.BBMap[NewBB] = L;
 | 
						|
 | 
						|
  // Add the basic block to this loop and all parent loops...
 | 
						|
  while (L) {
 | 
						|
    L->addBlockEntry(NewBB);
 | 
						|
    L = L->getParentLoop();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// replaceChildLoopWith - This is used when splitting loops up.  It replaces
 | 
						|
/// the OldChild entry in our children list with NewChild, and updates the
 | 
						|
/// parent pointer of OldChild to be null and the NewChild to be this loop.
 | 
						|
/// This updates the loop depth of the new child.
 | 
						|
template<class BlockT, class LoopT>
 | 
						|
void LoopBase<BlockT, LoopT>::
 | 
						|
replaceChildLoopWith(LoopT *OldChild, LoopT *NewChild) {
 | 
						|
  assert(OldChild->ParentLoop == this && "This loop is already broken!");
 | 
						|
  assert(!NewChild->ParentLoop && "NewChild already has a parent!");
 | 
						|
  typename std::vector<LoopT *>::iterator I =
 | 
						|
    std::find(SubLoops.begin(), SubLoops.end(), OldChild);
 | 
						|
  assert(I != SubLoops.end() && "OldChild not in loop!");
 | 
						|
  *I = NewChild;
 | 
						|
  OldChild->ParentLoop = nullptr;
 | 
						|
  NewChild->ParentLoop = static_cast<LoopT *>(this);
 | 
						|
}
 | 
						|
 | 
						|
/// verifyLoop - Verify loop structure
 | 
						|
template<class BlockT, class LoopT>
 | 
						|
void LoopBase<BlockT, LoopT>::verifyLoop() const {
 | 
						|
#ifndef NDEBUG
 | 
						|
  assert(!Blocks.empty() && "Loop header is missing");
 | 
						|
 | 
						|
  // Setup for using a depth-first iterator to visit every block in the loop.
 | 
						|
  SmallVector<BlockT*, 8> ExitBBs;
 | 
						|
  getExitBlocks(ExitBBs);
 | 
						|
  llvm::SmallPtrSet<BlockT*, 8> VisitSet;
 | 
						|
  VisitSet.insert(ExitBBs.begin(), ExitBBs.end());
 | 
						|
  df_ext_iterator<BlockT*, llvm::SmallPtrSet<BlockT*, 8> >
 | 
						|
    BI = df_ext_begin(getHeader(), VisitSet),
 | 
						|
    BE = df_ext_end(getHeader(), VisitSet);
 | 
						|
 | 
						|
  // Keep track of the number of BBs visited.
 | 
						|
  unsigned NumVisited = 0;
 | 
						|
 | 
						|
  // Check the individual blocks.
 | 
						|
  for ( ; BI != BE; ++BI) {
 | 
						|
    BlockT *BB = *BI;
 | 
						|
    bool HasInsideLoopSuccs = false;
 | 
						|
    bool HasInsideLoopPreds = false;
 | 
						|
    SmallVector<BlockT *, 2> OutsideLoopPreds;
 | 
						|
 | 
						|
    typedef GraphTraits<BlockT*> BlockTraits;
 | 
						|
    for (typename BlockTraits::ChildIteratorType SI =
 | 
						|
           BlockTraits::child_begin(BB), SE = BlockTraits::child_end(BB);
 | 
						|
         SI != SE; ++SI)
 | 
						|
      if (contains(*SI)) {
 | 
						|
        HasInsideLoopSuccs = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
 | 
						|
    for (typename InvBlockTraits::ChildIteratorType PI =
 | 
						|
           InvBlockTraits::child_begin(BB), PE = InvBlockTraits::child_end(BB);
 | 
						|
         PI != PE; ++PI) {
 | 
						|
      BlockT *N = *PI;
 | 
						|
      if (contains(N))
 | 
						|
        HasInsideLoopPreds = true;
 | 
						|
      else
 | 
						|
        OutsideLoopPreds.push_back(N);
 | 
						|
    }
 | 
						|
 | 
						|
    if (BB == getHeader()) {
 | 
						|
        assert(!OutsideLoopPreds.empty() && "Loop is unreachable!");
 | 
						|
    } else if (!OutsideLoopPreds.empty()) {
 | 
						|
      // A non-header loop shouldn't be reachable from outside the loop,
 | 
						|
      // though it is permitted if the predecessor is not itself actually
 | 
						|
      // reachable.
 | 
						|
      BlockT *EntryBB = BB->getParent()->begin();
 | 
						|
      for (BlockT *CB : depth_first(EntryBB))
 | 
						|
        for (unsigned i = 0, e = OutsideLoopPreds.size(); i != e; ++i)
 | 
						|
          assert(CB != OutsideLoopPreds[i] &&
 | 
						|
                 "Loop has multiple entry points!");
 | 
						|
    }
 | 
						|
    assert(HasInsideLoopPreds && "Loop block has no in-loop predecessors!");
 | 
						|
    assert(HasInsideLoopSuccs && "Loop block has no in-loop successors!");
 | 
						|
    assert(BB != getHeader()->getParent()->begin() &&
 | 
						|
           "Loop contains function entry block!");
 | 
						|
 | 
						|
    NumVisited++;
 | 
						|
  }
 | 
						|
 | 
						|
  assert(NumVisited == getNumBlocks() && "Unreachable block in loop");
 | 
						|
 | 
						|
  // Check the subloops.
 | 
						|
  for (iterator I = begin(), E = end(); I != E; ++I)
 | 
						|
    // Each block in each subloop should be contained within this loop.
 | 
						|
    for (block_iterator BI = (*I)->block_begin(), BE = (*I)->block_end();
 | 
						|
         BI != BE; ++BI) {
 | 
						|
        assert(contains(*BI) &&
 | 
						|
               "Loop does not contain all the blocks of a subloop!");
 | 
						|
    }
 | 
						|
 | 
						|
  // Check the parent loop pointer.
 | 
						|
  if (ParentLoop) {
 | 
						|
    assert(std::find(ParentLoop->begin(), ParentLoop->end(), this) !=
 | 
						|
           ParentLoop->end() &&
 | 
						|
           "Loop is not a subloop of its parent!");
 | 
						|
  }
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/// verifyLoop - Verify loop structure of this loop and all nested loops.
 | 
						|
template<class BlockT, class LoopT>
 | 
						|
void LoopBase<BlockT, LoopT>::verifyLoopNest(
 | 
						|
  DenseSet<const LoopT*> *Loops) const {
 | 
						|
  Loops->insert(static_cast<const LoopT *>(this));
 | 
						|
  // Verify this loop.
 | 
						|
  verifyLoop();
 | 
						|
  // Verify the subloops.
 | 
						|
  for (iterator I = begin(), E = end(); I != E; ++I)
 | 
						|
    (*I)->verifyLoopNest(Loops);
 | 
						|
}
 | 
						|
 | 
						|
template<class BlockT, class LoopT>
 | 
						|
void LoopBase<BlockT, LoopT>::print(raw_ostream &OS, unsigned Depth) const {
 | 
						|
  OS.indent(Depth*2) << "Loop at depth " << getLoopDepth()
 | 
						|
       << " containing: ";
 | 
						|
 | 
						|
  for (unsigned i = 0; i < getBlocks().size(); ++i) {
 | 
						|
    if (i) OS << ",";
 | 
						|
    BlockT *BB = getBlocks()[i];
 | 
						|
    BB->printAsOperand(OS, false);
 | 
						|
    if (BB == getHeader())    OS << "<header>";
 | 
						|
    if (BB == getLoopLatch()) OS << "<latch>";
 | 
						|
    if (isLoopExiting(BB))    OS << "<exiting>";
 | 
						|
  }
 | 
						|
  OS << "\n";
 | 
						|
 | 
						|
  for (iterator I = begin(), E = end(); I != E; ++I)
 | 
						|
    (*I)->print(OS, Depth+2);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
/// Stable LoopInfo Analysis - Build a loop tree using stable iterators so the
 | 
						|
/// result does / not depend on use list (block predecessor) order.
 | 
						|
///
 | 
						|
 | 
						|
/// Discover a subloop with the specified backedges such that: All blocks within
 | 
						|
/// this loop are mapped to this loop or a subloop. And all subloops within this
 | 
						|
/// loop have their parent loop set to this loop or a subloop.
 | 
						|
template<class BlockT, class LoopT>
 | 
						|
static void discoverAndMapSubloop(LoopT *L, ArrayRef<BlockT*> Backedges,
 | 
						|
                                  LoopInfoBase<BlockT, LoopT> *LI,
 | 
						|
                                  DominatorTreeBase<BlockT> &DomTree) {
 | 
						|
  typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
 | 
						|
 | 
						|
  unsigned NumBlocks = 0;
 | 
						|
  unsigned NumSubloops = 0;
 | 
						|
 | 
						|
  // Perform a backward CFG traversal using a worklist.
 | 
						|
  std::vector<BlockT *> ReverseCFGWorklist(Backedges.begin(), Backedges.end());
 | 
						|
  while (!ReverseCFGWorklist.empty()) {
 | 
						|
    BlockT *PredBB = ReverseCFGWorklist.back();
 | 
						|
    ReverseCFGWorklist.pop_back();
 | 
						|
 | 
						|
    LoopT *Subloop = LI->getLoopFor(PredBB);
 | 
						|
    if (!Subloop) {
 | 
						|
      if (!DomTree.isReachableFromEntry(PredBB))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // This is an undiscovered block. Map it to the current loop.
 | 
						|
      LI->changeLoopFor(PredBB, L);
 | 
						|
      ++NumBlocks;
 | 
						|
      if (PredBB == L->getHeader())
 | 
						|
          continue;
 | 
						|
      // Push all block predecessors on the worklist.
 | 
						|
      ReverseCFGWorklist.insert(ReverseCFGWorklist.end(),
 | 
						|
                                InvBlockTraits::child_begin(PredBB),
 | 
						|
                                InvBlockTraits::child_end(PredBB));
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      // This is a discovered block. Find its outermost discovered loop.
 | 
						|
      while (LoopT *Parent = Subloop->getParentLoop())
 | 
						|
        Subloop = Parent;
 | 
						|
 | 
						|
      // If it is already discovered to be a subloop of this loop, continue.
 | 
						|
      if (Subloop == L)
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Discover a subloop of this loop.
 | 
						|
      Subloop->setParentLoop(L);
 | 
						|
      ++NumSubloops;
 | 
						|
      NumBlocks += Subloop->getBlocks().capacity();
 | 
						|
      PredBB = Subloop->getHeader();
 | 
						|
      // Continue traversal along predecessors that are not loop-back edges from
 | 
						|
      // within this subloop tree itself. Note that a predecessor may directly
 | 
						|
      // reach another subloop that is not yet discovered to be a subloop of
 | 
						|
      // this loop, which we must traverse.
 | 
						|
      for (typename InvBlockTraits::ChildIteratorType PI =
 | 
						|
             InvBlockTraits::child_begin(PredBB),
 | 
						|
             PE = InvBlockTraits::child_end(PredBB); PI != PE; ++PI) {
 | 
						|
        if (LI->getLoopFor(*PI) != Subloop)
 | 
						|
          ReverseCFGWorklist.push_back(*PI);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  L->getSubLoopsVector().reserve(NumSubloops);
 | 
						|
  L->reserveBlocks(NumBlocks);
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
/// Populate all loop data in a stable order during a single forward DFS.
 | 
						|
template<class BlockT, class LoopT>
 | 
						|
class PopulateLoopsDFS {
 | 
						|
  typedef GraphTraits<BlockT*> BlockTraits;
 | 
						|
  typedef typename BlockTraits::ChildIteratorType SuccIterTy;
 | 
						|
 | 
						|
  LoopInfoBase<BlockT, LoopT> *LI;
 | 
						|
  DenseSet<const BlockT *> VisitedBlocks;
 | 
						|
  std::vector<std::pair<BlockT*, SuccIterTy> > DFSStack;
 | 
						|
 | 
						|
public:
 | 
						|
  PopulateLoopsDFS(LoopInfoBase<BlockT, LoopT> *li):
 | 
						|
    LI(li) {}
 | 
						|
 | 
						|
  void traverse(BlockT *EntryBlock);
 | 
						|
 | 
						|
protected:
 | 
						|
  void insertIntoLoop(BlockT *Block);
 | 
						|
 | 
						|
  BlockT *dfsSource() { return DFSStack.back().first; }
 | 
						|
  SuccIterTy &dfsSucc() { return DFSStack.back().second; }
 | 
						|
  SuccIterTy dfsSuccEnd() { return BlockTraits::child_end(dfsSource()); }
 | 
						|
 | 
						|
  void pushBlock(BlockT *Block) {
 | 
						|
    DFSStack.push_back(std::make_pair(Block, BlockTraits::child_begin(Block)));
 | 
						|
  }
 | 
						|
};
 | 
						|
} // anonymous
 | 
						|
 | 
						|
/// Top-level driver for the forward DFS within the loop.
 | 
						|
template<class BlockT, class LoopT>
 | 
						|
void PopulateLoopsDFS<BlockT, LoopT>::traverse(BlockT *EntryBlock) {
 | 
						|
  pushBlock(EntryBlock);
 | 
						|
  VisitedBlocks.insert(EntryBlock);
 | 
						|
  while (!DFSStack.empty()) {
 | 
						|
    // Traverse the leftmost path as far as possible.
 | 
						|
    while (dfsSucc() != dfsSuccEnd()) {
 | 
						|
      BlockT *BB = *dfsSucc();
 | 
						|
      ++dfsSucc();
 | 
						|
      if (!VisitedBlocks.insert(BB).second)
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Push the next DFS successor onto the stack.
 | 
						|
      pushBlock(BB);
 | 
						|
    }
 | 
						|
    // Visit the top of the stack in postorder and backtrack.
 | 
						|
    insertIntoLoop(dfsSource());
 | 
						|
    DFSStack.pop_back();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Add a single Block to its ancestor loops in PostOrder. If the block is a
 | 
						|
/// subloop header, add the subloop to its parent in PostOrder, then reverse the
 | 
						|
/// Block and Subloop vectors of the now complete subloop to achieve RPO.
 | 
						|
template<class BlockT, class LoopT>
 | 
						|
void PopulateLoopsDFS<BlockT, LoopT>::insertIntoLoop(BlockT *Block) {
 | 
						|
  LoopT *Subloop = LI->getLoopFor(Block);
 | 
						|
  if (Subloop && Block == Subloop->getHeader()) {
 | 
						|
    // We reach this point once per subloop after processing all the blocks in
 | 
						|
    // the subloop.
 | 
						|
    if (Subloop->getParentLoop())
 | 
						|
      Subloop->getParentLoop()->getSubLoopsVector().push_back(Subloop);
 | 
						|
    else
 | 
						|
      LI->addTopLevelLoop(Subloop);
 | 
						|
 | 
						|
    // For convenience, Blocks and Subloops are inserted in postorder. Reverse
 | 
						|
    // the lists, except for the loop header, which is always at the beginning.
 | 
						|
    Subloop->reverseBlock(1);
 | 
						|
    std::reverse(Subloop->getSubLoopsVector().begin(),
 | 
						|
                 Subloop->getSubLoopsVector().end());
 | 
						|
 | 
						|
    Subloop = Subloop->getParentLoop();
 | 
						|
  }
 | 
						|
  for (; Subloop; Subloop = Subloop->getParentLoop())
 | 
						|
    Subloop->addBlockEntry(Block);
 | 
						|
}
 | 
						|
 | 
						|
/// Analyze LoopInfo discovers loops during a postorder DominatorTree traversal
 | 
						|
/// interleaved with backward CFG traversals within each subloop
 | 
						|
/// (discoverAndMapSubloop). The backward traversal skips inner subloops, so
 | 
						|
/// this part of the algorithm is linear in the number of CFG edges. Subloop and
 | 
						|
/// Block vectors are then populated during a single forward CFG traversal
 | 
						|
/// (PopulateLoopDFS).
 | 
						|
///
 | 
						|
/// During the two CFG traversals each block is seen three times:
 | 
						|
/// 1) Discovered and mapped by a reverse CFG traversal.
 | 
						|
/// 2) Visited during a forward DFS CFG traversal.
 | 
						|
/// 3) Reverse-inserted in the loop in postorder following forward DFS.
 | 
						|
///
 | 
						|
/// The Block vectors are inclusive, so step 3 requires loop-depth number of
 | 
						|
/// insertions per block.
 | 
						|
template<class BlockT, class LoopT>
 | 
						|
void LoopInfoBase<BlockT, LoopT>::
 | 
						|
Analyze(DominatorTreeBase<BlockT> &DomTree) {
 | 
						|
 | 
						|
  // Postorder traversal of the dominator tree.
 | 
						|
  DomTreeNodeBase<BlockT>* DomRoot = DomTree.getRootNode();
 | 
						|
  for (po_iterator<DomTreeNodeBase<BlockT>*> DomIter = po_begin(DomRoot),
 | 
						|
         DomEnd = po_end(DomRoot); DomIter != DomEnd; ++DomIter) {
 | 
						|
 | 
						|
    BlockT *Header = DomIter->getBlock();
 | 
						|
    SmallVector<BlockT *, 4> Backedges;
 | 
						|
 | 
						|
    // Check each predecessor of the potential loop header.
 | 
						|
    typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
 | 
						|
    for (typename InvBlockTraits::ChildIteratorType PI =
 | 
						|
           InvBlockTraits::child_begin(Header),
 | 
						|
           PE = InvBlockTraits::child_end(Header); PI != PE; ++PI) {
 | 
						|
 | 
						|
      BlockT *Backedge = *PI;
 | 
						|
 | 
						|
      // If Header dominates predBB, this is a new loop. Collect the backedges.
 | 
						|
      if (DomTree.dominates(Header, Backedge)
 | 
						|
          && DomTree.isReachableFromEntry(Backedge)) {
 | 
						|
        Backedges.push_back(Backedge);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    // Perform a backward CFG traversal to discover and map blocks in this loop.
 | 
						|
    if (!Backedges.empty()) {
 | 
						|
      LoopT *L = new LoopT(Header);
 | 
						|
      discoverAndMapSubloop(L, ArrayRef<BlockT*>(Backedges), this, DomTree);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // Perform a single forward CFG traversal to populate block and subloop
 | 
						|
  // vectors for all loops.
 | 
						|
  PopulateLoopsDFS<BlockT, LoopT> DFS(this);
 | 
						|
  DFS.traverse(DomRoot->getBlock());
 | 
						|
}
 | 
						|
 | 
						|
// Debugging
 | 
						|
template<class BlockT, class LoopT>
 | 
						|
void LoopInfoBase<BlockT, LoopT>::print(raw_ostream &OS) const {
 | 
						|
  for (unsigned i = 0; i < TopLevelLoops.size(); ++i)
 | 
						|
    TopLevelLoops[i]->print(OS);
 | 
						|
#if 0
 | 
						|
  for (DenseMap<BasicBlock*, LoopT*>::const_iterator I = BBMap.begin(),
 | 
						|
         E = BBMap.end(); I != E; ++I)
 | 
						|
    OS << "BB '" << I->first->getName() << "' level = "
 | 
						|
       << I->second->getLoopDepth() << "\n";
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
} // End llvm namespace
 | 
						|
 | 
						|
#endif
 |