mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	Add header guards to files that were missing guards. Remove #endif comments as they don't seem common in LLVM (we can easily add them back if we decide they're useful) Changes made by clang-tidy with minor tweaks. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215558 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			290 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			290 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- GenericDomTreeConstruction.h - Dominator Calculation ------*- C++ -*-==//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| /// \file
 | |
| ///
 | |
| /// Generic dominator tree construction - This file provides routines to
 | |
| /// construct immediate dominator information for a flow-graph based on the
 | |
| /// algorithm described in this document:
 | |
| ///
 | |
| ///   A Fast Algorithm for Finding Dominators in a Flowgraph
 | |
| ///   T. Lengauer & R. Tarjan, ACM TOPLAS July 1979, pgs 121-141.
 | |
| ///
 | |
| /// This implements the O(n*log(n)) versions of EVAL and LINK, because it turns
 | |
| /// out that the theoretically slower O(n*log(n)) implementation is actually
 | |
| /// faster than the almost-linear O(n*alpha(n)) version, even for large CFGs.
 | |
| ///
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| 
 | |
| #ifndef LLVM_SUPPORT_GENERICDOMTREECONSTRUCTION_H
 | |
| #define LLVM_SUPPORT_GENERICDOMTREECONSTRUCTION_H
 | |
| 
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/Support/GenericDomTree.h"
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| template<class GraphT>
 | |
| unsigned DFSPass(DominatorTreeBase<typename GraphT::NodeType>& DT,
 | |
|                  typename GraphT::NodeType* V, unsigned N) {
 | |
|   // This is more understandable as a recursive algorithm, but we can't use the
 | |
|   // recursive algorithm due to stack depth issues.  Keep it here for
 | |
|   // documentation purposes.
 | |
| #if 0
 | |
|   InfoRec &VInfo = DT.Info[DT.Roots[i]];
 | |
|   VInfo.DFSNum = VInfo.Semi = ++N;
 | |
|   VInfo.Label = V;
 | |
| 
 | |
|   Vertex.push_back(V);        // Vertex[n] = V;
 | |
| 
 | |
|   for (succ_iterator SI = succ_begin(V), E = succ_end(V); SI != E; ++SI) {
 | |
|     InfoRec &SuccVInfo = DT.Info[*SI];
 | |
|     if (SuccVInfo.Semi == 0) {
 | |
|       SuccVInfo.Parent = V;
 | |
|       N = DTDFSPass(DT, *SI, N);
 | |
|     }
 | |
|   }
 | |
| #else
 | |
|   bool IsChildOfArtificialExit = (N != 0);
 | |
| 
 | |
|   SmallVector<std::pair<typename GraphT::NodeType*,
 | |
|                         typename GraphT::ChildIteratorType>, 32> Worklist;
 | |
|   Worklist.push_back(std::make_pair(V, GraphT::child_begin(V)));
 | |
|   while (!Worklist.empty()) {
 | |
|     typename GraphT::NodeType* BB = Worklist.back().first;
 | |
|     typename GraphT::ChildIteratorType NextSucc = Worklist.back().second;
 | |
| 
 | |
|     typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &BBInfo =
 | |
|                                                                     DT.Info[BB];
 | |
| 
 | |
|     // First time we visited this BB?
 | |
|     if (NextSucc == GraphT::child_begin(BB)) {
 | |
|       BBInfo.DFSNum = BBInfo.Semi = ++N;
 | |
|       BBInfo.Label = BB;
 | |
| 
 | |
|       DT.Vertex.push_back(BB);       // Vertex[n] = V;
 | |
| 
 | |
|       if (IsChildOfArtificialExit)
 | |
|         BBInfo.Parent = 1;
 | |
| 
 | |
|       IsChildOfArtificialExit = false;
 | |
|     }
 | |
| 
 | |
|     // store the DFS number of the current BB - the reference to BBInfo might
 | |
|     // get invalidated when processing the successors.
 | |
|     unsigned BBDFSNum = BBInfo.DFSNum;
 | |
| 
 | |
|     // If we are done with this block, remove it from the worklist.
 | |
|     if (NextSucc == GraphT::child_end(BB)) {
 | |
|       Worklist.pop_back();
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Increment the successor number for the next time we get to it.
 | |
|     ++Worklist.back().second;
 | |
|     
 | |
|     // Visit the successor next, if it isn't already visited.
 | |
|     typename GraphT::NodeType* Succ = *NextSucc;
 | |
| 
 | |
|     typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &SuccVInfo =
 | |
|                                                                   DT.Info[Succ];
 | |
|     if (SuccVInfo.Semi == 0) {
 | |
|       SuccVInfo.Parent = BBDFSNum;
 | |
|       Worklist.push_back(std::make_pair(Succ, GraphT::child_begin(Succ)));
 | |
|     }
 | |
|   }
 | |
| #endif
 | |
|     return N;
 | |
| }
 | |
| 
 | |
| template<class GraphT>
 | |
| typename GraphT::NodeType* 
 | |
| Eval(DominatorTreeBase<typename GraphT::NodeType>& DT,
 | |
|      typename GraphT::NodeType *VIn, unsigned LastLinked) {
 | |
|   typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &VInInfo =
 | |
|                                                                   DT.Info[VIn];
 | |
|   if (VInInfo.DFSNum < LastLinked)
 | |
|     return VIn;
 | |
| 
 | |
|   SmallVector<typename GraphT::NodeType*, 32> Work;
 | |
|   SmallPtrSet<typename GraphT::NodeType*, 32> Visited;
 | |
| 
 | |
|   if (VInInfo.Parent >= LastLinked)
 | |
|     Work.push_back(VIn);
 | |
|   
 | |
|   while (!Work.empty()) {
 | |
|     typename GraphT::NodeType* V = Work.back();
 | |
|     typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &VInfo =
 | |
|                                                                      DT.Info[V];
 | |
|     typename GraphT::NodeType* VAncestor = DT.Vertex[VInfo.Parent];
 | |
| 
 | |
|     // Process Ancestor first
 | |
|     if (Visited.insert(VAncestor) && VInfo.Parent >= LastLinked) {
 | |
|       Work.push_back(VAncestor);
 | |
|       continue;
 | |
|     } 
 | |
|     Work.pop_back(); 
 | |
| 
 | |
|     // Update VInfo based on Ancestor info
 | |
|     if (VInfo.Parent < LastLinked)
 | |
|       continue;
 | |
| 
 | |
|     typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &VAInfo =
 | |
|                                                              DT.Info[VAncestor];
 | |
|     typename GraphT::NodeType* VAncestorLabel = VAInfo.Label;
 | |
|     typename GraphT::NodeType* VLabel = VInfo.Label;
 | |
|     if (DT.Info[VAncestorLabel].Semi < DT.Info[VLabel].Semi)
 | |
|       VInfo.Label = VAncestorLabel;
 | |
|     VInfo.Parent = VAInfo.Parent;
 | |
|   }
 | |
| 
 | |
|   return VInInfo.Label;
 | |
| }
 | |
| 
 | |
| template<class FuncT, class NodeT>
 | |
| void Calculate(DominatorTreeBase<typename GraphTraits<NodeT>::NodeType>& DT,
 | |
|                FuncT& F) {
 | |
|   typedef GraphTraits<NodeT> GraphT;
 | |
| 
 | |
|   unsigned N = 0;
 | |
|   bool MultipleRoots = (DT.Roots.size() > 1);
 | |
|   if (MultipleRoots) {
 | |
|     typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &BBInfo =
 | |
|         DT.Info[nullptr];
 | |
|     BBInfo.DFSNum = BBInfo.Semi = ++N;
 | |
|     BBInfo.Label = nullptr;
 | |
| 
 | |
|     DT.Vertex.push_back(nullptr);       // Vertex[n] = V;
 | |
|   }
 | |
| 
 | |
|   // Step #1: Number blocks in depth-first order and initialize variables used
 | |
|   // in later stages of the algorithm.
 | |
|   for (unsigned i = 0, e = static_cast<unsigned>(DT.Roots.size());
 | |
|        i != e; ++i)
 | |
|     N = DFSPass<GraphT>(DT, DT.Roots[i], N);
 | |
| 
 | |
|   // it might be that some blocks did not get a DFS number (e.g., blocks of 
 | |
|   // infinite loops). In these cases an artificial exit node is required.
 | |
|   MultipleRoots |= (DT.isPostDominator() && N != GraphTraits<FuncT*>::size(&F));
 | |
| 
 | |
|   // When naively implemented, the Lengauer-Tarjan algorithm requires a separate
 | |
|   // bucket for each vertex. However, this is unnecessary, because each vertex
 | |
|   // is only placed into a single bucket (that of its semidominator), and each
 | |
|   // vertex's bucket is processed before it is added to any bucket itself.
 | |
|   //
 | |
|   // Instead of using a bucket per vertex, we use a single array Buckets that
 | |
|   // has two purposes. Before the vertex V with preorder number i is processed,
 | |
|   // Buckets[i] stores the index of the first element in V's bucket. After V's
 | |
|   // bucket is processed, Buckets[i] stores the index of the next element in the
 | |
|   // bucket containing V, if any.
 | |
|   SmallVector<unsigned, 32> Buckets;
 | |
|   Buckets.resize(N + 1);
 | |
|   for (unsigned i = 1; i <= N; ++i)
 | |
|     Buckets[i] = i;
 | |
| 
 | |
|   for (unsigned i = N; i >= 2; --i) {
 | |
|     typename GraphT::NodeType* W = DT.Vertex[i];
 | |
|     typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &WInfo =
 | |
|                                                                      DT.Info[W];
 | |
| 
 | |
|     // Step #2: Implicitly define the immediate dominator of vertices
 | |
|     for (unsigned j = i; Buckets[j] != i; j = Buckets[j]) {
 | |
|       typename GraphT::NodeType* V = DT.Vertex[Buckets[j]];
 | |
|       typename GraphT::NodeType* U = Eval<GraphT>(DT, V, i + 1);
 | |
|       DT.IDoms[V] = DT.Info[U].Semi < i ? U : W;
 | |
|     }
 | |
| 
 | |
|     // Step #3: Calculate the semidominators of all vertices
 | |
| 
 | |
|     // initialize the semi dominator to point to the parent node
 | |
|     WInfo.Semi = WInfo.Parent;
 | |
|     typedef GraphTraits<Inverse<NodeT> > InvTraits;
 | |
|     for (typename InvTraits::ChildIteratorType CI =
 | |
|          InvTraits::child_begin(W),
 | |
|          E = InvTraits::child_end(W); CI != E; ++CI) {
 | |
|       typename InvTraits::NodeType *N = *CI;
 | |
|       if (DT.Info.count(N)) {  // Only if this predecessor is reachable!
 | |
|         unsigned SemiU = DT.Info[Eval<GraphT>(DT, N, i + 1)].Semi;
 | |
|         if (SemiU < WInfo.Semi)
 | |
|           WInfo.Semi = SemiU;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If V is a non-root vertex and sdom(V) = parent(V), then idom(V) is
 | |
|     // necessarily parent(V). In this case, set idom(V) here and avoid placing
 | |
|     // V into a bucket.
 | |
|     if (WInfo.Semi == WInfo.Parent) {
 | |
|       DT.IDoms[W] = DT.Vertex[WInfo.Parent];
 | |
|     } else {
 | |
|       Buckets[i] = Buckets[WInfo.Semi];
 | |
|       Buckets[WInfo.Semi] = i;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (N >= 1) {
 | |
|     typename GraphT::NodeType* Root = DT.Vertex[1];
 | |
|     for (unsigned j = 1; Buckets[j] != 1; j = Buckets[j]) {
 | |
|       typename GraphT::NodeType* V = DT.Vertex[Buckets[j]];
 | |
|       DT.IDoms[V] = Root;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Step #4: Explicitly define the immediate dominator of each vertex
 | |
|   for (unsigned i = 2; i <= N; ++i) {
 | |
|     typename GraphT::NodeType* W = DT.Vertex[i];
 | |
|     typename GraphT::NodeType*& WIDom = DT.IDoms[W];
 | |
|     if (WIDom != DT.Vertex[DT.Info[W].Semi])
 | |
|       WIDom = DT.IDoms[WIDom];
 | |
|   }
 | |
| 
 | |
|   if (DT.Roots.empty()) return;
 | |
| 
 | |
|   // Add a node for the root.  This node might be the actual root, if there is
 | |
|   // one exit block, or it may be the virtual exit (denoted by (BasicBlock *)0)
 | |
|   // which postdominates all real exits if there are multiple exit blocks, or
 | |
|   // an infinite loop.
 | |
|   typename GraphT::NodeType* Root = !MultipleRoots ? DT.Roots[0] : nullptr;
 | |
| 
 | |
|   DT.DomTreeNodes[Root] = DT.RootNode =
 | |
|                   new DomTreeNodeBase<typename GraphT::NodeType>(Root, nullptr);
 | |
| 
 | |
|   // Loop over all of the reachable blocks in the function...
 | |
|   for (unsigned i = 2; i <= N; ++i) {
 | |
|     typename GraphT::NodeType* W = DT.Vertex[i];
 | |
| 
 | |
|     DomTreeNodeBase<typename GraphT::NodeType> *BBNode = DT.DomTreeNodes[W];
 | |
|     if (BBNode) continue;  // Haven't calculated this node yet?
 | |
| 
 | |
|     typename GraphT::NodeType* ImmDom = DT.getIDom(W);
 | |
| 
 | |
|     assert(ImmDom || DT.DomTreeNodes[nullptr]);
 | |
| 
 | |
|     // Get or calculate the node for the immediate dominator
 | |
|     DomTreeNodeBase<typename GraphT::NodeType> *IDomNode =
 | |
|                                                      DT.getNodeForBlock(ImmDom);
 | |
| 
 | |
|     // Add a new tree node for this BasicBlock, and link it as a child of
 | |
|     // IDomNode
 | |
|     DomTreeNodeBase<typename GraphT::NodeType> *C =
 | |
|                     new DomTreeNodeBase<typename GraphT::NodeType>(W, IDomNode);
 | |
|     DT.DomTreeNodes[W] = IDomNode->addChild(C);
 | |
|   }
 | |
| 
 | |
|   // Free temporary memory used to construct idom's
 | |
|   DT.IDoms.clear();
 | |
|   DT.Info.clear();
 | |
|   std::vector<typename GraphT::NodeType*>().swap(DT.Vertex);
 | |
| 
 | |
|   DT.updateDFSNumbers();
 | |
| }
 | |
| 
 | |
| }
 | |
| 
 | |
| #endif
 |