llvm-6502/lib/Transforms/Utils/SSAUpdater.cpp
2010-04-01 23:05:58 +00:00

520 lines
18 KiB
C++

//===- SSAUpdater.cpp - Unstructured SSA Update Tool ----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the SSAUpdater class.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/SSAUpdater.h"
#include "llvm/Instructions.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/Support/AlignOf.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
/// BBInfo - Per-basic block information used internally by SSAUpdater.
/// The predecessors of each block are cached here since pred_iterator is
/// slow and we need to iterate over the blocks at least a few times.
class SSAUpdater::BBInfo {
public:
Value *AvailableVal; // Value to use in this block.
BasicBlock *DefBB; // Block that defines the available value.
unsigned NumPreds; // Number of predecessor blocks.
BasicBlock **Preds; // Array[NumPreds] of predecessor blocks.
unsigned Counter; // Marker to identify blocks already visited.
PHINode *PHITag; // Marker for existing PHIs that match.
BBInfo(BasicBlock *BB, Value *V, BumpPtrAllocator *Allocator);
};
typedef DenseMap<BasicBlock*, SSAUpdater::BBInfo*> BBMapTy;
SSAUpdater::BBInfo::BBInfo(BasicBlock *BB, Value *V,
BumpPtrAllocator *Allocator)
: AvailableVal(V), DefBB(0), NumPreds(0), Preds(0), Counter(0), PHITag(0) {
// If this block has a known value, don't bother finding its predecessors.
if (V) {
DefBB = BB;
return;
}
// We can get our predecessor info by walking the pred_iterator list, but it
// is relatively slow. If we already have PHI nodes in this block, walk one
// of them to get the predecessor list instead.
if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
NumPreds = SomePhi->getNumIncomingValues();
Preds = static_cast<BasicBlock**>
(Allocator->Allocate(NumPreds * sizeof(BasicBlock*),
AlignOf<BasicBlock*>::Alignment));
for (unsigned pi = 0; pi != NumPreds; ++pi)
Preds[pi] = SomePhi->getIncomingBlock(pi);
return;
}
// Stash the predecessors in a temporary vector until we know how much space
// to allocate for them.
SmallVector<BasicBlock*, 10> TmpPreds;
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
TmpPreds.push_back(*PI);
++NumPreds;
}
Preds = static_cast<BasicBlock**>
(Allocator->Allocate(NumPreds * sizeof(BasicBlock*),
AlignOf<BasicBlock*>::Alignment));
memcpy(Preds, TmpPreds.data(), NumPreds * sizeof(BasicBlock*));
}
typedef DenseMap<BasicBlock*, Value*> AvailableValsTy;
static AvailableValsTy &getAvailableVals(void *AV) {
return *static_cast<AvailableValsTy*>(AV);
}
static BBMapTy *getBBMap(void *BM) {
return static_cast<BBMapTy*>(BM);
}
static BumpPtrAllocator *getAllocator(void *BPA) {
return static_cast<BumpPtrAllocator*>(BPA);
}
SSAUpdater::SSAUpdater(SmallVectorImpl<PHINode*> *NewPHI)
: AV(0), PrototypeValue(0), BM(0), BPA(0), InsertedPHIs(NewPHI) {}
SSAUpdater::~SSAUpdater() {
delete &getAvailableVals(AV);
}
/// Initialize - Reset this object to get ready for a new set of SSA
/// updates. ProtoValue is the value used to name PHI nodes.
void SSAUpdater::Initialize(Value *ProtoValue) {
if (AV == 0)
AV = new AvailableValsTy();
else
getAvailableVals(AV).clear();
PrototypeValue = ProtoValue;
}
/// HasValueForBlock - Return true if the SSAUpdater already has a value for
/// the specified block.
bool SSAUpdater::HasValueForBlock(BasicBlock *BB) const {
return getAvailableVals(AV).count(BB);
}
/// AddAvailableValue - Indicate that a rewritten value is available in the
/// specified block with the specified value.
void SSAUpdater::AddAvailableValue(BasicBlock *BB, Value *V) {
assert(PrototypeValue != 0 && "Need to initialize SSAUpdater");
assert(PrototypeValue->getType() == V->getType() &&
"All rewritten values must have the same type");
getAvailableVals(AV)[BB] = V;
}
/// IsEquivalentPHI - Check if PHI has the same incoming value as specified
/// in ValueMapping for each predecessor block.
static bool IsEquivalentPHI(PHINode *PHI,
DenseMap<BasicBlock*, Value*> &ValueMapping) {
unsigned PHINumValues = PHI->getNumIncomingValues();
if (PHINumValues != ValueMapping.size())
return false;
// Scan the phi to see if it matches.
for (unsigned i = 0, e = PHINumValues; i != e; ++i)
if (ValueMapping[PHI->getIncomingBlock(i)] !=
PHI->getIncomingValue(i)) {
return false;
}
return true;
}
/// GetValueAtEndOfBlock - Construct SSA form, materializing a value that is
/// live at the end of the specified block.
Value *SSAUpdater::GetValueAtEndOfBlock(BasicBlock *BB) {
assert(BM == 0 && BPA == 0 && "Unexpected Internal State");
Value *Res = GetValueAtEndOfBlockInternal(BB);
assert(BM == 0 && BPA == 0 && "Unexpected Internal State");
return Res;
}
/// GetValueInMiddleOfBlock - Construct SSA form, materializing a value that
/// is live in the middle of the specified block.
///
/// GetValueInMiddleOfBlock is the same as GetValueAtEndOfBlock except in one
/// important case: if there is a definition of the rewritten value after the
/// 'use' in BB. Consider code like this:
///
/// X1 = ...
/// SomeBB:
/// use(X)
/// X2 = ...
/// br Cond, SomeBB, OutBB
///
/// In this case, there are two values (X1 and X2) added to the AvailableVals
/// set by the client of the rewriter, and those values are both live out of
/// their respective blocks. However, the use of X happens in the *middle* of
/// a block. Because of this, we need to insert a new PHI node in SomeBB to
/// merge the appropriate values, and this value isn't live out of the block.
///
Value *SSAUpdater::GetValueInMiddleOfBlock(BasicBlock *BB) {
// If there is no definition of the renamed variable in this block, just use
// GetValueAtEndOfBlock to do our work.
if (!HasValueForBlock(BB))
return GetValueAtEndOfBlock(BB);
// Otherwise, we have the hard case. Get the live-in values for each
// predecessor.
SmallVector<std::pair<BasicBlock*, Value*>, 8> PredValues;
Value *SingularValue = 0;
// We can get our predecessor info by walking the pred_iterator list, but it
// is relatively slow. If we already have PHI nodes in this block, walk one
// of them to get the predecessor list instead.
if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
for (unsigned i = 0, e = SomePhi->getNumIncomingValues(); i != e; ++i) {
BasicBlock *PredBB = SomePhi->getIncomingBlock(i);
Value *PredVal = GetValueAtEndOfBlock(PredBB);
PredValues.push_back(std::make_pair(PredBB, PredVal));
// Compute SingularValue.
if (i == 0)
SingularValue = PredVal;
else if (PredVal != SingularValue)
SingularValue = 0;
}
} else {
bool isFirstPred = true;
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
BasicBlock *PredBB = *PI;
Value *PredVal = GetValueAtEndOfBlock(PredBB);
PredValues.push_back(std::make_pair(PredBB, PredVal));
// Compute SingularValue.
if (isFirstPred) {
SingularValue = PredVal;
isFirstPred = false;
} else if (PredVal != SingularValue)
SingularValue = 0;
}
}
// If there are no predecessors, just return undef.
if (PredValues.empty())
return UndefValue::get(PrototypeValue->getType());
// Otherwise, if all the merged values are the same, just use it.
if (SingularValue != 0)
return SingularValue;
// Otherwise, we do need a PHI: check to see if we already have one available
// in this block that produces the right value.
if (isa<PHINode>(BB->begin())) {
DenseMap<BasicBlock*, Value*> ValueMapping(PredValues.begin(),
PredValues.end());
PHINode *SomePHI;
for (BasicBlock::iterator It = BB->begin();
(SomePHI = dyn_cast<PHINode>(It)); ++It) {
if (IsEquivalentPHI(SomePHI, ValueMapping))
return SomePHI;
}
}
// Ok, we have no way out, insert a new one now.
PHINode *InsertedPHI = PHINode::Create(PrototypeValue->getType(),
PrototypeValue->getName(),
&BB->front());
InsertedPHI->reserveOperandSpace(PredValues.size());
// Fill in all the predecessors of the PHI.
for (unsigned i = 0, e = PredValues.size(); i != e; ++i)
InsertedPHI->addIncoming(PredValues[i].second, PredValues[i].first);
// See if the PHI node can be merged to a single value. This can happen in
// loop cases when we get a PHI of itself and one other value.
if (Value *ConstVal = InsertedPHI->hasConstantValue()) {
InsertedPHI->eraseFromParent();
return ConstVal;
}
// If the client wants to know about all new instructions, tell it.
if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);
DEBUG(dbgs() << " Inserted PHI: " << *InsertedPHI << "\n");
return InsertedPHI;
}
/// RewriteUse - Rewrite a use of the symbolic value. This handles PHI nodes,
/// which use their value in the corresponding predecessor.
void SSAUpdater::RewriteUse(Use &U) {
Instruction *User = cast<Instruction>(U.getUser());
Value *V;
if (PHINode *UserPN = dyn_cast<PHINode>(User))
V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U));
else
V = GetValueInMiddleOfBlock(User->getParent());
U.set(V);
}
/// GetValueAtEndOfBlockInternal - Check to see if AvailableVals has an entry
/// for the specified BB and if so, return it. If not, construct SSA form by
/// first calculating the required placement of PHIs and then inserting new
/// PHIs where needed.
Value *SSAUpdater::GetValueAtEndOfBlockInternal(BasicBlock *BB) {
AvailableValsTy &AvailableVals = getAvailableVals(AV);
if (Value *V = AvailableVals[BB])
return V;
// Pool allocation used internally by GetValueAtEndOfBlock.
BumpPtrAllocator AllocatorObj;
BBMapTy BBMapObj;
BPA = &AllocatorObj;
BM = &BBMapObj;
BBInfo *Info = new (AllocatorObj) BBInfo(BB, 0, &AllocatorObj);
BBMapObj[BB] = Info;
bool Changed;
unsigned Counter = 1;
do {
Changed = false;
FindPHIPlacement(BB, Info, Changed, Counter);
++Counter;
} while (Changed);
FindAvailableVal(BB, Info, Counter);
BPA = 0;
BM = 0;
return Info->AvailableVal;
}
/// FindPHIPlacement - Recursively visit the predecessors of a block to find
/// the reaching definition for each predecessor and then determine whether
/// a PHI is needed in this block.
void SSAUpdater::FindPHIPlacement(BasicBlock *BB, BBInfo *Info, bool &Changed,
unsigned Counter) {
AvailableValsTy &AvailableVals = getAvailableVals(AV);
BBMapTy *BBMap = getBBMap(BM);
BumpPtrAllocator *Allocator = getAllocator(BPA);
bool BBNeedsPHI = false;
BasicBlock *SamePredDefBB = 0;
// If there are no predecessors, then we must have found an unreachable
// block. Treat it as a definition with 'undef'.
if (Info->NumPreds == 0) {
Info->AvailableVal = UndefValue::get(PrototypeValue->getType());
Info->DefBB = BB;
return;
}
Info->Counter = Counter;
for (unsigned pi = 0; pi != Info->NumPreds; ++pi) {
BasicBlock *Pred = Info->Preds[pi];
BBMapTy::value_type &BBMapBucket = BBMap->FindAndConstruct(Pred);
if (!BBMapBucket.second) {
Value *PredVal = AvailableVals.lookup(Pred);
BBMapBucket.second = new (*Allocator) BBInfo(Pred, PredVal, Allocator);
}
BBInfo *PredInfo = BBMapBucket.second;
BasicBlock *DefBB = 0;
if (!PredInfo->AvailableVal) {
if (PredInfo->Counter != Counter)
FindPHIPlacement(Pred, PredInfo, Changed, Counter);
// Ignore back edges where the value is not yet known.
if (!PredInfo->DefBB)
continue;
}
DefBB = PredInfo->DefBB;
if (!SamePredDefBB)
SamePredDefBB = DefBB;
else if (DefBB != SamePredDefBB)
BBNeedsPHI = true;
}
BasicBlock *NewDefBB = (BBNeedsPHI ? BB : SamePredDefBB);
if (Info->DefBB != NewDefBB) {
Changed = true;
Info->DefBB = NewDefBB;
}
}
/// FindAvailableVal - If this block requires a PHI, first check if an existing
/// PHI matches the PHI placement and reaching definitions computed earlier,
/// and if not, create a new PHI. Visit all the block's predecessors to
/// calculate the available value for each one and fill in the incoming values
/// for a new PHI.
void SSAUpdater::FindAvailableVal(BasicBlock *BB, BBInfo *Info,
unsigned Counter) {
if (Info->AvailableVal || Info->Counter == Counter)
return;
AvailableValsTy &AvailableVals = getAvailableVals(AV);
BBMapTy *BBMap = getBBMap(BM);
// Check if there needs to be a PHI in BB.
PHINode *NewPHI = 0;
if (Info->DefBB == BB) {
// Look for an existing PHI.
FindExistingPHI(BB);
if (!Info->AvailableVal) {
NewPHI = PHINode::Create(PrototypeValue->getType(),
PrototypeValue->getName(), &BB->front());
NewPHI->reserveOperandSpace(Info->NumPreds);
Info->AvailableVal = NewPHI;
AvailableVals[BB] = NewPHI;
}
}
// Iterate through the block's predecessors.
Info->Counter = Counter;
for (unsigned pi = 0; pi != Info->NumPreds; ++pi) {
BasicBlock *Pred = Info->Preds[pi];
BBInfo *PredInfo = (*BBMap)[Pred];
FindAvailableVal(Pred, PredInfo, Counter);
if (NewPHI) {
// Skip to the nearest preceding definition.
if (PredInfo->DefBB != Pred)
PredInfo = (*BBMap)[PredInfo->DefBB];
NewPHI->addIncoming(PredInfo->AvailableVal, Pred);
} else if (!Info->AvailableVal)
Info->AvailableVal = PredInfo->AvailableVal;
}
if (NewPHI) {
DEBUG(dbgs() << " Inserted PHI: " << *NewPHI << "\n");
// If the client wants to know about all new instructions, tell it.
if (InsertedPHIs) InsertedPHIs->push_back(NewPHI);
}
}
/// FindExistingPHI - Look through the PHI nodes in a block to see if any of
/// them match what is needed.
void SSAUpdater::FindExistingPHI(BasicBlock *BB) {
PHINode *SomePHI;
for (BasicBlock::iterator It = BB->begin();
(SomePHI = dyn_cast<PHINode>(It)); ++It) {
if (CheckIfPHIMatches(SomePHI)) {
RecordMatchingPHI(SomePHI);
break;
}
ClearPHITags(SomePHI);
}
}
/// CheckIfPHIMatches - Check if a PHI node matches the placement and values
/// in the BBMap.
bool SSAUpdater::CheckIfPHIMatches(PHINode *PHI) {
BBMapTy *BBMap = getBBMap(BM);
SmallVector<PHINode*, 20> WorkList;
WorkList.push_back(PHI);
// Mark that the block containing this PHI has been visited.
(*BBMap)[PHI->getParent()]->PHITag = PHI;
while (!WorkList.empty()) {
PHI = WorkList.pop_back_val();
// Iterate through the PHI's incoming values.
for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
Value *IncomingVal = PHI->getIncomingValue(i);
BasicBlock *Pred = PHI->getIncomingBlock(i);
BBInfo *PredInfo = (*BBMap)[Pred];
// Skip to the nearest preceding definition.
if (PredInfo->DefBB != Pred) {
Pred = PredInfo->DefBB;
PredInfo = (*BBMap)[Pred];
}
// Check if it matches the expected value.
if (PredInfo->AvailableVal) {
if (IncomingVal == PredInfo->AvailableVal)
continue;
return false;
}
// Check if the value is a PHI in the correct block.
PHINode *IncomingPHIVal = dyn_cast<PHINode>(IncomingVal);
if (!IncomingPHIVal || IncomingPHIVal->getParent() != Pred)
return false;
// If this block has already been visited, check if this PHI matches.
if (PredInfo->PHITag) {
if (IncomingPHIVal == PredInfo->PHITag)
continue;
return false;
}
PredInfo->PHITag = IncomingPHIVal;
WorkList.push_back(IncomingPHIVal);
}
}
return true;
}
/// RecordMatchingPHI - For a PHI node that matches, record it and its input
/// PHIs in both the BBMap and the AvailableVals mapping.
void SSAUpdater::RecordMatchingPHI(PHINode *PHI) {
BBMapTy *BBMap = getBBMap(BM);
AvailableValsTy &AvailableVals = getAvailableVals(AV);
SmallVector<PHINode*, 20> WorkList;
WorkList.push_back(PHI);
while (!WorkList.empty()) {
PHI = WorkList.pop_back_val();
BasicBlock *BB = PHI->getParent();
BBInfo *Info = (*BBMap)[BB];
if (!Info || Info->AvailableVal)
return;
// Record the PHI.
AvailableVals[BB] = PHI;
Info->AvailableVal = PHI;
// Iterate through the PHI's incoming values.
for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
PHINode *IncomingVal = dyn_cast<PHINode>(PHI->getIncomingValue(i));
if (!IncomingVal) continue;
WorkList.push_back(IncomingVal);
}
}
}
/// ClearPHITags - When one of the existing PHI nodes fails to match, clear
/// the PHITag values that were stored in the BBMap when checking to see if
/// it matched.
void SSAUpdater::ClearPHITags(PHINode *PHI) {
BBMapTy *BBMap = getBBMap(BM);
SmallVector<PHINode*, 20> WorkList;
WorkList.push_back(PHI);
while (!WorkList.empty()) {
PHI = WorkList.pop_back_val();
BasicBlock *BB = PHI->getParent();
BBInfo *Info = (*BBMap)[BB];
if (!Info || Info->AvailableVal || !Info->PHITag)
continue;
// Clear the tag.
Info->PHITag = 0;
// Iterate through the PHI's incoming values.
for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
PHINode *IncomingVal = dyn_cast<PHINode>(PHI->getIncomingValue(i));
if (!IncomingVal) continue;
WorkList.push_back(IncomingVal);
}
}
}