mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202945 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			517 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			517 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- CostModel.cpp ------ Cost Model Analysis ---------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines the cost model analysis. It provides a very basic cost
 | |
| // estimation for LLVM-IR. This analysis uses the services of the codegen
 | |
| // to approximate the cost of any IR instruction when lowered to machine
 | |
| // instructions. The cost results are unit-less and the cost number represents
 | |
| // the throughput of the machine assuming that all loads hit the cache, all
 | |
| // branches are predicted, etc. The cost numbers can be added in order to
 | |
| // compare two or more transformation alternatives.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define CM_NAME "cost-model"
 | |
| #define DEBUG_TYPE CM_NAME
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/Analysis/Passes.h"
 | |
| #include "llvm/Analysis/TargetTransformInfo.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/Value.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| static cl::opt<bool> EnableReduxCost("costmodel-reduxcost", cl::init(false),
 | |
|                                      cl::Hidden,
 | |
|                                      cl::desc("Recognize reduction patterns."));
 | |
| 
 | |
| namespace {
 | |
|   class CostModelAnalysis : public FunctionPass {
 | |
| 
 | |
|   public:
 | |
|     static char ID; // Class identification, replacement for typeinfo
 | |
|     CostModelAnalysis() : FunctionPass(ID), F(0), TTI(0) {
 | |
|       initializeCostModelAnalysisPass(
 | |
|         *PassRegistry::getPassRegistry());
 | |
|     }
 | |
| 
 | |
|     /// Returns the expected cost of the instruction.
 | |
|     /// Returns -1 if the cost is unknown.
 | |
|     /// Note, this method does not cache the cost calculation and it
 | |
|     /// can be expensive in some cases.
 | |
|     unsigned getInstructionCost(const Instruction *I) const;
 | |
| 
 | |
|   private:
 | |
|     void getAnalysisUsage(AnalysisUsage &AU) const override;
 | |
|     bool runOnFunction(Function &F) override;
 | |
|     void print(raw_ostream &OS, const Module*) const override;
 | |
| 
 | |
|     /// The function that we analyze.
 | |
|     Function *F;
 | |
|     /// Target information.
 | |
|     const TargetTransformInfo *TTI;
 | |
|   };
 | |
| }  // End of anonymous namespace
 | |
| 
 | |
| // Register this pass.
 | |
| char CostModelAnalysis::ID = 0;
 | |
| static const char cm_name[] = "Cost Model Analysis";
 | |
| INITIALIZE_PASS_BEGIN(CostModelAnalysis, CM_NAME, cm_name, false, true)
 | |
| INITIALIZE_PASS_END  (CostModelAnalysis, CM_NAME, cm_name, false, true)
 | |
| 
 | |
| FunctionPass *llvm::createCostModelAnalysisPass() {
 | |
|   return new CostModelAnalysis();
 | |
| }
 | |
| 
 | |
| void
 | |
| CostModelAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   AU.setPreservesAll();
 | |
| }
 | |
| 
 | |
| bool
 | |
| CostModelAnalysis::runOnFunction(Function &F) {
 | |
|  this->F = &F;
 | |
|  TTI = getAnalysisIfAvailable<TargetTransformInfo>();
 | |
| 
 | |
|  return false;
 | |
| }
 | |
| 
 | |
| static bool isReverseVectorMask(SmallVectorImpl<int> &Mask) {
 | |
|   for (unsigned i = 0, MaskSize = Mask.size(); i < MaskSize; ++i)
 | |
|     if (Mask[i] > 0 && Mask[i] != (int)(MaskSize - 1 - i))
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static TargetTransformInfo::OperandValueKind getOperandInfo(Value *V) {
 | |
|   TargetTransformInfo::OperandValueKind OpInfo =
 | |
|     TargetTransformInfo::OK_AnyValue;
 | |
| 
 | |
|   // Check for a splat of a constant or for a non uniform vector of constants.
 | |
|   if (isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) {
 | |
|     OpInfo = TargetTransformInfo::OK_NonUniformConstantValue;
 | |
|     if (cast<Constant>(V)->getSplatValue() != NULL)
 | |
|       OpInfo = TargetTransformInfo::OK_UniformConstantValue;
 | |
|   }
 | |
| 
 | |
|   return OpInfo;
 | |
| }
 | |
| 
 | |
| static bool matchMask(SmallVectorImpl<int> &M1, SmallVectorImpl<int> &M2) {
 | |
|   if (M1.size() != M2.size())
 | |
|     return false;
 | |
| 
 | |
|   for (unsigned i = 0, e = M1.size(); i != e; ++i)
 | |
|     if (M1[i] != M2[i])
 | |
|       return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool matchPairwiseShuffleMask(ShuffleVectorInst *SI, bool IsLeft,
 | |
|                                      unsigned Level) {
 | |
|   // We don't need a shuffle if we just want to have element 0 in position 0 of
 | |
|   // the vector.
 | |
|   if (!SI && Level == 0 && IsLeft)
 | |
|     return true;
 | |
|   else if (!SI)
 | |
|     return false;
 | |
| 
 | |
|   SmallVector<int, 32> Mask(SI->getType()->getVectorNumElements(), -1);
 | |
| 
 | |
|   // Build a mask of 0, 2, ... (left) or 1, 3, ... (right) depending on whether
 | |
|   // we look at the left or right side.
 | |
|   for (unsigned i = 0, e = (1 << Level), val = !IsLeft; i != e; ++i, val += 2)
 | |
|     Mask[i] = val;
 | |
| 
 | |
|   SmallVector<int, 16> ActualMask = SI->getShuffleMask();
 | |
|   if (!matchMask(Mask, ActualMask))
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool matchPairwiseReductionAtLevel(const BinaryOperator *BinOp,
 | |
|                                           unsigned Level, unsigned NumLevels) {
 | |
|   // Match one level of pairwise operations.
 | |
|   // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef,
 | |
|   //       <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef>
 | |
|   // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef,
 | |
|   //       <4 x i32> <i32 1, i32 3, i32 undef, i32 undef>
 | |
|   // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1
 | |
|   if (BinOp == 0)
 | |
|     return false;
 | |
| 
 | |
|   assert(BinOp->getType()->isVectorTy() && "Expecting a vector type");
 | |
| 
 | |
|   unsigned Opcode = BinOp->getOpcode();
 | |
|   Value *L = BinOp->getOperand(0);
 | |
|   Value *R = BinOp->getOperand(1);
 | |
| 
 | |
|   ShuffleVectorInst *LS = dyn_cast<ShuffleVectorInst>(L);
 | |
|   if (!LS && Level)
 | |
|     return false;
 | |
|   ShuffleVectorInst *RS = dyn_cast<ShuffleVectorInst>(R);
 | |
|   if (!RS && Level)
 | |
|     return false;
 | |
| 
 | |
|   // On level 0 we can omit one shufflevector instruction.
 | |
|   if (!Level && !RS && !LS)
 | |
|     return false;
 | |
| 
 | |
|   // Shuffle inputs must match.
 | |
|   Value *NextLevelOpL = LS ? LS->getOperand(0) : 0;
 | |
|   Value *NextLevelOpR = RS ? RS->getOperand(0) : 0;
 | |
|   Value *NextLevelOp = 0;
 | |
|   if (NextLevelOpR && NextLevelOpL) {
 | |
|     // If we have two shuffles their operands must match.
 | |
|     if (NextLevelOpL != NextLevelOpR)
 | |
|       return false;
 | |
| 
 | |
|     NextLevelOp = NextLevelOpL;
 | |
|   } else if (Level == 0 && (NextLevelOpR || NextLevelOpL)) {
 | |
|     // On the first level we can omit the shufflevector <0, undef,...>. So the
 | |
|     // input to the other shufflevector <1, undef> must match with one of the
 | |
|     // inputs to the current binary operation.
 | |
|     // Example:
 | |
|     //  %NextLevelOpL = shufflevector %R, <1, undef ...>
 | |
|     //  %BinOp        = fadd          %NextLevelOpL, %R
 | |
|     if (NextLevelOpL && NextLevelOpL != R)
 | |
|       return false;
 | |
|     else if (NextLevelOpR && NextLevelOpR != L)
 | |
|       return false;
 | |
| 
 | |
|     NextLevelOp = NextLevelOpL ? R : L;
 | |
|   } else
 | |
|     return false;
 | |
| 
 | |
|   // Check that the next levels binary operation exists and matches with the
 | |
|   // current one.
 | |
|   BinaryOperator *NextLevelBinOp = 0;
 | |
|   if (Level + 1 != NumLevels) {
 | |
|     if (!(NextLevelBinOp = dyn_cast<BinaryOperator>(NextLevelOp)))
 | |
|       return false;
 | |
|     else if (NextLevelBinOp->getOpcode() != Opcode)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Shuffle mask for pairwise operation must match.
 | |
|   if (matchPairwiseShuffleMask(LS, true, Level)) {
 | |
|     if (!matchPairwiseShuffleMask(RS, false, Level))
 | |
|       return false;
 | |
|   } else if (matchPairwiseShuffleMask(RS, true, Level)) {
 | |
|     if (!matchPairwiseShuffleMask(LS, false, Level))
 | |
|       return false;
 | |
|   } else
 | |
|     return false;
 | |
| 
 | |
|   if (++Level == NumLevels)
 | |
|     return true;
 | |
| 
 | |
|   // Match next level.
 | |
|   return matchPairwiseReductionAtLevel(NextLevelBinOp, Level, NumLevels);
 | |
| }
 | |
| 
 | |
| static bool matchPairwiseReduction(const ExtractElementInst *ReduxRoot,
 | |
|                                    unsigned &Opcode, Type *&Ty) {
 | |
|   if (!EnableReduxCost)
 | |
|     return false;
 | |
| 
 | |
|   // Need to extract the first element.
 | |
|   ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1));
 | |
|   unsigned Idx = ~0u;
 | |
|   if (CI)
 | |
|     Idx = CI->getZExtValue();
 | |
|   if (Idx != 0)
 | |
|     return false;
 | |
| 
 | |
|   BinaryOperator *RdxStart = dyn_cast<BinaryOperator>(ReduxRoot->getOperand(0));
 | |
|   if (!RdxStart)
 | |
|     return false;
 | |
| 
 | |
|   Type *VecTy = ReduxRoot->getOperand(0)->getType();
 | |
|   unsigned NumVecElems = VecTy->getVectorNumElements();
 | |
|   if (!isPowerOf2_32(NumVecElems))
 | |
|     return false;
 | |
| 
 | |
|   // We look for a sequence of shuffle,shuffle,add triples like the following
 | |
|   // that builds a pairwise reduction tree.
 | |
|   //
 | |
|   //  (X0, X1, X2, X3)
 | |
|   //   (X0 + X1, X2 + X3, undef, undef)
 | |
|   //    ((X0 + X1) + (X2 + X3), undef, undef, undef)
 | |
|   //
 | |
|   // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef,
 | |
|   //       <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef>
 | |
|   // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef,
 | |
|   //       <4 x i32> <i32 1, i32 3, i32 undef, i32 undef>
 | |
|   // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1
 | |
|   // %rdx.shuf.1.0 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
 | |
|   //       <4 x i32> <i32 0, i32 undef, i32 undef, i32 undef>
 | |
|   // %rdx.shuf.1.1 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
 | |
|   //       <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
 | |
|   // %bin.rdx8 = fadd <4 x float> %rdx.shuf.1.0, %rdx.shuf.1.1
 | |
|   // %r = extractelement <4 x float> %bin.rdx8, i32 0
 | |
|   if (!matchPairwiseReductionAtLevel(RdxStart, 0,  Log2_32(NumVecElems)))
 | |
|     return false;
 | |
| 
 | |
|   Opcode = RdxStart->getOpcode();
 | |
|   Ty = VecTy;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static std::pair<Value *, ShuffleVectorInst *>
 | |
| getShuffleAndOtherOprd(BinaryOperator *B) {
 | |
| 
 | |
|   Value *L = B->getOperand(0);
 | |
|   Value *R = B->getOperand(1);
 | |
|   ShuffleVectorInst *S = 0;
 | |
| 
 | |
|   if ((S = dyn_cast<ShuffleVectorInst>(L)))
 | |
|     return std::make_pair(R, S);
 | |
| 
 | |
|   S = dyn_cast<ShuffleVectorInst>(R);
 | |
|   return std::make_pair(L, S);
 | |
| }
 | |
| 
 | |
| static bool matchVectorSplittingReduction(const ExtractElementInst *ReduxRoot,
 | |
|                                           unsigned &Opcode, Type *&Ty) {
 | |
|   if (!EnableReduxCost)
 | |
|     return false;
 | |
| 
 | |
|   // Need to extract the first element.
 | |
|   ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1));
 | |
|   unsigned Idx = ~0u;
 | |
|   if (CI)
 | |
|     Idx = CI->getZExtValue();
 | |
|   if (Idx != 0)
 | |
|     return false;
 | |
| 
 | |
|   BinaryOperator *RdxStart = dyn_cast<BinaryOperator>(ReduxRoot->getOperand(0));
 | |
|   if (!RdxStart)
 | |
|     return false;
 | |
|   unsigned RdxOpcode = RdxStart->getOpcode();
 | |
| 
 | |
|   Type *VecTy = ReduxRoot->getOperand(0)->getType();
 | |
|   unsigned NumVecElems = VecTy->getVectorNumElements();
 | |
|   if (!isPowerOf2_32(NumVecElems))
 | |
|     return false;
 | |
| 
 | |
|   // We look for a sequence of shuffles and adds like the following matching one
 | |
|   // fadd, shuffle vector pair at a time.
 | |
|   //
 | |
|   // %rdx.shuf = shufflevector <4 x float> %rdx, <4 x float> undef,
 | |
|   //                           <4 x i32> <i32 2, i32 3, i32 undef, i32 undef>
 | |
|   // %bin.rdx = fadd <4 x float> %rdx, %rdx.shuf
 | |
|   // %rdx.shuf7 = shufflevector <4 x float> %bin.rdx, <4 x float> undef,
 | |
|   //                          <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
 | |
|   // %bin.rdx8 = fadd <4 x float> %bin.rdx, %rdx.shuf7
 | |
|   // %r = extractelement <4 x float> %bin.rdx8, i32 0
 | |
| 
 | |
|   unsigned MaskStart = 1;
 | |
|   Value *RdxOp = RdxStart;
 | |
|   SmallVector<int, 32> ShuffleMask(NumVecElems, 0);
 | |
|   unsigned NumVecElemsRemain = NumVecElems;
 | |
|   while (NumVecElemsRemain - 1) {
 | |
|     // Check for the right reduction operation.
 | |
|     BinaryOperator *BinOp;
 | |
|     if (!(BinOp = dyn_cast<BinaryOperator>(RdxOp)))
 | |
|       return false;
 | |
|     if (BinOp->getOpcode() != RdxOpcode)
 | |
|       return false;
 | |
| 
 | |
|     Value *NextRdxOp;
 | |
|     ShuffleVectorInst *Shuffle;
 | |
|     std::tie(NextRdxOp, Shuffle) = getShuffleAndOtherOprd(BinOp);
 | |
| 
 | |
|     // Check the current reduction operation and the shuffle use the same value.
 | |
|     if (Shuffle == 0)
 | |
|       return false;
 | |
|     if (Shuffle->getOperand(0) != NextRdxOp)
 | |
|       return false;
 | |
| 
 | |
|     // Check that shuffle masks matches.
 | |
|     for (unsigned j = 0; j != MaskStart; ++j)
 | |
|       ShuffleMask[j] = MaskStart + j;
 | |
|     // Fill the rest of the mask with -1 for undef.
 | |
|     std::fill(&ShuffleMask[MaskStart], ShuffleMask.end(), -1);
 | |
| 
 | |
|     SmallVector<int, 16> Mask = Shuffle->getShuffleMask();
 | |
|     if (!matchMask(ShuffleMask, Mask))
 | |
|       return false;
 | |
| 
 | |
|     RdxOp = NextRdxOp;
 | |
|     NumVecElemsRemain /= 2;
 | |
|     MaskStart *= 2;
 | |
|   }
 | |
| 
 | |
|   Opcode = RdxOpcode;
 | |
|   Ty = VecTy;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| unsigned CostModelAnalysis::getInstructionCost(const Instruction *I) const {
 | |
|   if (!TTI)
 | |
|     return -1;
 | |
| 
 | |
|   switch (I->getOpcode()) {
 | |
|   case Instruction::GetElementPtr:{
 | |
|     Type *ValTy = I->getOperand(0)->getType()->getPointerElementType();
 | |
|     return TTI->getAddressComputationCost(ValTy);
 | |
|   }
 | |
| 
 | |
|   case Instruction::Ret:
 | |
|   case Instruction::PHI:
 | |
|   case Instruction::Br: {
 | |
|     return TTI->getCFInstrCost(I->getOpcode());
 | |
|   }
 | |
|   case Instruction::Add:
 | |
|   case Instruction::FAdd:
 | |
|   case Instruction::Sub:
 | |
|   case Instruction::FSub:
 | |
|   case Instruction::Mul:
 | |
|   case Instruction::FMul:
 | |
|   case Instruction::UDiv:
 | |
|   case Instruction::SDiv:
 | |
|   case Instruction::FDiv:
 | |
|   case Instruction::URem:
 | |
|   case Instruction::SRem:
 | |
|   case Instruction::FRem:
 | |
|   case Instruction::Shl:
 | |
|   case Instruction::LShr:
 | |
|   case Instruction::AShr:
 | |
|   case Instruction::And:
 | |
|   case Instruction::Or:
 | |
|   case Instruction::Xor: {
 | |
|     TargetTransformInfo::OperandValueKind Op1VK =
 | |
|       getOperandInfo(I->getOperand(0));
 | |
|     TargetTransformInfo::OperandValueKind Op2VK =
 | |
|       getOperandInfo(I->getOperand(1));
 | |
|     return TTI->getArithmeticInstrCost(I->getOpcode(), I->getType(), Op1VK,
 | |
|                                        Op2VK);
 | |
|   }
 | |
|   case Instruction::Select: {
 | |
|     const SelectInst *SI = cast<SelectInst>(I);
 | |
|     Type *CondTy = SI->getCondition()->getType();
 | |
|     return TTI->getCmpSelInstrCost(I->getOpcode(), I->getType(), CondTy);
 | |
|   }
 | |
|   case Instruction::ICmp:
 | |
|   case Instruction::FCmp: {
 | |
|     Type *ValTy = I->getOperand(0)->getType();
 | |
|     return TTI->getCmpSelInstrCost(I->getOpcode(), ValTy);
 | |
|   }
 | |
|   case Instruction::Store: {
 | |
|     const StoreInst *SI = cast<StoreInst>(I);
 | |
|     Type *ValTy = SI->getValueOperand()->getType();
 | |
|     return TTI->getMemoryOpCost(I->getOpcode(), ValTy,
 | |
|                                  SI->getAlignment(),
 | |
|                                  SI->getPointerAddressSpace());
 | |
|   }
 | |
|   case Instruction::Load: {
 | |
|     const LoadInst *LI = cast<LoadInst>(I);
 | |
|     return TTI->getMemoryOpCost(I->getOpcode(), I->getType(),
 | |
|                                  LI->getAlignment(),
 | |
|                                  LI->getPointerAddressSpace());
 | |
|   }
 | |
|   case Instruction::ZExt:
 | |
|   case Instruction::SExt:
 | |
|   case Instruction::FPToUI:
 | |
|   case Instruction::FPToSI:
 | |
|   case Instruction::FPExt:
 | |
|   case Instruction::PtrToInt:
 | |
|   case Instruction::IntToPtr:
 | |
|   case Instruction::SIToFP:
 | |
|   case Instruction::UIToFP:
 | |
|   case Instruction::Trunc:
 | |
|   case Instruction::FPTrunc:
 | |
|   case Instruction::BitCast:
 | |
|   case Instruction::AddrSpaceCast: {
 | |
|     Type *SrcTy = I->getOperand(0)->getType();
 | |
|     return TTI->getCastInstrCost(I->getOpcode(), I->getType(), SrcTy);
 | |
|   }
 | |
|   case Instruction::ExtractElement: {
 | |
|     const ExtractElementInst * EEI = cast<ExtractElementInst>(I);
 | |
|     ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
 | |
|     unsigned Idx = -1;
 | |
|     if (CI)
 | |
|       Idx = CI->getZExtValue();
 | |
| 
 | |
|     // Try to match a reduction sequence (series of shufflevector and vector
 | |
|     // adds followed by a extractelement).
 | |
|     unsigned ReduxOpCode;
 | |
|     Type *ReduxType;
 | |
| 
 | |
|     if (matchVectorSplittingReduction(EEI, ReduxOpCode, ReduxType))
 | |
|       return TTI->getReductionCost(ReduxOpCode, ReduxType, false);
 | |
|     else if (matchPairwiseReduction(EEI, ReduxOpCode, ReduxType))
 | |
|       return TTI->getReductionCost(ReduxOpCode, ReduxType, true);
 | |
| 
 | |
|     return TTI->getVectorInstrCost(I->getOpcode(),
 | |
|                                    EEI->getOperand(0)->getType(), Idx);
 | |
|   }
 | |
|   case Instruction::InsertElement: {
 | |
|     const InsertElementInst * IE = cast<InsertElementInst>(I);
 | |
|     ConstantInt *CI = dyn_cast<ConstantInt>(IE->getOperand(2));
 | |
|     unsigned Idx = -1;
 | |
|     if (CI)
 | |
|       Idx = CI->getZExtValue();
 | |
|     return TTI->getVectorInstrCost(I->getOpcode(),
 | |
|                                    IE->getType(), Idx);
 | |
|   }
 | |
|   case Instruction::ShuffleVector: {
 | |
|     const ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
 | |
|     Type *VecTypOp0 = Shuffle->getOperand(0)->getType();
 | |
|     unsigned NumVecElems = VecTypOp0->getVectorNumElements();
 | |
|     SmallVector<int, 16> Mask = Shuffle->getShuffleMask();
 | |
| 
 | |
|     if (NumVecElems == Mask.size() && isReverseVectorMask(Mask))
 | |
|       return TTI->getShuffleCost(TargetTransformInfo::SK_Reverse, VecTypOp0, 0,
 | |
|                                  0);
 | |
|     return -1;
 | |
|   }
 | |
|   case Instruction::Call:
 | |
|     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
 | |
|       SmallVector<Type*, 4> Tys;
 | |
|       for (unsigned J = 0, JE = II->getNumArgOperands(); J != JE; ++J)
 | |
|         Tys.push_back(II->getArgOperand(J)->getType());
 | |
| 
 | |
|       return TTI->getIntrinsicInstrCost(II->getIntrinsicID(), II->getType(),
 | |
|                                         Tys);
 | |
|     }
 | |
|     return -1;
 | |
|   default:
 | |
|     // We don't have any information on this instruction.
 | |
|     return -1;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CostModelAnalysis::print(raw_ostream &OS, const Module*) const {
 | |
|   if (!F)
 | |
|     return;
 | |
| 
 | |
|   for (Function::iterator B = F->begin(), BE = F->end(); B != BE; ++B) {
 | |
|     for (BasicBlock::iterator it = B->begin(), e = B->end(); it != e; ++it) {
 | |
|       Instruction *Inst = it;
 | |
|       unsigned Cost = getInstructionCost(Inst);
 | |
|       if (Cost != (unsigned)-1)
 | |
|         OS << "Cost Model: Found an estimated cost of " << Cost;
 | |
|       else
 | |
|         OS << "Cost Model: Unknown cost";
 | |
| 
 | |
|       OS << " for instruction: "<< *Inst << "\n";
 | |
|     }
 | |
|   }
 | |
| }
 |