mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-22 10:33:23 +00:00
3048373748
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@14266 91177308-0d34-0410-b5e6-96231b3b80d8
1516 lines
49 KiB
C++
1516 lines
49 KiB
C++
//===-- Writer.cpp - Library for converting LLVM code to C ----------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by the LLVM research group and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This library converts LLVM code to C code, compilable by GCC and other C
|
|
// compilers.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CTargetMachine.h"
|
|
#include "llvm/Target/TargetMachineImpls.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/PassManager.h"
|
|
#include "llvm/SymbolTable.h"
|
|
#include "llvm/Intrinsics.h"
|
|
#include "llvm/Analysis/ConstantsScanner.h"
|
|
#include "llvm/Analysis/FindUsedTypes.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/CodeGen/IntrinsicLowering.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Support/CallSite.h"
|
|
#include "llvm/Support/CFG.h"
|
|
#include "llvm/Support/GetElementPtrTypeIterator.h"
|
|
#include "llvm/Support/InstVisitor.h"
|
|
#include "llvm/Support/Mangler.h"
|
|
#include "Support/StringExtras.h"
|
|
#include "Config/config.h"
|
|
#include <algorithm>
|
|
#include <sstream>
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
/// NameAllUsedStructs - This pass inserts names for any unnamed structure
|
|
/// types that are used by the program.
|
|
///
|
|
class CBackendNameAllUsedStructs : public Pass {
|
|
void getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.addRequired<FindUsedTypes>();
|
|
}
|
|
|
|
virtual const char *getPassName() const {
|
|
return "C backend type canonicalizer";
|
|
}
|
|
|
|
virtual bool run(Module &M);
|
|
};
|
|
|
|
/// CWriter - This class is the main chunk of code that converts an LLVM
|
|
/// module to a C translation unit.
|
|
class CWriter : public FunctionPass, public InstVisitor<CWriter> {
|
|
std::ostream &Out;
|
|
IntrinsicLowering &IL;
|
|
Mangler *Mang;
|
|
LoopInfo *LI;
|
|
const Module *TheModule;
|
|
std::map<const Type *, std::string> TypeNames;
|
|
|
|
std::map<const ConstantFP *, unsigned> FPConstantMap;
|
|
public:
|
|
CWriter(std::ostream &o, IntrinsicLowering &il) : Out(o), IL(il) {}
|
|
|
|
virtual const char *getPassName() const { return "C backend"; }
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.addRequired<LoopInfo>();
|
|
AU.setPreservesAll();
|
|
}
|
|
|
|
virtual bool doInitialization(Module &M);
|
|
|
|
bool runOnFunction(Function &F) {
|
|
LI = &getAnalysis<LoopInfo>();
|
|
|
|
// Output all floating point constants that cannot be printed accurately.
|
|
printFloatingPointConstants(F);
|
|
|
|
lowerIntrinsics(F);
|
|
printFunction(F);
|
|
FPConstantMap.clear();
|
|
return false;
|
|
}
|
|
|
|
virtual bool doFinalization(Module &M) {
|
|
// Free memory...
|
|
delete Mang;
|
|
TypeNames.clear();
|
|
return false;
|
|
}
|
|
|
|
std::ostream &printType(std::ostream &Out, const Type *Ty,
|
|
const std::string &VariableName = "",
|
|
bool IgnoreName = false);
|
|
|
|
void writeOperand(Value *Operand);
|
|
void writeOperandInternal(Value *Operand);
|
|
|
|
private :
|
|
void lowerIntrinsics(Function &F);
|
|
|
|
bool nameAllUsedStructureTypes(Module &M);
|
|
void printModule(Module *M);
|
|
void printModuleTypes(const SymbolTable &ST);
|
|
void printContainedStructs(const Type *Ty, std::set<const StructType *> &);
|
|
void printFloatingPointConstants(Function &F);
|
|
void printFunctionSignature(const Function *F, bool Prototype);
|
|
|
|
void printFunction(Function &);
|
|
void printBasicBlock(BasicBlock *BB);
|
|
void printLoop(Loop *L);
|
|
|
|
void printConstant(Constant *CPV);
|
|
void printConstantArray(ConstantArray *CPA);
|
|
|
|
// isInlinableInst - Attempt to inline instructions into their uses to build
|
|
// trees as much as possible. To do this, we have to consistently decide
|
|
// what is acceptable to inline, so that variable declarations don't get
|
|
// printed and an extra copy of the expr is not emitted.
|
|
//
|
|
static bool isInlinableInst(const Instruction &I) {
|
|
// Always inline setcc instructions, even if they are shared by multiple
|
|
// expressions. GCC generates horrible code if we don't.
|
|
if (isa<SetCondInst>(I)) return true;
|
|
|
|
// Must be an expression, must be used exactly once. If it is dead, we
|
|
// emit it inline where it would go.
|
|
if (I.getType() == Type::VoidTy || !I.hasOneUse() ||
|
|
isa<TerminatorInst>(I) || isa<CallInst>(I) || isa<PHINode>(I) ||
|
|
isa<LoadInst>(I) || isa<VAArgInst>(I) || isa<VANextInst>(I))
|
|
// Don't inline a load across a store or other bad things!
|
|
return false;
|
|
|
|
// Only inline instruction it it's use is in the same BB as the inst.
|
|
return I.getParent() == cast<Instruction>(I.use_back())->getParent();
|
|
}
|
|
|
|
// isDirectAlloca - Define fixed sized allocas in the entry block as direct
|
|
// variables which are accessed with the & operator. This causes GCC to
|
|
// generate significantly better code than to emit alloca calls directly.
|
|
//
|
|
static const AllocaInst *isDirectAlloca(const Value *V) {
|
|
const AllocaInst *AI = dyn_cast<AllocaInst>(V);
|
|
if (!AI) return false;
|
|
if (AI->isArrayAllocation())
|
|
return 0; // FIXME: we can also inline fixed size array allocas!
|
|
if (AI->getParent() != &AI->getParent()->getParent()->getEntryBlock())
|
|
return 0;
|
|
return AI;
|
|
}
|
|
|
|
// Instruction visitation functions
|
|
friend class InstVisitor<CWriter>;
|
|
|
|
void visitReturnInst(ReturnInst &I);
|
|
void visitBranchInst(BranchInst &I);
|
|
void visitSwitchInst(SwitchInst &I);
|
|
void visitInvokeInst(InvokeInst &I) {
|
|
assert(0 && "Lowerinvoke pass didn't work!");
|
|
}
|
|
|
|
void visitUnwindInst(UnwindInst &I) {
|
|
assert(0 && "Lowerinvoke pass didn't work!");
|
|
}
|
|
|
|
void visitPHINode(PHINode &I);
|
|
void visitBinaryOperator(Instruction &I);
|
|
|
|
void visitCastInst (CastInst &I);
|
|
void visitSelectInst(SelectInst &I);
|
|
void visitCallInst (CallInst &I);
|
|
void visitCallSite (CallSite CS);
|
|
void visitShiftInst(ShiftInst &I) { visitBinaryOperator(I); }
|
|
|
|
void visitMallocInst(MallocInst &I);
|
|
void visitAllocaInst(AllocaInst &I);
|
|
void visitFreeInst (FreeInst &I);
|
|
void visitLoadInst (LoadInst &I);
|
|
void visitStoreInst (StoreInst &I);
|
|
void visitGetElementPtrInst(GetElementPtrInst &I);
|
|
void visitVANextInst(VANextInst &I);
|
|
void visitVAArgInst (VAArgInst &I);
|
|
|
|
void visitInstruction(Instruction &I) {
|
|
std::cerr << "C Writer does not know about " << I;
|
|
abort();
|
|
}
|
|
|
|
void outputLValue(Instruction *I) {
|
|
Out << " " << Mang->getValueName(I) << " = ";
|
|
}
|
|
|
|
bool isGotoCodeNecessary(BasicBlock *From, BasicBlock *To);
|
|
void printPHICopiesForSuccessors(BasicBlock *CurBlock,
|
|
unsigned Indent);
|
|
void printBranchToBlock(BasicBlock *CurBlock, BasicBlock *SuccBlock,
|
|
unsigned Indent);
|
|
void printIndexingExpression(Value *Ptr, gep_type_iterator I,
|
|
gep_type_iterator E);
|
|
};
|
|
}
|
|
|
|
/// This method inserts names for any unnamed structure types that are used by
|
|
/// the program, and removes names from structure types that are not used by the
|
|
/// program.
|
|
///
|
|
bool CBackendNameAllUsedStructs::run(Module &M) {
|
|
// Get a set of types that are used by the program...
|
|
std::set<const Type *> UT = getAnalysis<FindUsedTypes>().getTypes();
|
|
|
|
// Loop over the module symbol table, removing types from UT that are
|
|
// already named, and removing names for structure types that are not used.
|
|
//
|
|
SymbolTable &MST = M.getSymbolTable();
|
|
for (SymbolTable::type_iterator TI = MST.type_begin(), TE = MST.type_end();
|
|
TI != TE; ) {
|
|
SymbolTable::type_iterator I = TI++;
|
|
if (StructType *STy = dyn_cast<StructType>(I->second)) {
|
|
// If this is not used, remove it from the symbol table.
|
|
std::set<const Type *>::iterator UTI = UT.find(STy);
|
|
if (UTI == UT.end())
|
|
MST.remove(I);
|
|
else
|
|
UT.erase(UTI);
|
|
}
|
|
}
|
|
|
|
// UT now contains types that are not named. Loop over it, naming
|
|
// structure types.
|
|
//
|
|
bool Changed = false;
|
|
unsigned RenameCounter = 0;
|
|
for (std::set<const Type *>::const_iterator I = UT.begin(), E = UT.end();
|
|
I != E; ++I)
|
|
if (const StructType *ST = dyn_cast<StructType>(*I)) {
|
|
while (M.addTypeName("unnamed"+utostr(RenameCounter), ST))
|
|
++RenameCounter;
|
|
Changed = true;
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
|
|
// Pass the Type* and the variable name and this prints out the variable
|
|
// declaration.
|
|
//
|
|
std::ostream &CWriter::printType(std::ostream &Out, const Type *Ty,
|
|
const std::string &NameSoFar,
|
|
bool IgnoreName) {
|
|
if (Ty->isPrimitiveType())
|
|
switch (Ty->getTypeID()) {
|
|
case Type::VoidTyID: return Out << "void " << NameSoFar;
|
|
case Type::BoolTyID: return Out << "bool " << NameSoFar;
|
|
case Type::UByteTyID: return Out << "unsigned char " << NameSoFar;
|
|
case Type::SByteTyID: return Out << "signed char " << NameSoFar;
|
|
case Type::UShortTyID: return Out << "unsigned short " << NameSoFar;
|
|
case Type::ShortTyID: return Out << "short " << NameSoFar;
|
|
case Type::UIntTyID: return Out << "unsigned " << NameSoFar;
|
|
case Type::IntTyID: return Out << "int " << NameSoFar;
|
|
case Type::ULongTyID: return Out << "unsigned long long " << NameSoFar;
|
|
case Type::LongTyID: return Out << "signed long long " << NameSoFar;
|
|
case Type::FloatTyID: return Out << "float " << NameSoFar;
|
|
case Type::DoubleTyID: return Out << "double " << NameSoFar;
|
|
default :
|
|
std::cerr << "Unknown primitive type: " << Ty << "\n";
|
|
abort();
|
|
}
|
|
|
|
// Check to see if the type is named.
|
|
if (!IgnoreName || isa<OpaqueType>(Ty)) {
|
|
std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
|
|
if (I != TypeNames.end()) return Out << I->second << " " << NameSoFar;
|
|
}
|
|
|
|
switch (Ty->getTypeID()) {
|
|
case Type::FunctionTyID: {
|
|
const FunctionType *MTy = cast<FunctionType>(Ty);
|
|
std::stringstream FunctionInnards;
|
|
FunctionInnards << " (" << NameSoFar << ") (";
|
|
for (FunctionType::param_iterator I = MTy->param_begin(),
|
|
E = MTy->param_end(); I != E; ++I) {
|
|
if (I != MTy->param_begin())
|
|
FunctionInnards << ", ";
|
|
printType(FunctionInnards, *I, "");
|
|
}
|
|
if (MTy->isVarArg()) {
|
|
if (MTy->getNumParams())
|
|
FunctionInnards << ", ...";
|
|
} else if (!MTy->getNumParams()) {
|
|
FunctionInnards << "void";
|
|
}
|
|
FunctionInnards << ")";
|
|
std::string tstr = FunctionInnards.str();
|
|
printType(Out, MTy->getReturnType(), tstr);
|
|
return Out;
|
|
}
|
|
case Type::StructTyID: {
|
|
const StructType *STy = cast<StructType>(Ty);
|
|
Out << NameSoFar + " {\n";
|
|
unsigned Idx = 0;
|
|
for (StructType::element_iterator I = STy->element_begin(),
|
|
E = STy->element_end(); I != E; ++I) {
|
|
Out << " ";
|
|
printType(Out, *I, "field" + utostr(Idx++));
|
|
Out << ";\n";
|
|
}
|
|
return Out << "}";
|
|
}
|
|
|
|
case Type::PointerTyID: {
|
|
const PointerType *PTy = cast<PointerType>(Ty);
|
|
std::string ptrName = "*" + NameSoFar;
|
|
|
|
if (isa<ArrayType>(PTy->getElementType()))
|
|
ptrName = "(" + ptrName + ")";
|
|
|
|
return printType(Out, PTy->getElementType(), ptrName);
|
|
}
|
|
|
|
case Type::ArrayTyID: {
|
|
const ArrayType *ATy = cast<ArrayType>(Ty);
|
|
unsigned NumElements = ATy->getNumElements();
|
|
return printType(Out, ATy->getElementType(),
|
|
NameSoFar + "[" + utostr(NumElements) + "]");
|
|
}
|
|
|
|
case Type::OpaqueTyID: {
|
|
static int Count = 0;
|
|
std::string TyName = "struct opaque_" + itostr(Count++);
|
|
assert(TypeNames.find(Ty) == TypeNames.end());
|
|
TypeNames[Ty] = TyName;
|
|
return Out << TyName << " " << NameSoFar;
|
|
}
|
|
default:
|
|
assert(0 && "Unhandled case in getTypeProps!");
|
|
abort();
|
|
}
|
|
|
|
return Out;
|
|
}
|
|
|
|
void CWriter::printConstantArray(ConstantArray *CPA) {
|
|
|
|
// As a special case, print the array as a string if it is an array of
|
|
// ubytes or an array of sbytes with positive values.
|
|
//
|
|
const Type *ETy = CPA->getType()->getElementType();
|
|
bool isString = (ETy == Type::SByteTy || ETy == Type::UByteTy);
|
|
|
|
// Make sure the last character is a null char, as automatically added by C
|
|
if (isString && (CPA->getNumOperands() == 0 ||
|
|
!cast<Constant>(*(CPA->op_end()-1))->isNullValue()))
|
|
isString = false;
|
|
|
|
if (isString) {
|
|
Out << "\"";
|
|
// Keep track of whether the last number was a hexadecimal escape
|
|
bool LastWasHex = false;
|
|
|
|
// Do not include the last character, which we know is null
|
|
for (unsigned i = 0, e = CPA->getNumOperands()-1; i != e; ++i) {
|
|
unsigned char C = cast<ConstantInt>(CPA->getOperand(i))->getRawValue();
|
|
|
|
// Print it out literally if it is a printable character. The only thing
|
|
// to be careful about is when the last letter output was a hex escape
|
|
// code, in which case we have to be careful not to print out hex digits
|
|
// explicitly (the C compiler thinks it is a continuation of the previous
|
|
// character, sheesh...)
|
|
//
|
|
if (isprint(C) && (!LastWasHex || !isxdigit(C))) {
|
|
LastWasHex = false;
|
|
if (C == '"' || C == '\\')
|
|
Out << "\\" << C;
|
|
else
|
|
Out << C;
|
|
} else {
|
|
LastWasHex = false;
|
|
switch (C) {
|
|
case '\n': Out << "\\n"; break;
|
|
case '\t': Out << "\\t"; break;
|
|
case '\r': Out << "\\r"; break;
|
|
case '\v': Out << "\\v"; break;
|
|
case '\a': Out << "\\a"; break;
|
|
case '\"': Out << "\\\""; break;
|
|
case '\'': Out << "\\\'"; break;
|
|
default:
|
|
Out << "\\x";
|
|
Out << (char)(( C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A'));
|
|
Out << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
|
|
LastWasHex = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
Out << "\"";
|
|
} else {
|
|
Out << "{";
|
|
if (CPA->getNumOperands()) {
|
|
Out << " ";
|
|
printConstant(cast<Constant>(CPA->getOperand(0)));
|
|
for (unsigned i = 1, e = CPA->getNumOperands(); i != e; ++i) {
|
|
Out << ", ";
|
|
printConstant(cast<Constant>(CPA->getOperand(i)));
|
|
}
|
|
}
|
|
Out << " }";
|
|
}
|
|
}
|
|
|
|
// isFPCSafeToPrint - Returns true if we may assume that CFP may be written out
|
|
// textually as a double (rather than as a reference to a stack-allocated
|
|
// variable). We decide this by converting CFP to a string and back into a
|
|
// double, and then checking whether the conversion results in a bit-equal
|
|
// double to the original value of CFP. This depends on us and the target C
|
|
// compiler agreeing on the conversion process (which is pretty likely since we
|
|
// only deal in IEEE FP).
|
|
//
|
|
static bool isFPCSafeToPrint(const ConstantFP *CFP) {
|
|
#if HAVE_PRINTF_A
|
|
char Buffer[100];
|
|
sprintf(Buffer, "%a", CFP->getValue());
|
|
|
|
if (!strncmp(Buffer, "0x", 2) ||
|
|
!strncmp(Buffer, "-0x", 3) ||
|
|
!strncmp(Buffer, "+0x", 3))
|
|
return atof(Buffer) == CFP->getValue();
|
|
return false;
|
|
#else
|
|
std::string StrVal = ftostr(CFP->getValue());
|
|
|
|
while (StrVal[0] == ' ')
|
|
StrVal.erase(StrVal.begin());
|
|
|
|
// Check to make sure that the stringized number is not some string like "Inf"
|
|
// or NaN. Check that the string matches the "[-+]?[0-9]" regex.
|
|
if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
|
|
((StrVal[0] == '-' || StrVal[0] == '+') &&
|
|
(StrVal[1] >= '0' && StrVal[1] <= '9')))
|
|
// Reparse stringized version!
|
|
return atof(StrVal.c_str()) == CFP->getValue();
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
// printConstant - The LLVM Constant to C Constant converter.
|
|
void CWriter::printConstant(Constant *CPV) {
|
|
if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
|
|
switch (CE->getOpcode()) {
|
|
case Instruction::Cast:
|
|
Out << "((";
|
|
printType(Out, CPV->getType());
|
|
Out << ")";
|
|
printConstant(CE->getOperand(0));
|
|
Out << ")";
|
|
return;
|
|
|
|
case Instruction::GetElementPtr:
|
|
Out << "(&(";
|
|
printIndexingExpression(CE->getOperand(0), gep_type_begin(CPV),
|
|
gep_type_end(CPV));
|
|
Out << "))";
|
|
return;
|
|
case Instruction::Select:
|
|
Out << "(";
|
|
printConstant(CE->getOperand(0));
|
|
Out << "?";
|
|
printConstant(CE->getOperand(1));
|
|
Out << ":";
|
|
printConstant(CE->getOperand(2));
|
|
Out << ")";
|
|
return;
|
|
case Instruction::Add:
|
|
case Instruction::Sub:
|
|
case Instruction::Mul:
|
|
case Instruction::Div:
|
|
case Instruction::Rem:
|
|
case Instruction::SetEQ:
|
|
case Instruction::SetNE:
|
|
case Instruction::SetLT:
|
|
case Instruction::SetLE:
|
|
case Instruction::SetGT:
|
|
case Instruction::SetGE:
|
|
case Instruction::Shl:
|
|
case Instruction::Shr:
|
|
Out << "(";
|
|
printConstant(CE->getOperand(0));
|
|
switch (CE->getOpcode()) {
|
|
case Instruction::Add: Out << " + "; break;
|
|
case Instruction::Sub: Out << " - "; break;
|
|
case Instruction::Mul: Out << " * "; break;
|
|
case Instruction::Div: Out << " / "; break;
|
|
case Instruction::Rem: Out << " % "; break;
|
|
case Instruction::SetEQ: Out << " == "; break;
|
|
case Instruction::SetNE: Out << " != "; break;
|
|
case Instruction::SetLT: Out << " < "; break;
|
|
case Instruction::SetLE: Out << " <= "; break;
|
|
case Instruction::SetGT: Out << " > "; break;
|
|
case Instruction::SetGE: Out << " >= "; break;
|
|
case Instruction::Shl: Out << " << "; break;
|
|
case Instruction::Shr: Out << " >> "; break;
|
|
default: assert(0 && "Illegal opcode here!");
|
|
}
|
|
printConstant(CE->getOperand(1));
|
|
Out << ")";
|
|
return;
|
|
|
|
default:
|
|
std::cerr << "CWriter Error: Unhandled constant expression: "
|
|
<< CE << "\n";
|
|
abort();
|
|
}
|
|
}
|
|
|
|
switch (CPV->getType()->getTypeID()) {
|
|
case Type::BoolTyID:
|
|
Out << (CPV == ConstantBool::False ? "0" : "1"); break;
|
|
case Type::SByteTyID:
|
|
case Type::ShortTyID:
|
|
Out << cast<ConstantSInt>(CPV)->getValue(); break;
|
|
case Type::IntTyID:
|
|
if ((int)cast<ConstantSInt>(CPV)->getValue() == (int)0x80000000)
|
|
Out << "((int)0x80000000)"; // Handle MININT specially to avoid warning
|
|
else
|
|
Out << cast<ConstantSInt>(CPV)->getValue();
|
|
break;
|
|
|
|
case Type::LongTyID:
|
|
Out << cast<ConstantSInt>(CPV)->getValue() << "ll"; break;
|
|
|
|
case Type::UByteTyID:
|
|
case Type::UShortTyID:
|
|
Out << cast<ConstantUInt>(CPV)->getValue(); break;
|
|
case Type::UIntTyID:
|
|
Out << cast<ConstantUInt>(CPV)->getValue() << "u"; break;
|
|
case Type::ULongTyID:
|
|
Out << cast<ConstantUInt>(CPV)->getValue() << "ull"; break;
|
|
|
|
case Type::FloatTyID:
|
|
case Type::DoubleTyID: {
|
|
ConstantFP *FPC = cast<ConstantFP>(CPV);
|
|
std::map<const ConstantFP*, unsigned>::iterator I = FPConstantMap.find(FPC);
|
|
if (I != FPConstantMap.end()) {
|
|
// Because of FP precision problems we must load from a stack allocated
|
|
// value that holds the value in hex.
|
|
Out << "(*(" << (FPC->getType() == Type::FloatTy ? "float" : "double")
|
|
<< "*)&FPConstant" << I->second << ")";
|
|
} else {
|
|
#if HAVE_PRINTF_A
|
|
// Print out the constant as a floating point number.
|
|
char Buffer[100];
|
|
sprintf(Buffer, "%a", FPC->getValue());
|
|
Out << Buffer << " /*" << FPC->getValue() << "*/ ";
|
|
#else
|
|
Out << ftostr(FPC->getValue());
|
|
#endif
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Type::ArrayTyID:
|
|
if (isa<ConstantAggregateZero>(CPV)) {
|
|
const ArrayType *AT = cast<ArrayType>(CPV->getType());
|
|
Out << "{";
|
|
if (AT->getNumElements()) {
|
|
Out << " ";
|
|
Constant *CZ = Constant::getNullValue(AT->getElementType());
|
|
printConstant(CZ);
|
|
for (unsigned i = 1, e = AT->getNumElements(); i != e; ++i) {
|
|
Out << ", ";
|
|
printConstant(CZ);
|
|
}
|
|
}
|
|
Out << " }";
|
|
} else {
|
|
printConstantArray(cast<ConstantArray>(CPV));
|
|
}
|
|
break;
|
|
|
|
case Type::StructTyID:
|
|
if (isa<ConstantAggregateZero>(CPV)) {
|
|
const StructType *ST = cast<StructType>(CPV->getType());
|
|
Out << "{";
|
|
if (ST->getNumElements()) {
|
|
Out << " ";
|
|
printConstant(Constant::getNullValue(ST->getElementType(0)));
|
|
for (unsigned i = 1, e = ST->getNumElements(); i != e; ++i) {
|
|
Out << ", ";
|
|
printConstant(Constant::getNullValue(ST->getElementType(i)));
|
|
}
|
|
}
|
|
Out << " }";
|
|
} else {
|
|
Out << "{";
|
|
if (CPV->getNumOperands()) {
|
|
Out << " ";
|
|
printConstant(cast<Constant>(CPV->getOperand(0)));
|
|
for (unsigned i = 1, e = CPV->getNumOperands(); i != e; ++i) {
|
|
Out << ", ";
|
|
printConstant(cast<Constant>(CPV->getOperand(i)));
|
|
}
|
|
}
|
|
Out << " }";
|
|
}
|
|
break;
|
|
|
|
case Type::PointerTyID:
|
|
if (isa<ConstantPointerNull>(CPV)) {
|
|
Out << "((";
|
|
printType(Out, CPV->getType());
|
|
Out << ")/*NULL*/0)";
|
|
break;
|
|
} else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(CPV)) {
|
|
writeOperand(CPR->getValue());
|
|
break;
|
|
}
|
|
// FALL THROUGH
|
|
default:
|
|
std::cerr << "Unknown constant type: " << CPV << "\n";
|
|
abort();
|
|
}
|
|
}
|
|
|
|
void CWriter::writeOperandInternal(Value *Operand) {
|
|
if (Instruction *I = dyn_cast<Instruction>(Operand))
|
|
if (isInlinableInst(*I) && !isDirectAlloca(I)) {
|
|
// Should we inline this instruction to build a tree?
|
|
Out << "(";
|
|
visit(*I);
|
|
Out << ")";
|
|
return;
|
|
}
|
|
|
|
if (Constant *CPV = dyn_cast<Constant>(Operand)) {
|
|
printConstant(CPV);
|
|
} else {
|
|
Out << Mang->getValueName(Operand);
|
|
}
|
|
}
|
|
|
|
void CWriter::writeOperand(Value *Operand) {
|
|
if (isa<GlobalVariable>(Operand) || isDirectAlloca(Operand))
|
|
Out << "(&"; // Global variables are references as their addresses by llvm
|
|
|
|
writeOperandInternal(Operand);
|
|
|
|
if (isa<GlobalVariable>(Operand) || isDirectAlloca(Operand))
|
|
Out << ")";
|
|
}
|
|
|
|
// generateCompilerSpecificCode - This is where we add conditional compilation
|
|
// directives to cater to specific compilers as need be.
|
|
//
|
|
static void generateCompilerSpecificCode(std::ostream& Out) {
|
|
// Alloca is hard to get, and we don't want to include stdlib.h here...
|
|
Out << "/* get a declaration for alloca */\n"
|
|
<< "#if defined(sun) || defined(__CYGWIN__)\n"
|
|
<< "extern void *__builtin_alloca(unsigned long);\n"
|
|
<< "#define alloca(x) __builtin_alloca(x)\n"
|
|
<< "#else\n"
|
|
<< "#ifndef __FreeBSD__\n"
|
|
<< "#include <alloca.h>\n"
|
|
<< "#endif\n"
|
|
<< "#endif\n\n";
|
|
|
|
// We output GCC specific attributes to preserve 'linkonce'ness on globals.
|
|
// If we aren't being compiled with GCC, just drop these attributes.
|
|
Out << "#ifndef __GNUC__ /* Can only support \"linkonce\" vars with GCC */\n"
|
|
<< "#define __attribute__(X)\n"
|
|
<< "#endif\n\n";
|
|
|
|
#if 0
|
|
// At some point, we should support "external weak" vs. "weak" linkages.
|
|
// On Mac OS X, "external weak" is spelled "__attribute__((weak_import))".
|
|
Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
|
|
<< "#define __EXTERNAL_WEAK__ __attribute__((weak_import))\n"
|
|
<< "#elif defined(__GNUC__)\n"
|
|
<< "#define __EXTERNAL_WEAK__ __attribute__((weak))\n"
|
|
<< "#else\n"
|
|
<< "#define __EXTERNAL_WEAK__\n"
|
|
<< "#endif\n\n";
|
|
#endif
|
|
|
|
// For now, turn off the weak linkage attribute on Mac OS X. (See above.)
|
|
Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
|
|
<< "#define __ATTRIBUTE_WEAK__\n"
|
|
<< "#elif defined(__GNUC__)\n"
|
|
<< "#define __ATTRIBUTE_WEAK__ __attribute__((weak))\n"
|
|
<< "#else\n"
|
|
<< "#define __ATTRIBUTE_WEAK__\n"
|
|
<< "#endif\n\n";
|
|
}
|
|
|
|
bool CWriter::doInitialization(Module &M) {
|
|
// Initialize
|
|
TheModule = &M;
|
|
|
|
IL.AddPrototypes(M);
|
|
|
|
// Ensure that all structure types have names...
|
|
Mang = new Mangler(M);
|
|
|
|
// get declaration for alloca
|
|
Out << "/* Provide Declarations */\n";
|
|
Out << "#include <stdarg.h>\n"; // Varargs support
|
|
Out << "#include <setjmp.h>\n"; // Unwind support
|
|
generateCompilerSpecificCode(Out);
|
|
|
|
// Provide a definition for `bool' if not compiling with a C++ compiler.
|
|
Out << "\n"
|
|
<< "#ifndef __cplusplus\ntypedef unsigned char bool;\n#endif\n"
|
|
|
|
<< "\n\n/* Support for floating point constants */\n"
|
|
<< "typedef unsigned long long ConstantDoubleTy;\n"
|
|
<< "typedef unsigned int ConstantFloatTy;\n"
|
|
|
|
<< "\n\n/* Global Declarations */\n";
|
|
|
|
// First output all the declarations for the program, because C requires
|
|
// Functions & globals to be declared before they are used.
|
|
//
|
|
|
|
// Loop over the symbol table, emitting all named constants...
|
|
printModuleTypes(M.getSymbolTable());
|
|
|
|
// Global variable declarations...
|
|
if (!M.gempty()) {
|
|
Out << "\n/* External Global Variable Declarations */\n";
|
|
for (Module::giterator I = M.gbegin(), E = M.gend(); I != E; ++I) {
|
|
if (I->hasExternalLinkage()) {
|
|
Out << "extern ";
|
|
printType(Out, I->getType()->getElementType(), Mang->getValueName(I));
|
|
Out << ";\n";
|
|
}
|
|
}
|
|
}
|
|
|
|
// Function declarations
|
|
if (!M.empty()) {
|
|
Out << "\n/* Function Declarations */\n";
|
|
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
|
|
// Don't print declarations for intrinsic functions.
|
|
if (!I->getIntrinsicID() &&
|
|
I->getName() != "setjmp" && I->getName() != "longjmp") {
|
|
printFunctionSignature(I, true);
|
|
if (I->hasWeakLinkage()) Out << " __ATTRIBUTE_WEAK__";
|
|
if (I->hasLinkOnceLinkage()) Out << " __ATTRIBUTE_WEAK__";
|
|
Out << ";\n";
|
|
}
|
|
}
|
|
}
|
|
|
|
// Output the global variable declarations
|
|
if (!M.gempty()) {
|
|
Out << "\n\n/* Global Variable Declarations */\n";
|
|
for (Module::giterator I = M.gbegin(), E = M.gend(); I != E; ++I)
|
|
if (!I->isExternal()) {
|
|
Out << "extern ";
|
|
printType(Out, I->getType()->getElementType(), Mang->getValueName(I));
|
|
|
|
if (I->hasLinkOnceLinkage())
|
|
Out << " __attribute__((common))";
|
|
else if (I->hasWeakLinkage())
|
|
Out << " __ATTRIBUTE_WEAK__";
|
|
Out << ";\n";
|
|
}
|
|
}
|
|
|
|
// Output the global variable definitions and contents...
|
|
if (!M.gempty()) {
|
|
Out << "\n\n/* Global Variable Definitions and Initialization */\n";
|
|
for (Module::giterator I = M.gbegin(), E = M.gend(); I != E; ++I)
|
|
if (!I->isExternal()) {
|
|
if (I->hasInternalLinkage())
|
|
Out << "static ";
|
|
printType(Out, I->getType()->getElementType(), Mang->getValueName(I));
|
|
if (I->hasLinkOnceLinkage())
|
|
Out << " __attribute__((common))";
|
|
else if (I->hasWeakLinkage())
|
|
Out << " __ATTRIBUTE_WEAK__";
|
|
|
|
// If the initializer is not null, emit the initializer. If it is null,
|
|
// we try to avoid emitting large amounts of zeros. The problem with
|
|
// this, however, occurs when the variable has weak linkage. In this
|
|
// case, the assembler will complain about the variable being both weak
|
|
// and common, so we disable this optimization.
|
|
if (!I->getInitializer()->isNullValue()) {
|
|
Out << " = " ;
|
|
writeOperand(I->getInitializer());
|
|
} else if (I->hasWeakLinkage()) {
|
|
// We have to specify an initializer, but it doesn't have to be
|
|
// complete. If the value is an aggregate, print out { 0 }, and let
|
|
// the compiler figure out the rest of the zeros.
|
|
Out << " = " ;
|
|
if (isa<StructType>(I->getInitializer()->getType()) ||
|
|
isa<ArrayType>(I->getInitializer()->getType())) {
|
|
Out << "{ 0 }";
|
|
} else {
|
|
// Just print it out normally.
|
|
writeOperand(I->getInitializer());
|
|
}
|
|
}
|
|
Out << ";\n";
|
|
}
|
|
}
|
|
|
|
if (!M.empty())
|
|
Out << "\n\n/* Function Bodies */\n";
|
|
return false;
|
|
}
|
|
|
|
|
|
/// Output all floating point constants that cannot be printed accurately...
|
|
void CWriter::printFloatingPointConstants(Function &F) {
|
|
union {
|
|
double D;
|
|
uint64_t U;
|
|
} DBLUnion;
|
|
|
|
union {
|
|
float F;
|
|
unsigned U;
|
|
} FLTUnion;
|
|
|
|
// Scan the module for floating point constants. If any FP constant is used
|
|
// in the function, we want to redirect it here so that we do not depend on
|
|
// the precision of the printed form, unless the printed form preserves
|
|
// precision.
|
|
//
|
|
static unsigned FPCounter = 0;
|
|
for (constant_iterator I = constant_begin(&F), E = constant_end(&F);
|
|
I != E; ++I)
|
|
if (const ConstantFP *FPC = dyn_cast<ConstantFP>(*I))
|
|
if (!isFPCSafeToPrint(FPC) && // Do not put in FPConstantMap if safe.
|
|
!FPConstantMap.count(FPC)) {
|
|
double Val = FPC->getValue();
|
|
|
|
FPConstantMap[FPC] = FPCounter; // Number the FP constants
|
|
|
|
if (FPC->getType() == Type::DoubleTy) {
|
|
DBLUnion.D = Val;
|
|
Out << "static const ConstantDoubleTy FPConstant" << FPCounter++
|
|
<< " = 0x" << std::hex << DBLUnion.U << std::dec
|
|
<< "ULL; /* " << Val << " */\n";
|
|
} else if (FPC->getType() == Type::FloatTy) {
|
|
FLTUnion.F = Val;
|
|
Out << "static const ConstantFloatTy FPConstant" << FPCounter++
|
|
<< " = 0x" << std::hex << FLTUnion.U << std::dec
|
|
<< "U; /* " << Val << " */\n";
|
|
} else
|
|
assert(0 && "Unknown float type!");
|
|
}
|
|
|
|
Out << "\n";
|
|
}
|
|
|
|
|
|
/// printSymbolTable - Run through symbol table looking for type names. If a
|
|
/// type name is found, emit it's declaration...
|
|
///
|
|
void CWriter::printModuleTypes(const SymbolTable &ST) {
|
|
// If there are no type names, exit early.
|
|
if ( ! ST.hasTypes() )
|
|
return;
|
|
|
|
// We are only interested in the type plane of the symbol table...
|
|
SymbolTable::type_const_iterator I = ST.type_begin();
|
|
SymbolTable::type_const_iterator End = ST.type_end();
|
|
|
|
// Print out forward declarations for structure types before anything else!
|
|
Out << "/* Structure forward decls */\n";
|
|
for (; I != End; ++I)
|
|
if (const Type *STy = dyn_cast<StructType>(I->second)) {
|
|
std::string Name = "struct l_" + Mangler::makeNameProper(I->first);
|
|
Out << Name << ";\n";
|
|
TypeNames.insert(std::make_pair(STy, Name));
|
|
}
|
|
|
|
Out << "\n";
|
|
|
|
// Now we can print out typedefs...
|
|
Out << "/* Typedefs */\n";
|
|
for (I = ST.type_begin(); I != End; ++I) {
|
|
const Type *Ty = cast<Type>(I->second);
|
|
std::string Name = "l_" + Mangler::makeNameProper(I->first);
|
|
Out << "typedef ";
|
|
printType(Out, Ty, Name);
|
|
Out << ";\n";
|
|
}
|
|
|
|
Out << "\n";
|
|
|
|
// Keep track of which structures have been printed so far...
|
|
std::set<const StructType *> StructPrinted;
|
|
|
|
// Loop over all structures then push them into the stack so they are
|
|
// printed in the correct order.
|
|
//
|
|
Out << "/* Structure contents */\n";
|
|
for (I = ST.type_begin(); I != End; ++I)
|
|
if (const StructType *STy = dyn_cast<StructType>(I->second))
|
|
// Only print out used types!
|
|
printContainedStructs(STy, StructPrinted);
|
|
}
|
|
|
|
// Push the struct onto the stack and recursively push all structs
|
|
// this one depends on.
|
|
void CWriter::printContainedStructs(const Type *Ty,
|
|
std::set<const StructType*> &StructPrinted){
|
|
if (const StructType *STy = dyn_cast<StructType>(Ty)) {
|
|
//Check to see if we have already printed this struct
|
|
if (StructPrinted.count(STy) == 0) {
|
|
// Print all contained types first...
|
|
for (StructType::element_iterator I = STy->element_begin(),
|
|
E = STy->element_end(); I != E; ++I) {
|
|
const Type *Ty1 = I->get();
|
|
if (isa<StructType>(Ty1) || isa<ArrayType>(Ty1))
|
|
printContainedStructs(*I, StructPrinted);
|
|
}
|
|
|
|
//Print structure type out..
|
|
StructPrinted.insert(STy);
|
|
std::string Name = TypeNames[STy];
|
|
printType(Out, STy, Name, true);
|
|
Out << ";\n\n";
|
|
}
|
|
|
|
// If it is an array, check contained types and continue
|
|
} else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)){
|
|
const Type *Ty1 = ATy->getElementType();
|
|
if (isa<StructType>(Ty1) || isa<ArrayType>(Ty1))
|
|
printContainedStructs(Ty1, StructPrinted);
|
|
}
|
|
}
|
|
|
|
|
|
void CWriter::printFunctionSignature(const Function *F, bool Prototype) {
|
|
if (F->hasInternalLinkage()) Out << "static ";
|
|
|
|
// Loop over the arguments, printing them...
|
|
const FunctionType *FT = cast<FunctionType>(F->getFunctionType());
|
|
|
|
std::stringstream FunctionInnards;
|
|
|
|
// Print out the name...
|
|
FunctionInnards << Mang->getValueName(F) << "(";
|
|
|
|
if (!F->isExternal()) {
|
|
if (!F->aempty()) {
|
|
std::string ArgName;
|
|
if (F->abegin()->hasName() || !Prototype)
|
|
ArgName = Mang->getValueName(F->abegin());
|
|
printType(FunctionInnards, F->afront().getType(), ArgName);
|
|
for (Function::const_aiterator I = ++F->abegin(), E = F->aend();
|
|
I != E; ++I) {
|
|
FunctionInnards << ", ";
|
|
if (I->hasName() || !Prototype)
|
|
ArgName = Mang->getValueName(I);
|
|
else
|
|
ArgName = "";
|
|
printType(FunctionInnards, I->getType(), ArgName);
|
|
}
|
|
}
|
|
} else {
|
|
// Loop over the arguments, printing them...
|
|
for (FunctionType::param_iterator I = FT->param_begin(),
|
|
E = FT->param_end(); I != E; ++I) {
|
|
if (I != FT->param_begin()) FunctionInnards << ", ";
|
|
printType(FunctionInnards, *I);
|
|
}
|
|
}
|
|
|
|
// Finish printing arguments... if this is a vararg function, print the ...,
|
|
// unless there are no known types, in which case, we just emit ().
|
|
//
|
|
if (FT->isVarArg() && FT->getNumParams()) {
|
|
if (FT->getNumParams()) FunctionInnards << ", ";
|
|
FunctionInnards << "..."; // Output varargs portion of signature!
|
|
} else if (!FT->isVarArg() && FT->getNumParams() == 0) {
|
|
FunctionInnards << "void"; // ret() -> ret(void) in C.
|
|
}
|
|
FunctionInnards << ")";
|
|
// Print out the return type and the entire signature for that matter
|
|
printType(Out, F->getReturnType(), FunctionInnards.str());
|
|
}
|
|
|
|
void CWriter::printFunction(Function &F) {
|
|
printFunctionSignature(&F, false);
|
|
Out << " {\n";
|
|
|
|
// print local variable information for the function
|
|
for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ++I)
|
|
if (const AllocaInst *AI = isDirectAlloca(&*I)) {
|
|
Out << " ";
|
|
printType(Out, AI->getAllocatedType(), Mang->getValueName(AI));
|
|
Out << "; /* Address exposed local */\n";
|
|
} else if (I->getType() != Type::VoidTy && !isInlinableInst(*I)) {
|
|
Out << " ";
|
|
printType(Out, I->getType(), Mang->getValueName(&*I));
|
|
Out << ";\n";
|
|
|
|
if (isa<PHINode>(*I)) { // Print out PHI node temporaries as well...
|
|
Out << " ";
|
|
printType(Out, I->getType(),
|
|
Mang->getValueName(&*I)+"__PHI_TEMPORARY");
|
|
Out << ";\n";
|
|
}
|
|
}
|
|
|
|
Out << "\n";
|
|
|
|
// print the basic blocks
|
|
for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
|
|
if (Loop *L = LI->getLoopFor(BB)) {
|
|
if (L->getHeader() == BB && L->getParentLoop() == 0)
|
|
printLoop(L);
|
|
} else {
|
|
printBasicBlock(BB);
|
|
}
|
|
}
|
|
|
|
Out << "}\n\n";
|
|
}
|
|
|
|
void CWriter::printLoop(Loop *L) {
|
|
Out << " do { /* Syntactic loop '" << L->getHeader()->getName()
|
|
<< "' to make GCC happy */\n";
|
|
for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i) {
|
|
BasicBlock *BB = L->getBlocks()[i];
|
|
Loop *BBLoop = LI->getLoopFor(BB);
|
|
if (BBLoop == L)
|
|
printBasicBlock(BB);
|
|
else if (BB == BBLoop->getHeader() && BBLoop->getParentLoop() == L)
|
|
printLoop(BBLoop);
|
|
}
|
|
Out << " } while (1); /* end of syntactic loop '"
|
|
<< L->getHeader()->getName() << "' */\n";
|
|
}
|
|
|
|
void CWriter::printBasicBlock(BasicBlock *BB) {
|
|
|
|
// Don't print the label for the basic block if there are no uses, or if
|
|
// the only terminator use is the predecessor basic block's terminator.
|
|
// We have to scan the use list because PHI nodes use basic blocks too but
|
|
// do not require a label to be generated.
|
|
//
|
|
bool NeedsLabel = false;
|
|
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
|
|
if (isGotoCodeNecessary(*PI, BB)) {
|
|
NeedsLabel = true;
|
|
break;
|
|
}
|
|
|
|
if (NeedsLabel) Out << Mang->getValueName(BB) << ":\n";
|
|
|
|
// Output all of the instructions in the basic block...
|
|
for (BasicBlock::iterator II = BB->begin(), E = --BB->end(); II != E;
|
|
++II) {
|
|
if (!isInlinableInst(*II) && !isDirectAlloca(II)) {
|
|
if (II->getType() != Type::VoidTy)
|
|
outputLValue(II);
|
|
else
|
|
Out << " ";
|
|
visit(*II);
|
|
Out << ";\n";
|
|
}
|
|
}
|
|
|
|
// Don't emit prefix or suffix for the terminator...
|
|
visit(*BB->getTerminator());
|
|
}
|
|
|
|
|
|
// Specific Instruction type classes... note that all of the casts are
|
|
// necessary because we use the instruction classes as opaque types...
|
|
//
|
|
void CWriter::visitReturnInst(ReturnInst &I) {
|
|
// Don't output a void return if this is the last basic block in the function
|
|
if (I.getNumOperands() == 0 &&
|
|
&*--I.getParent()->getParent()->end() == I.getParent() &&
|
|
!I.getParent()->size() == 1) {
|
|
return;
|
|
}
|
|
|
|
Out << " return";
|
|
if (I.getNumOperands()) {
|
|
Out << " ";
|
|
writeOperand(I.getOperand(0));
|
|
}
|
|
Out << ";\n";
|
|
}
|
|
|
|
void CWriter::visitSwitchInst(SwitchInst &SI) {
|
|
printPHICopiesForSuccessors(SI.getParent(), 0);
|
|
|
|
Out << " switch (";
|
|
writeOperand(SI.getOperand(0));
|
|
Out << ") {\n default:\n";
|
|
printBranchToBlock(SI.getParent(), SI.getDefaultDest(), 2);
|
|
Out << ";\n";
|
|
for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2) {
|
|
Out << " case ";
|
|
writeOperand(SI.getOperand(i));
|
|
Out << ":\n";
|
|
BasicBlock *Succ = cast<BasicBlock>(SI.getOperand(i+1));
|
|
printBranchToBlock(SI.getParent(), Succ, 2);
|
|
if (Succ == SI.getParent()->getNext())
|
|
Out << " break;\n";
|
|
}
|
|
Out << " }\n";
|
|
}
|
|
|
|
bool CWriter::isGotoCodeNecessary(BasicBlock *From, BasicBlock *To) {
|
|
/// FIXME: This should be reenabled, but loop reordering safe!!
|
|
return true;
|
|
|
|
if (From->getNext() != To) // Not the direct successor, we need a goto
|
|
return true;
|
|
|
|
//isa<SwitchInst>(From->getTerminator())
|
|
|
|
|
|
if (LI->getLoopFor(From) != LI->getLoopFor(To))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
void CWriter::printPHICopiesForSuccessors(BasicBlock *CurBlock,
|
|
unsigned Indent) {
|
|
for (succ_iterator SI = succ_begin(CurBlock), E = succ_end(CurBlock);
|
|
SI != E; ++SI)
|
|
for (BasicBlock::iterator I = SI->begin();
|
|
PHINode *PN = dyn_cast<PHINode>(I); ++I) {
|
|
// now we have to do the printing
|
|
Out << std::string(Indent, ' ');
|
|
Out << " " << Mang->getValueName(I) << "__PHI_TEMPORARY = ";
|
|
writeOperand(PN->getIncomingValue(PN->getBasicBlockIndex(CurBlock)));
|
|
Out << "; /* for PHI node */\n";
|
|
}
|
|
}
|
|
|
|
|
|
void CWriter::printBranchToBlock(BasicBlock *CurBB, BasicBlock *Succ,
|
|
unsigned Indent) {
|
|
if (isGotoCodeNecessary(CurBB, Succ)) {
|
|
Out << std::string(Indent, ' ') << " goto ";
|
|
writeOperand(Succ);
|
|
Out << ";\n";
|
|
}
|
|
}
|
|
|
|
// Branch instruction printing - Avoid printing out a branch to a basic block
|
|
// that immediately succeeds the current one.
|
|
//
|
|
void CWriter::visitBranchInst(BranchInst &I) {
|
|
printPHICopiesForSuccessors(I.getParent(), 0);
|
|
|
|
if (I.isConditional()) {
|
|
if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(0))) {
|
|
Out << " if (";
|
|
writeOperand(I.getCondition());
|
|
Out << ") {\n";
|
|
|
|
printBranchToBlock(I.getParent(), I.getSuccessor(0), 2);
|
|
|
|
if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(1))) {
|
|
Out << " } else {\n";
|
|
printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
|
|
}
|
|
} else {
|
|
// First goto not necessary, assume second one is...
|
|
Out << " if (!";
|
|
writeOperand(I.getCondition());
|
|
Out << ") {\n";
|
|
|
|
printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
|
|
}
|
|
|
|
Out << " }\n";
|
|
} else {
|
|
printBranchToBlock(I.getParent(), I.getSuccessor(0), 0);
|
|
}
|
|
Out << "\n";
|
|
}
|
|
|
|
// PHI nodes get copied into temporary values at the end of predecessor basic
|
|
// blocks. We now need to copy these temporary values into the REAL value for
|
|
// the PHI.
|
|
void CWriter::visitPHINode(PHINode &I) {
|
|
writeOperand(&I);
|
|
Out << "__PHI_TEMPORARY";
|
|
}
|
|
|
|
|
|
void CWriter::visitBinaryOperator(Instruction &I) {
|
|
// binary instructions, shift instructions, setCond instructions.
|
|
assert(!isa<PointerType>(I.getType()));
|
|
|
|
// We must cast the results of binary operations which might be promoted.
|
|
bool needsCast = false;
|
|
if ((I.getType() == Type::UByteTy) || (I.getType() == Type::SByteTy)
|
|
|| (I.getType() == Type::UShortTy) || (I.getType() == Type::ShortTy)
|
|
|| (I.getType() == Type::FloatTy)) {
|
|
needsCast = true;
|
|
Out << "((";
|
|
printType(Out, I.getType());
|
|
Out << ")(";
|
|
}
|
|
|
|
writeOperand(I.getOperand(0));
|
|
|
|
switch (I.getOpcode()) {
|
|
case Instruction::Add: Out << " + "; break;
|
|
case Instruction::Sub: Out << " - "; break;
|
|
case Instruction::Mul: Out << "*"; break;
|
|
case Instruction::Div: Out << "/"; break;
|
|
case Instruction::Rem: Out << "%"; break;
|
|
case Instruction::And: Out << " & "; break;
|
|
case Instruction::Or: Out << " | "; break;
|
|
case Instruction::Xor: Out << " ^ "; break;
|
|
case Instruction::SetEQ: Out << " == "; break;
|
|
case Instruction::SetNE: Out << " != "; break;
|
|
case Instruction::SetLE: Out << " <= "; break;
|
|
case Instruction::SetGE: Out << " >= "; break;
|
|
case Instruction::SetLT: Out << " < "; break;
|
|
case Instruction::SetGT: Out << " > "; break;
|
|
case Instruction::Shl : Out << " << "; break;
|
|
case Instruction::Shr : Out << " >> "; break;
|
|
default: std::cerr << "Invalid operator type!" << I; abort();
|
|
}
|
|
|
|
writeOperand(I.getOperand(1));
|
|
|
|
if (needsCast) {
|
|
Out << "))";
|
|
}
|
|
}
|
|
|
|
void CWriter::visitCastInst(CastInst &I) {
|
|
if (I.getType() == Type::BoolTy) {
|
|
Out << "(";
|
|
writeOperand(I.getOperand(0));
|
|
Out << " != 0)";
|
|
return;
|
|
}
|
|
Out << "(";
|
|
printType(Out, I.getType());
|
|
Out << ")";
|
|
if (isa<PointerType>(I.getType())&&I.getOperand(0)->getType()->isIntegral() ||
|
|
isa<PointerType>(I.getOperand(0)->getType())&&I.getType()->isIntegral()) {
|
|
// Avoid "cast to pointer from integer of different size" warnings
|
|
Out << "(long)";
|
|
}
|
|
|
|
writeOperand(I.getOperand(0));
|
|
}
|
|
|
|
void CWriter::visitSelectInst(SelectInst &I) {
|
|
Out << "((";
|
|
writeOperand(I.getCondition());
|
|
Out << ") ? (";
|
|
writeOperand(I.getTrueValue());
|
|
Out << ") : (";
|
|
writeOperand(I.getFalseValue());
|
|
Out << "))";
|
|
}
|
|
|
|
|
|
void CWriter::lowerIntrinsics(Function &F) {
|
|
for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
|
|
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
|
|
if (CallInst *CI = dyn_cast<CallInst>(I++))
|
|
if (Function *F = CI->getCalledFunction())
|
|
switch (F->getIntrinsicID()) {
|
|
case Intrinsic::not_intrinsic:
|
|
case Intrinsic::vastart:
|
|
case Intrinsic::vacopy:
|
|
case Intrinsic::vaend:
|
|
case Intrinsic::returnaddress:
|
|
case Intrinsic::frameaddress:
|
|
case Intrinsic::setjmp:
|
|
case Intrinsic::longjmp:
|
|
// We directly implement these intrinsics
|
|
break;
|
|
default:
|
|
// All other intrinsic calls we must lower.
|
|
Instruction *Before = CI->getPrev();
|
|
IL.LowerIntrinsicCall(CI);
|
|
if (Before) { // Move iterator to instruction after call
|
|
I = Before; ++I;
|
|
} else {
|
|
I = BB->begin();
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
void CWriter::visitCallInst(CallInst &I) {
|
|
// Handle intrinsic function calls first...
|
|
if (Function *F = I.getCalledFunction())
|
|
if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
|
|
switch (ID) {
|
|
default: assert(0 && "Unknown LLVM intrinsic!");
|
|
case Intrinsic::vastart:
|
|
Out << "0; ";
|
|
|
|
Out << "va_start(*(va_list*)&" << Mang->getValueName(&I) << ", ";
|
|
// Output the last argument to the enclosing function...
|
|
if (I.getParent()->getParent()->aempty()) {
|
|
std::cerr << "The C backend does not currently support zero "
|
|
<< "argument varargs functions, such as '"
|
|
<< I.getParent()->getParent()->getName() << "'!\n";
|
|
abort();
|
|
}
|
|
writeOperand(&I.getParent()->getParent()->aback());
|
|
Out << ")";
|
|
return;
|
|
case Intrinsic::vaend:
|
|
Out << "va_end(*(va_list*)&";
|
|
writeOperand(I.getOperand(1));
|
|
Out << ")";
|
|
return;
|
|
case Intrinsic::vacopy:
|
|
Out << "0;";
|
|
Out << "va_copy(*(va_list*)&" << Mang->getValueName(&I) << ", ";
|
|
Out << "*(va_list*)&";
|
|
writeOperand(I.getOperand(1));
|
|
Out << ")";
|
|
return;
|
|
case Intrinsic::returnaddress:
|
|
Out << "__builtin_return_address(";
|
|
writeOperand(I.getOperand(1));
|
|
Out << ")";
|
|
return;
|
|
case Intrinsic::frameaddress:
|
|
Out << "__builtin_frame_address(";
|
|
writeOperand(I.getOperand(1));
|
|
Out << ")";
|
|
return;
|
|
case Intrinsic::setjmp:
|
|
Out << "setjmp(*(jmp_buf*)";
|
|
writeOperand(I.getOperand(1));
|
|
Out << ")";
|
|
return;
|
|
case Intrinsic::longjmp:
|
|
Out << "longjmp(*(jmp_buf*)";
|
|
writeOperand(I.getOperand(1));
|
|
Out << ", ";
|
|
writeOperand(I.getOperand(2));
|
|
Out << ")";
|
|
return;
|
|
}
|
|
}
|
|
visitCallSite(&I);
|
|
}
|
|
|
|
void CWriter::visitCallSite(CallSite CS) {
|
|
const PointerType *PTy = cast<PointerType>(CS.getCalledValue()->getType());
|
|
const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
|
|
const Type *RetTy = FTy->getReturnType();
|
|
|
|
writeOperand(CS.getCalledValue());
|
|
Out << "(";
|
|
|
|
if (CS.arg_begin() != CS.arg_end()) {
|
|
CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
|
|
writeOperand(*AI);
|
|
|
|
for (++AI; AI != AE; ++AI) {
|
|
Out << ", ";
|
|
writeOperand(*AI);
|
|
}
|
|
}
|
|
Out << ")";
|
|
}
|
|
|
|
void CWriter::visitMallocInst(MallocInst &I) {
|
|
assert(0 && "lowerallocations pass didn't work!");
|
|
}
|
|
|
|
void CWriter::visitAllocaInst(AllocaInst &I) {
|
|
Out << "(";
|
|
printType(Out, I.getType());
|
|
Out << ") alloca(sizeof(";
|
|
printType(Out, I.getType()->getElementType());
|
|
Out << ")";
|
|
if (I.isArrayAllocation()) {
|
|
Out << " * " ;
|
|
writeOperand(I.getOperand(0));
|
|
}
|
|
Out << ")";
|
|
}
|
|
|
|
void CWriter::visitFreeInst(FreeInst &I) {
|
|
assert(0 && "lowerallocations pass didn't work!");
|
|
}
|
|
|
|
void CWriter::printIndexingExpression(Value *Ptr, gep_type_iterator I,
|
|
gep_type_iterator E) {
|
|
bool HasImplicitAddress = false;
|
|
// If accessing a global value with no indexing, avoid *(&GV) syndrome
|
|
if (GlobalValue *V = dyn_cast<GlobalValue>(Ptr)) {
|
|
HasImplicitAddress = true;
|
|
} else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(Ptr)) {
|
|
HasImplicitAddress = true;
|
|
Ptr = CPR->getValue(); // Get to the global...
|
|
} else if (isDirectAlloca(Ptr)) {
|
|
HasImplicitAddress = true;
|
|
}
|
|
|
|
if (I == E) {
|
|
if (!HasImplicitAddress)
|
|
Out << "*"; // Implicit zero first argument: '*x' is equivalent to 'x[0]'
|
|
|
|
writeOperandInternal(Ptr);
|
|
return;
|
|
}
|
|
|
|
const Constant *CI = dyn_cast<Constant>(I.getOperand());
|
|
if (HasImplicitAddress && (!CI || !CI->isNullValue()))
|
|
Out << "(&";
|
|
|
|
writeOperandInternal(Ptr);
|
|
|
|
if (HasImplicitAddress && (!CI || !CI->isNullValue())) {
|
|
Out << ")";
|
|
HasImplicitAddress = false; // HIA is only true if we haven't addressed yet
|
|
}
|
|
|
|
assert(!HasImplicitAddress || (CI && CI->isNullValue()) &&
|
|
"Can only have implicit address with direct accessing");
|
|
|
|
if (HasImplicitAddress) {
|
|
++I;
|
|
} else if (CI && CI->isNullValue()) {
|
|
gep_type_iterator TmpI = I; ++TmpI;
|
|
|
|
// Print out the -> operator if possible...
|
|
if (TmpI != E && isa<StructType>(*TmpI)) {
|
|
Out << (HasImplicitAddress ? "." : "->");
|
|
Out << "field" << cast<ConstantUInt>(TmpI.getOperand())->getValue();
|
|
I = ++TmpI;
|
|
}
|
|
}
|
|
|
|
for (; I != E; ++I)
|
|
if (isa<StructType>(*I)) {
|
|
Out << ".field" << cast<ConstantUInt>(I.getOperand())->getValue();
|
|
} else {
|
|
Out << "[";
|
|
writeOperand(I.getOperand());
|
|
Out << "]";
|
|
}
|
|
}
|
|
|
|
void CWriter::visitLoadInst(LoadInst &I) {
|
|
Out << "*";
|
|
writeOperand(I.getOperand(0));
|
|
}
|
|
|
|
void CWriter::visitStoreInst(StoreInst &I) {
|
|
Out << "*";
|
|
writeOperand(I.getPointerOperand());
|
|
Out << " = ";
|
|
writeOperand(I.getOperand(0));
|
|
}
|
|
|
|
void CWriter::visitGetElementPtrInst(GetElementPtrInst &I) {
|
|
Out << "&";
|
|
printIndexingExpression(I.getPointerOperand(), gep_type_begin(I),
|
|
gep_type_end(I));
|
|
}
|
|
|
|
void CWriter::visitVANextInst(VANextInst &I) {
|
|
Out << Mang->getValueName(I.getOperand(0));
|
|
Out << "; va_arg(*(va_list*)&" << Mang->getValueName(&I) << ", ";
|
|
printType(Out, I.getArgType());
|
|
Out << ")";
|
|
}
|
|
|
|
void CWriter::visitVAArgInst(VAArgInst &I) {
|
|
Out << "0;\n";
|
|
Out << "{ va_list Tmp; va_copy(Tmp, *(va_list*)&";
|
|
writeOperand(I.getOperand(0));
|
|
Out << ");\n " << Mang->getValueName(&I) << " = va_arg(Tmp, ";
|
|
printType(Out, I.getType());
|
|
Out << ");\n va_end(Tmp); }";
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// External Interface declaration
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
bool CTargetMachine::addPassesToEmitAssembly(PassManager &PM, std::ostream &o) {
|
|
PM.add(createLowerGCPass());
|
|
PM.add(createLowerAllocationsPass());
|
|
PM.add(createLowerInvokePass());
|
|
PM.add(new CBackendNameAllUsedStructs());
|
|
PM.add(new CWriter(o, getIntrinsicLowering()));
|
|
return false;
|
|
}
|
|
|
|
TargetMachine *llvm::allocateCTargetMachine(const Module &M,
|
|
IntrinsicLowering *IL) {
|
|
return new CTargetMachine(M, IL);
|
|
}
|
|
|
|
// vim: sw=2
|