mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@77011 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			3113 lines
		
	
	
		
			131 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			3113 lines
		
	
	
		
			131 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the SelectionDAG::Legalize method.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/CodeGen/SelectionDAG.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineJumpTableInfo.h"
 | |
| #include "llvm/CodeGen/MachineModuleInfo.h"
 | |
| #include "llvm/CodeGen/DwarfWriter.h"
 | |
| #include "llvm/Analysis/DebugInfo.h"
 | |
| #include "llvm/CodeGen/PseudoSourceValue.h"
 | |
| #include "llvm/Target/TargetFrameInfo.h"
 | |
| #include "llvm/Target/TargetLowering.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Target/TargetOptions.h"
 | |
| #include "llvm/Target/TargetSubtarget.h"
 | |
| #include "llvm/CallingConv.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/GlobalVariable.h"
 | |
| #include "llvm/LLVMContext.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include <map>
 | |
| using namespace llvm;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| /// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and
 | |
| /// hacks on it until the target machine can handle it.  This involves
 | |
| /// eliminating value sizes the machine cannot handle (promoting small sizes to
 | |
| /// large sizes or splitting up large values into small values) as well as
 | |
| /// eliminating operations the machine cannot handle.
 | |
| ///
 | |
| /// This code also does a small amount of optimization and recognition of idioms
 | |
| /// as part of its processing.  For example, if a target does not support a
 | |
| /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
 | |
| /// will attempt merge setcc and brc instructions into brcc's.
 | |
| ///
 | |
| namespace {
 | |
| class VISIBILITY_HIDDEN SelectionDAGLegalize {
 | |
|   TargetLowering &TLI;
 | |
|   SelectionDAG &DAG;
 | |
|   CodeGenOpt::Level OptLevel;
 | |
| 
 | |
|   // Libcall insertion helpers.
 | |
| 
 | |
|   /// LastCALLSEQ_END - This keeps track of the CALLSEQ_END node that has been
 | |
|   /// legalized.  We use this to ensure that calls are properly serialized
 | |
|   /// against each other, including inserted libcalls.
 | |
|   SDValue LastCALLSEQ_END;
 | |
| 
 | |
|   /// IsLegalizingCall - This member is used *only* for purposes of providing
 | |
|   /// helpful assertions that a libcall isn't created while another call is
 | |
|   /// being legalized (which could lead to non-serialized call sequences).
 | |
|   bool IsLegalizingCall;
 | |
| 
 | |
|   enum LegalizeAction {
 | |
|     Legal,      // The target natively supports this operation.
 | |
|     Promote,    // This operation should be executed in a larger type.
 | |
|     Expand      // Try to expand this to other ops, otherwise use a libcall.
 | |
|   };
 | |
| 
 | |
|   /// ValueTypeActions - This is a bitvector that contains two bits for each
 | |
|   /// value type, where the two bits correspond to the LegalizeAction enum.
 | |
|   /// This can be queried with "getTypeAction(VT)".
 | |
|   TargetLowering::ValueTypeActionImpl ValueTypeActions;
 | |
| 
 | |
|   /// LegalizedNodes - For nodes that are of legal width, and that have more
 | |
|   /// than one use, this map indicates what regularized operand to use.  This
 | |
|   /// allows us to avoid legalizing the same thing more than once.
 | |
|   DenseMap<SDValue, SDValue> LegalizedNodes;
 | |
| 
 | |
|   void AddLegalizedOperand(SDValue From, SDValue To) {
 | |
|     LegalizedNodes.insert(std::make_pair(From, To));
 | |
|     // If someone requests legalization of the new node, return itself.
 | |
|     if (From != To)
 | |
|       LegalizedNodes.insert(std::make_pair(To, To));
 | |
|   }
 | |
| 
 | |
| public:
 | |
|   SelectionDAGLegalize(SelectionDAG &DAG, CodeGenOpt::Level ol);
 | |
| 
 | |
|   /// getTypeAction - Return how we should legalize values of this type, either
 | |
|   /// it is already legal or we need to expand it into multiple registers of
 | |
|   /// smaller integer type, or we need to promote it to a larger type.
 | |
|   LegalizeAction getTypeAction(MVT VT) const {
 | |
|     return (LegalizeAction)ValueTypeActions.getTypeAction(VT);
 | |
|   }
 | |
| 
 | |
|   /// isTypeLegal - Return true if this type is legal on this target.
 | |
|   ///
 | |
|   bool isTypeLegal(MVT VT) const {
 | |
|     return getTypeAction(VT) == Legal;
 | |
|   }
 | |
| 
 | |
|   void LegalizeDAG();
 | |
| 
 | |
| private:
 | |
|   /// LegalizeOp - We know that the specified value has a legal type.
 | |
|   /// Recursively ensure that the operands have legal types, then return the
 | |
|   /// result.
 | |
|   SDValue LegalizeOp(SDValue O);
 | |
| 
 | |
|   SDValue OptimizeFloatStore(StoreSDNode *ST);
 | |
| 
 | |
|   /// PerformInsertVectorEltInMemory - Some target cannot handle a variable
 | |
|   /// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
 | |
|   /// is necessary to spill the vector being inserted into to memory, perform
 | |
|   /// the insert there, and then read the result back.
 | |
|   SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val,
 | |
|                                          SDValue Idx, DebugLoc dl);
 | |
|   SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
 | |
|                                   SDValue Idx, DebugLoc dl);
 | |
| 
 | |
|   /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
 | |
|   /// performs the same shuffe in terms of order or result bytes, but on a type
 | |
|   /// whose vector element type is narrower than the original shuffle type.
 | |
|   /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
 | |
|   SDValue ShuffleWithNarrowerEltType(MVT NVT, MVT VT, DebugLoc dl,
 | |
|                                      SDValue N1, SDValue N2, 
 | |
|                                      SmallVectorImpl<int> &Mask) const;
 | |
| 
 | |
|   bool LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
 | |
|                                     SmallPtrSet<SDNode*, 32> &NodesLeadingTo);
 | |
| 
 | |
|   void LegalizeSetCCCondCode(MVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
 | |
|                              DebugLoc dl);
 | |
| 
 | |
|   SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
 | |
|   SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
 | |
|                           RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
 | |
|                           RTLIB::Libcall Call_PPCF128);
 | |
|   SDValue ExpandIntLibCall(SDNode *Node, bool isSigned, RTLIB::Libcall Call_I16,
 | |
|                            RTLIB::Libcall Call_I32, RTLIB::Libcall Call_I64,
 | |
|                            RTLIB::Libcall Call_I128);
 | |
| 
 | |
|   SDValue EmitStackConvert(SDValue SrcOp, MVT SlotVT, MVT DestVT, DebugLoc dl);
 | |
|   SDValue ExpandBUILD_VECTOR(SDNode *Node);
 | |
|   SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
 | |
|   SDValue ExpandDBG_STOPPOINT(SDNode *Node);
 | |
|   void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
 | |
|                                 SmallVectorImpl<SDValue> &Results);
 | |
|   SDValue ExpandFCOPYSIGN(SDNode *Node);
 | |
|   SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, MVT DestVT,
 | |
|                                DebugLoc dl);
 | |
|   SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, MVT DestVT, bool isSigned,
 | |
|                                 DebugLoc dl);
 | |
|   SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, MVT DestVT, bool isSigned,
 | |
|                                 DebugLoc dl);
 | |
| 
 | |
|   SDValue ExpandBSWAP(SDValue Op, DebugLoc dl);
 | |
|   SDValue ExpandBitCount(unsigned Opc, SDValue Op, DebugLoc dl);
 | |
| 
 | |
|   SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
 | |
|   SDValue ExpandVectorBuildThroughStack(SDNode* Node);
 | |
| 
 | |
|   void ExpandNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
 | |
|   void PromoteNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
 | |
| };
 | |
| }
 | |
| 
 | |
| /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
 | |
| /// performs the same shuffe in terms of order or result bytes, but on a type
 | |
| /// whose vector element type is narrower than the original shuffle type.
 | |
| /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
 | |
| SDValue 
 | |
| SelectionDAGLegalize::ShuffleWithNarrowerEltType(MVT NVT, MVT VT,  DebugLoc dl, 
 | |
|                                                  SDValue N1, SDValue N2,
 | |
|                                              SmallVectorImpl<int> &Mask) const {
 | |
|   MVT EltVT = NVT.getVectorElementType();
 | |
|   unsigned NumMaskElts = VT.getVectorNumElements();
 | |
|   unsigned NumDestElts = NVT.getVectorNumElements();
 | |
|   unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
 | |
| 
 | |
|   assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
 | |
| 
 | |
|   if (NumEltsGrowth == 1)
 | |
|     return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]);
 | |
|   
 | |
|   SmallVector<int, 8> NewMask;
 | |
|   for (unsigned i = 0; i != NumMaskElts; ++i) {
 | |
|     int Idx = Mask[i];
 | |
|     for (unsigned j = 0; j != NumEltsGrowth; ++j) {
 | |
|       if (Idx < 0) 
 | |
|         NewMask.push_back(-1);
 | |
|       else
 | |
|         NewMask.push_back(Idx * NumEltsGrowth + j);
 | |
|     }
 | |
|   }
 | |
|   assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
 | |
|   assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
 | |
|   return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]);
 | |
| }
 | |
| 
 | |
| SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag,
 | |
|                                            CodeGenOpt::Level ol)
 | |
|   : TLI(dag.getTargetLoweringInfo()), DAG(dag), OptLevel(ol),
 | |
|     ValueTypeActions(TLI.getValueTypeActions()) {
 | |
|   assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
 | |
|          "Too many value types for ValueTypeActions to hold!");
 | |
| }
 | |
| 
 | |
| void SelectionDAGLegalize::LegalizeDAG() {
 | |
|   LastCALLSEQ_END = DAG.getEntryNode();
 | |
|   IsLegalizingCall = false;
 | |
| 
 | |
|   // The legalize process is inherently a bottom-up recursive process (users
 | |
|   // legalize their uses before themselves).  Given infinite stack space, we
 | |
|   // could just start legalizing on the root and traverse the whole graph.  In
 | |
|   // practice however, this causes us to run out of stack space on large basic
 | |
|   // blocks.  To avoid this problem, compute an ordering of the nodes where each
 | |
|   // node is only legalized after all of its operands are legalized.
 | |
|   DAG.AssignTopologicalOrder();
 | |
|   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
 | |
|        E = prior(DAG.allnodes_end()); I != next(E); ++I)
 | |
|     LegalizeOp(SDValue(I, 0));
 | |
| 
 | |
|   // Finally, it's possible the root changed.  Get the new root.
 | |
|   SDValue OldRoot = DAG.getRoot();
 | |
|   assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
 | |
|   DAG.setRoot(LegalizedNodes[OldRoot]);
 | |
| 
 | |
|   LegalizedNodes.clear();
 | |
| 
 | |
|   // Remove dead nodes now.
 | |
|   DAG.RemoveDeadNodes();
 | |
| }
 | |
| 
 | |
| 
 | |
| /// FindCallEndFromCallStart - Given a chained node that is part of a call
 | |
| /// sequence, find the CALLSEQ_END node that terminates the call sequence.
 | |
| static SDNode *FindCallEndFromCallStart(SDNode *Node) {
 | |
|   if (Node->getOpcode() == ISD::CALLSEQ_END)
 | |
|     return Node;
 | |
|   if (Node->use_empty())
 | |
|     return 0;   // No CallSeqEnd
 | |
| 
 | |
|   // The chain is usually at the end.
 | |
|   SDValue TheChain(Node, Node->getNumValues()-1);
 | |
|   if (TheChain.getValueType() != MVT::Other) {
 | |
|     // Sometimes it's at the beginning.
 | |
|     TheChain = SDValue(Node, 0);
 | |
|     if (TheChain.getValueType() != MVT::Other) {
 | |
|       // Otherwise, hunt for it.
 | |
|       for (unsigned i = 1, e = Node->getNumValues(); i != e; ++i)
 | |
|         if (Node->getValueType(i) == MVT::Other) {
 | |
|           TheChain = SDValue(Node, i);
 | |
|           break;
 | |
|         }
 | |
| 
 | |
|       // Otherwise, we walked into a node without a chain.
 | |
|       if (TheChain.getValueType() != MVT::Other)
 | |
|         return 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (SDNode::use_iterator UI = Node->use_begin(),
 | |
|        E = Node->use_end(); UI != E; ++UI) {
 | |
| 
 | |
|     // Make sure to only follow users of our token chain.
 | |
|     SDNode *User = *UI;
 | |
|     for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
 | |
|       if (User->getOperand(i) == TheChain)
 | |
|         if (SDNode *Result = FindCallEndFromCallStart(User))
 | |
|           return Result;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// FindCallStartFromCallEnd - Given a chained node that is part of a call
 | |
| /// sequence, find the CALLSEQ_START node that initiates the call sequence.
 | |
| static SDNode *FindCallStartFromCallEnd(SDNode *Node) {
 | |
|   assert(Node && "Didn't find callseq_start for a call??");
 | |
|   if (Node->getOpcode() == ISD::CALLSEQ_START) return Node;
 | |
| 
 | |
|   assert(Node->getOperand(0).getValueType() == MVT::Other &&
 | |
|          "Node doesn't have a token chain argument!");
 | |
|   return FindCallStartFromCallEnd(Node->getOperand(0).getNode());
 | |
| }
 | |
| 
 | |
| /// LegalizeAllNodesNotLeadingTo - Recursively walk the uses of N, looking to
 | |
| /// see if any uses can reach Dest.  If no dest operands can get to dest,
 | |
| /// legalize them, legalize ourself, and return false, otherwise, return true.
 | |
| ///
 | |
| /// Keep track of the nodes we fine that actually do lead to Dest in
 | |
| /// NodesLeadingTo.  This avoids retraversing them exponential number of times.
 | |
| ///
 | |
| bool SelectionDAGLegalize::LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
 | |
|                                      SmallPtrSet<SDNode*, 32> &NodesLeadingTo) {
 | |
|   if (N == Dest) return true;  // N certainly leads to Dest :)
 | |
| 
 | |
|   // If we've already processed this node and it does lead to Dest, there is no
 | |
|   // need to reprocess it.
 | |
|   if (NodesLeadingTo.count(N)) return true;
 | |
| 
 | |
|   // If the first result of this node has been already legalized, then it cannot
 | |
|   // reach N.
 | |
|   if (LegalizedNodes.count(SDValue(N, 0))) return false;
 | |
| 
 | |
|   // Okay, this node has not already been legalized.  Check and legalize all
 | |
|   // operands.  If none lead to Dest, then we can legalize this node.
 | |
|   bool OperandsLeadToDest = false;
 | |
|   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
 | |
|     OperandsLeadToDest |=     // If an operand leads to Dest, so do we.
 | |
|       LegalizeAllNodesNotLeadingTo(N->getOperand(i).getNode(), Dest, NodesLeadingTo);
 | |
| 
 | |
|   if (OperandsLeadToDest) {
 | |
|     NodesLeadingTo.insert(N);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Okay, this node looks safe, legalize it and return false.
 | |
|   LegalizeOp(SDValue(N, 0));
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// ExpandConstantFP - Expands the ConstantFP node to an integer constant or
 | |
| /// a load from the constant pool.
 | |
| static SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP,
 | |
|                                 SelectionDAG &DAG, const TargetLowering &TLI) {
 | |
|   bool Extend = false;
 | |
|   DebugLoc dl = CFP->getDebugLoc();
 | |
|   LLVMContext *Context = DAG.getContext();
 | |
| 
 | |
|   // If a FP immediate is precise when represented as a float and if the
 | |
|   // target can do an extending load from float to double, we put it into
 | |
|   // the constant pool as a float, even if it's is statically typed as a
 | |
|   // double.  This shrinks FP constants and canonicalizes them for targets where
 | |
|   // an FP extending load is the same cost as a normal load (such as on the x87
 | |
|   // fp stack or PPC FP unit).
 | |
|   MVT VT = CFP->getValueType(0);
 | |
|   ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
 | |
|   if (!UseCP) {
 | |
|     assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
 | |
|     return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(),
 | |
|                            (VT == MVT::f64) ? MVT::i64 : MVT::i32);
 | |
|   }
 | |
| 
 | |
|   MVT OrigVT = VT;
 | |
|   MVT SVT = VT;
 | |
|   while (SVT != MVT::f32) {
 | |
|     SVT = (MVT::SimpleValueType)(SVT.getSimpleVT() - 1);
 | |
|     if (CFP->isValueValidForType(SVT, CFP->getValueAPF()) &&
 | |
|         // Only do this if the target has a native EXTLOAD instruction from
 | |
|         // smaller type.
 | |
|         TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) &&
 | |
|         TLI.ShouldShrinkFPConstant(OrigVT)) {
 | |
|       const Type *SType = SVT.getTypeForMVT(*DAG.getContext());
 | |
|       LLVMC = cast<ConstantFP>(Context->getConstantExprFPTrunc(LLVMC, SType));
 | |
|       VT = SVT;
 | |
|       Extend = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy());
 | |
|   unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
 | |
|   if (Extend)
 | |
|     return DAG.getExtLoad(ISD::EXTLOAD, dl,
 | |
|                           OrigVT, DAG.getEntryNode(),
 | |
|                           CPIdx, PseudoSourceValue::getConstantPool(),
 | |
|                           0, VT, false, Alignment);
 | |
|   return DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx,
 | |
|                      PseudoSourceValue::getConstantPool(), 0, false, Alignment);
 | |
| }
 | |
| 
 | |
| /// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores.
 | |
| static
 | |
| SDValue ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG,
 | |
|                              const TargetLowering &TLI) {
 | |
|   SDValue Chain = ST->getChain();
 | |
|   SDValue Ptr = ST->getBasePtr();
 | |
|   SDValue Val = ST->getValue();
 | |
|   MVT VT = Val.getValueType();
 | |
|   int Alignment = ST->getAlignment();
 | |
|   int SVOffset = ST->getSrcValueOffset();
 | |
|   DebugLoc dl = ST->getDebugLoc();
 | |
|   if (ST->getMemoryVT().isFloatingPoint() ||
 | |
|       ST->getMemoryVT().isVector()) {
 | |
|     MVT intVT = MVT::getIntegerVT(VT.getSizeInBits());
 | |
|     if (TLI.isTypeLegal(intVT)) {
 | |
|       // Expand to a bitconvert of the value to the integer type of the
 | |
|       // same size, then a (misaligned) int store.
 | |
|       // FIXME: Does not handle truncating floating point stores!
 | |
|       SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, intVT, Val);
 | |
|       return DAG.getStore(Chain, dl, Result, Ptr, ST->getSrcValue(),
 | |
|                           SVOffset, ST->isVolatile(), Alignment);
 | |
|     } else {
 | |
|       // Do a (aligned) store to a stack slot, then copy from the stack slot
 | |
|       // to the final destination using (unaligned) integer loads and stores.
 | |
|       MVT StoredVT = ST->getMemoryVT();
 | |
|       MVT RegVT =
 | |
|         TLI.getRegisterType(MVT::getIntegerVT(StoredVT.getSizeInBits()));
 | |
|       unsigned StoredBytes = StoredVT.getSizeInBits() / 8;
 | |
|       unsigned RegBytes = RegVT.getSizeInBits() / 8;
 | |
|       unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
 | |
| 
 | |
|       // Make sure the stack slot is also aligned for the register type.
 | |
|       SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
 | |
| 
 | |
|       // Perform the original store, only redirected to the stack slot.
 | |
|       SDValue Store = DAG.getTruncStore(Chain, dl,
 | |
|                                         Val, StackPtr, NULL, 0, StoredVT);
 | |
|       SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
 | |
|       SmallVector<SDValue, 8> Stores;
 | |
|       unsigned Offset = 0;
 | |
| 
 | |
|       // Do all but one copies using the full register width.
 | |
|       for (unsigned i = 1; i < NumRegs; i++) {
 | |
|         // Load one integer register's worth from the stack slot.
 | |
|         SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr, NULL, 0);
 | |
|         // Store it to the final location.  Remember the store.
 | |
|         Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
 | |
|                                       ST->getSrcValue(), SVOffset + Offset,
 | |
|                                       ST->isVolatile(),
 | |
|                                       MinAlign(ST->getAlignment(), Offset)));
 | |
|         // Increment the pointers.
 | |
|         Offset += RegBytes;
 | |
|         StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
 | |
|                                Increment);
 | |
|         Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
 | |
|       }
 | |
| 
 | |
|       // The last store may be partial.  Do a truncating store.  On big-endian
 | |
|       // machines this requires an extending load from the stack slot to ensure
 | |
|       // that the bits are in the right place.
 | |
|       MVT MemVT = MVT::getIntegerVT(8 * (StoredBytes - Offset));
 | |
| 
 | |
|       // Load from the stack slot.
 | |
|       SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
 | |
|                                     NULL, 0, MemVT);
 | |
| 
 | |
|       Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
 | |
|                                          ST->getSrcValue(), SVOffset + Offset,
 | |
|                                          MemVT, ST->isVolatile(),
 | |
|                                          MinAlign(ST->getAlignment(), Offset)));
 | |
|       // The order of the stores doesn't matter - say it with a TokenFactor.
 | |
|       return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
 | |
|                          Stores.size());
 | |
|     }
 | |
|   }
 | |
|   assert(ST->getMemoryVT().isInteger() &&
 | |
|          !ST->getMemoryVT().isVector() &&
 | |
|          "Unaligned store of unknown type.");
 | |
|   // Get the half-size VT
 | |
|   MVT NewStoredVT =
 | |
|     (MVT::SimpleValueType)(ST->getMemoryVT().getSimpleVT() - 1);
 | |
|   int NumBits = NewStoredVT.getSizeInBits();
 | |
|   int IncrementSize = NumBits / 8;
 | |
| 
 | |
|   // Divide the stored value in two parts.
 | |
|   SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy());
 | |
|   SDValue Lo = Val;
 | |
|   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
 | |
| 
 | |
|   // Store the two parts
 | |
|   SDValue Store1, Store2;
 | |
|   Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr,
 | |
|                              ST->getSrcValue(), SVOffset, NewStoredVT,
 | |
|                              ST->isVolatile(), Alignment);
 | |
|   Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
 | |
|                     DAG.getConstant(IncrementSize, TLI.getPointerTy()));
 | |
|   Alignment = MinAlign(Alignment, IncrementSize);
 | |
|   Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr,
 | |
|                              ST->getSrcValue(), SVOffset + IncrementSize,
 | |
|                              NewStoredVT, ST->isVolatile(), Alignment);
 | |
| 
 | |
|   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
 | |
| }
 | |
| 
 | |
| /// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads.
 | |
| static
 | |
| SDValue ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
 | |
|                             const TargetLowering &TLI) {
 | |
|   int SVOffset = LD->getSrcValueOffset();
 | |
|   SDValue Chain = LD->getChain();
 | |
|   SDValue Ptr = LD->getBasePtr();
 | |
|   MVT VT = LD->getValueType(0);
 | |
|   MVT LoadedVT = LD->getMemoryVT();
 | |
|   DebugLoc dl = LD->getDebugLoc();
 | |
|   if (VT.isFloatingPoint() || VT.isVector()) {
 | |
|     MVT intVT = MVT::getIntegerVT(LoadedVT.getSizeInBits());
 | |
|     if (TLI.isTypeLegal(intVT)) {
 | |
|       // Expand to a (misaligned) integer load of the same size,
 | |
|       // then bitconvert to floating point or vector.
 | |
|       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getSrcValue(),
 | |
|                                     SVOffset, LD->isVolatile(),
 | |
|                                     LD->getAlignment());
 | |
|       SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, LoadedVT, newLoad);
 | |
|       if (VT.isFloatingPoint() && LoadedVT != VT)
 | |
|         Result = DAG.getNode(ISD::FP_EXTEND, dl, VT, Result);
 | |
| 
 | |
|       SDValue Ops[] = { Result, Chain };
 | |
|       return DAG.getMergeValues(Ops, 2, dl);
 | |
|     } else {
 | |
|       // Copy the value to a (aligned) stack slot using (unaligned) integer
 | |
|       // loads and stores, then do a (aligned) load from the stack slot.
 | |
|       MVT RegVT = TLI.getRegisterType(intVT);
 | |
|       unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8;
 | |
|       unsigned RegBytes = RegVT.getSizeInBits() / 8;
 | |
|       unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
 | |
| 
 | |
|       // Make sure the stack slot is also aligned for the register type.
 | |
|       SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
 | |
| 
 | |
|       SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
 | |
|       SmallVector<SDValue, 8> Stores;
 | |
|       SDValue StackPtr = StackBase;
 | |
|       unsigned Offset = 0;
 | |
| 
 | |
|       // Do all but one copies using the full register width.
 | |
|       for (unsigned i = 1; i < NumRegs; i++) {
 | |
|         // Load one integer register's worth from the original location.
 | |
|         SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr, LD->getSrcValue(),
 | |
|                                    SVOffset + Offset, LD->isVolatile(),
 | |
|                                    MinAlign(LD->getAlignment(), Offset));
 | |
|         // Follow the load with a store to the stack slot.  Remember the store.
 | |
|         Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr,
 | |
|                                       NULL, 0));
 | |
|         // Increment the pointers.
 | |
|         Offset += RegBytes;
 | |
|         Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
 | |
|         StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
 | |
|                                Increment);
 | |
|       }
 | |
| 
 | |
|       // The last copy may be partial.  Do an extending load.
 | |
|       MVT MemVT = MVT::getIntegerVT(8 * (LoadedBytes - Offset));
 | |
|       SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
 | |
|                                     LD->getSrcValue(), SVOffset + Offset,
 | |
|                                     MemVT, LD->isVolatile(),
 | |
|                                     MinAlign(LD->getAlignment(), Offset));
 | |
|       // Follow the load with a store to the stack slot.  Remember the store.
 | |
|       // On big-endian machines this requires a truncating store to ensure
 | |
|       // that the bits end up in the right place.
 | |
|       Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr,
 | |
|                                          NULL, 0, MemVT));
 | |
| 
 | |
|       // The order of the stores doesn't matter - say it with a TokenFactor.
 | |
|       SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
 | |
|                                Stores.size());
 | |
| 
 | |
|       // Finally, perform the original load only redirected to the stack slot.
 | |
|       Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
 | |
|                             NULL, 0, LoadedVT);
 | |
| 
 | |
|       // Callers expect a MERGE_VALUES node.
 | |
|       SDValue Ops[] = { Load, TF };
 | |
|       return DAG.getMergeValues(Ops, 2, dl);
 | |
|     }
 | |
|   }
 | |
|   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
 | |
|          "Unaligned load of unsupported type.");
 | |
| 
 | |
|   // Compute the new VT that is half the size of the old one.  This is an
 | |
|   // integer MVT.
 | |
|   unsigned NumBits = LoadedVT.getSizeInBits();
 | |
|   MVT NewLoadedVT;
 | |
|   NewLoadedVT = MVT::getIntegerVT(NumBits/2);
 | |
|   NumBits >>= 1;
 | |
| 
 | |
|   unsigned Alignment = LD->getAlignment();
 | |
|   unsigned IncrementSize = NumBits / 8;
 | |
|   ISD::LoadExtType HiExtType = LD->getExtensionType();
 | |
| 
 | |
|   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
 | |
|   if (HiExtType == ISD::NON_EXTLOAD)
 | |
|     HiExtType = ISD::ZEXTLOAD;
 | |
| 
 | |
|   // Load the value in two parts
 | |
|   SDValue Lo, Hi;
 | |
|   if (TLI.isLittleEndian()) {
 | |
|     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getSrcValue(),
 | |
|                         SVOffset, NewLoadedVT, LD->isVolatile(), Alignment);
 | |
|     Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
 | |
|                       DAG.getConstant(IncrementSize, TLI.getPointerTy()));
 | |
|     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getSrcValue(),
 | |
|                         SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(),
 | |
|                         MinAlign(Alignment, IncrementSize));
 | |
|   } else {
 | |
|     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getSrcValue(),
 | |
|                         SVOffset, NewLoadedVT, LD->isVolatile(), Alignment);
 | |
|     Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
 | |
|                       DAG.getConstant(IncrementSize, TLI.getPointerTy()));
 | |
|     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getSrcValue(),
 | |
|                         SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(),
 | |
|                         MinAlign(Alignment, IncrementSize));
 | |
|   }
 | |
| 
 | |
|   // aggregate the two parts
 | |
|   SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy());
 | |
|   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
 | |
|   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
 | |
| 
 | |
|   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
 | |
|                              Hi.getValue(1));
 | |
| 
 | |
|   SDValue Ops[] = { Result, TF };
 | |
|   return DAG.getMergeValues(Ops, 2, dl);
 | |
| }
 | |
| 
 | |
| /// PerformInsertVectorEltInMemory - Some target cannot handle a variable
 | |
| /// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
 | |
| /// is necessary to spill the vector being inserted into to memory, perform
 | |
| /// the insert there, and then read the result back.
 | |
| SDValue SelectionDAGLegalize::
 | |
| PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
 | |
|                                DebugLoc dl) {
 | |
|   SDValue Tmp1 = Vec;
 | |
|   SDValue Tmp2 = Val;
 | |
|   SDValue Tmp3 = Idx;
 | |
| 
 | |
|   // If the target doesn't support this, we have to spill the input vector
 | |
|   // to a temporary stack slot, update the element, then reload it.  This is
 | |
|   // badness.  We could also load the value into a vector register (either
 | |
|   // with a "move to register" or "extload into register" instruction, then
 | |
|   // permute it into place, if the idx is a constant and if the idx is
 | |
|   // supported by the target.
 | |
|   MVT VT    = Tmp1.getValueType();
 | |
|   MVT EltVT = VT.getVectorElementType();
 | |
|   MVT IdxVT = Tmp3.getValueType();
 | |
|   MVT PtrVT = TLI.getPointerTy();
 | |
|   SDValue StackPtr = DAG.CreateStackTemporary(VT);
 | |
| 
 | |
|   int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
 | |
| 
 | |
|   // Store the vector.
 | |
|   SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr,
 | |
|                             PseudoSourceValue::getFixedStack(SPFI), 0);
 | |
| 
 | |
|   // Truncate or zero extend offset to target pointer type.
 | |
|   unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
 | |
|   Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3);
 | |
|   // Add the offset to the index.
 | |
|   unsigned EltSize = EltVT.getSizeInBits()/8;
 | |
|   Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT));
 | |
|   SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr);
 | |
|   // Store the scalar value.
 | |
|   Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2,
 | |
|                          PseudoSourceValue::getFixedStack(SPFI), 0, EltVT);
 | |
|   // Load the updated vector.
 | |
|   return DAG.getLoad(VT, dl, Ch, StackPtr,
 | |
|                      PseudoSourceValue::getFixedStack(SPFI), 0);
 | |
| }
 | |
| 
 | |
| 
 | |
| SDValue SelectionDAGLegalize::
 | |
| ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, DebugLoc dl) {
 | |
|   if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
 | |
|     // SCALAR_TO_VECTOR requires that the type of the value being inserted
 | |
|     // match the element type of the vector being created, except for
 | |
|     // integers in which case the inserted value can be over width.
 | |
|     MVT EltVT = Vec.getValueType().getVectorElementType();
 | |
|     if (Val.getValueType() == EltVT ||
 | |
|         (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
 | |
|       SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
 | |
|                                   Vec.getValueType(), Val);
 | |
| 
 | |
|       unsigned NumElts = Vec.getValueType().getVectorNumElements();
 | |
|       // We generate a shuffle of InVec and ScVec, so the shuffle mask
 | |
|       // should be 0,1,2,3,4,5... with the appropriate element replaced with
 | |
|       // elt 0 of the RHS.
 | |
|       SmallVector<int, 8> ShufOps;
 | |
|       for (unsigned i = 0; i != NumElts; ++i)
 | |
|         ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
 | |
| 
 | |
|       return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec,
 | |
|                                   &ShufOps[0]);
 | |
|     }
 | |
|   }
 | |
|   return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
 | |
|   // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
 | |
|   // FIXME: We shouldn't do this for TargetConstantFP's.
 | |
|   // FIXME: move this to the DAG Combiner!  Note that we can't regress due
 | |
|   // to phase ordering between legalized code and the dag combiner.  This
 | |
|   // probably means that we need to integrate dag combiner and legalizer
 | |
|   // together.
 | |
|   // We generally can't do this one for long doubles.
 | |
|   SDValue Tmp1 = ST->getChain();
 | |
|   SDValue Tmp2 = ST->getBasePtr();
 | |
|   SDValue Tmp3;
 | |
|   int SVOffset = ST->getSrcValueOffset();
 | |
|   unsigned Alignment = ST->getAlignment();
 | |
|   bool isVolatile = ST->isVolatile();
 | |
|   DebugLoc dl = ST->getDebugLoc();
 | |
|   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
 | |
|     if (CFP->getValueType(0) == MVT::f32 &&
 | |
|         getTypeAction(MVT::i32) == Legal) {
 | |
|       Tmp3 = DAG.getConstant(CFP->getValueAPF().
 | |
|                                       bitcastToAPInt().zextOrTrunc(32),
 | |
|                               MVT::i32);
 | |
|       return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
 | |
|                           SVOffset, isVolatile, Alignment);
 | |
|     } else if (CFP->getValueType(0) == MVT::f64) {
 | |
|       // If this target supports 64-bit registers, do a single 64-bit store.
 | |
|       if (getTypeAction(MVT::i64) == Legal) {
 | |
|         Tmp3 = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
 | |
|                                   zextOrTrunc(64), MVT::i64);
 | |
|         return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
 | |
|                             SVOffset, isVolatile, Alignment);
 | |
|       } else if (getTypeAction(MVT::i32) == Legal && !ST->isVolatile()) {
 | |
|         // Otherwise, if the target supports 32-bit registers, use 2 32-bit
 | |
|         // stores.  If the target supports neither 32- nor 64-bits, this
 | |
|         // xform is certainly not worth it.
 | |
|         const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt();
 | |
|         SDValue Lo = DAG.getConstant(APInt(IntVal).trunc(32), MVT::i32);
 | |
|         SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32);
 | |
|         if (TLI.isBigEndian()) std::swap(Lo, Hi);
 | |
| 
 | |
|         Lo = DAG.getStore(Tmp1, dl, Lo, Tmp2, ST->getSrcValue(),
 | |
|                           SVOffset, isVolatile, Alignment);
 | |
|         Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
 | |
|                             DAG.getIntPtrConstant(4));
 | |
|         Hi = DAG.getStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(), SVOffset+4,
 | |
|                           isVolatile, MinAlign(Alignment, 4U));
 | |
| 
 | |
|         return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| /// LegalizeOp - We know that the specified value has a legal type, and
 | |
| /// that its operands are legal.  Now ensure that the operation itself
 | |
| /// is legal, recursively ensuring that the operands' operations remain
 | |
| /// legal.
 | |
| SDValue SelectionDAGLegalize::LegalizeOp(SDValue Op) {
 | |
|   if (Op.getOpcode() == ISD::TargetConstant) // Allow illegal target nodes.
 | |
|     return Op;
 | |
| 
 | |
|   SDNode *Node = Op.getNode();
 | |
|   DebugLoc dl = Node->getDebugLoc();
 | |
| 
 | |
|   for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
 | |
|     assert(getTypeAction(Node->getValueType(i)) == Legal &&
 | |
|            "Unexpected illegal type!");
 | |
| 
 | |
|   for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
 | |
|     assert((isTypeLegal(Node->getOperand(i).getValueType()) || 
 | |
|             Node->getOperand(i).getOpcode() == ISD::TargetConstant) &&
 | |
|            "Unexpected illegal type!");
 | |
| 
 | |
|   // Note that LegalizeOp may be reentered even from single-use nodes, which
 | |
|   // means that we always must cache transformed nodes.
 | |
|   DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
 | |
|   if (I != LegalizedNodes.end()) return I->second;
 | |
| 
 | |
|   SDValue Tmp1, Tmp2, Tmp3, Tmp4;
 | |
|   SDValue Result = Op;
 | |
|   bool isCustom = false;
 | |
| 
 | |
|   // Figure out the correct action; the way to query this varies by opcode
 | |
|   TargetLowering::LegalizeAction Action;
 | |
|   bool SimpleFinishLegalizing = true;
 | |
|   switch (Node->getOpcode()) {
 | |
|   case ISD::INTRINSIC_W_CHAIN:
 | |
|   case ISD::INTRINSIC_WO_CHAIN:
 | |
|   case ISD::INTRINSIC_VOID:
 | |
|   case ISD::VAARG:
 | |
|   case ISD::STACKSAVE:
 | |
|     Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
 | |
|     break;
 | |
|   case ISD::SINT_TO_FP:
 | |
|   case ISD::UINT_TO_FP:
 | |
|   case ISD::EXTRACT_VECTOR_ELT:
 | |
|     Action = TLI.getOperationAction(Node->getOpcode(),
 | |
|                                     Node->getOperand(0).getValueType());
 | |
|     break;
 | |
|   case ISD::FP_ROUND_INREG:
 | |
|   case ISD::SIGN_EXTEND_INREG: {
 | |
|     MVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
 | |
|     Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
 | |
|     break;
 | |
|   }
 | |
|   case ISD::SELECT_CC:
 | |
|   case ISD::SETCC:
 | |
|   case ISD::BR_CC: {
 | |
|     unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
 | |
|                          Node->getOpcode() == ISD::SETCC ? 2 : 1;
 | |
|     unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0;
 | |
|     MVT OpVT = Node->getOperand(CompareOperand).getValueType();
 | |
|     ISD::CondCode CCCode =
 | |
|         cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
 | |
|     Action = TLI.getCondCodeAction(CCCode, OpVT);
 | |
|     if (Action == TargetLowering::Legal) {
 | |
|       if (Node->getOpcode() == ISD::SELECT_CC)
 | |
|         Action = TLI.getOperationAction(Node->getOpcode(),
 | |
|                                         Node->getValueType(0));
 | |
|       else
 | |
|         Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case ISD::LOAD:
 | |
|   case ISD::STORE:
 | |
|     // FIXME: Model these properly.  LOAD and STORE are complicated, and
 | |
|     // STORE expects the unlegalized operand in some cases.
 | |
|     SimpleFinishLegalizing = false;
 | |
|     break;
 | |
|   case ISD::CALLSEQ_START:
 | |
|   case ISD::CALLSEQ_END:
 | |
|     // FIXME: This shouldn't be necessary.  These nodes have special properties
 | |
|     // dealing with the recursive nature of legalization.  Removing this
 | |
|     // special case should be done as part of making LegalizeDAG non-recursive.
 | |
|     SimpleFinishLegalizing = false;
 | |
|     break;
 | |
|   case ISD::CALL:
 | |
|     // FIXME: Legalization for calls requires custom-lowering the call before
 | |
|     // legalizing the operands!  (I haven't looked into precisely why.)
 | |
|     SimpleFinishLegalizing = false;
 | |
|     break;
 | |
|   case ISD::EXTRACT_ELEMENT:
 | |
|   case ISD::FLT_ROUNDS_:
 | |
|   case ISD::SADDO:
 | |
|   case ISD::SSUBO:
 | |
|   case ISD::UADDO:
 | |
|   case ISD::USUBO:
 | |
|   case ISD::SMULO:
 | |
|   case ISD::UMULO:
 | |
|   case ISD::FPOWI:
 | |
|   case ISD::MERGE_VALUES:
 | |
|   case ISD::EH_RETURN:
 | |
|   case ISD::FRAME_TO_ARGS_OFFSET:
 | |
|     // These operations lie about being legal: when they claim to be legal,
 | |
|     // they should actually be expanded.
 | |
|     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
 | |
|     if (Action == TargetLowering::Legal)
 | |
|       Action = TargetLowering::Expand;
 | |
|     break;
 | |
|   case ISD::TRAMPOLINE:
 | |
|   case ISD::FRAMEADDR:
 | |
|   case ISD::RETURNADDR:
 | |
|   case ISD::FORMAL_ARGUMENTS:
 | |
|     // These operations lie about being legal: when they claim to be legal,
 | |
|     // they should actually be custom-lowered.
 | |
|     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
 | |
|     if (Action == TargetLowering::Legal)
 | |
|       Action = TargetLowering::Custom;
 | |
|     break;
 | |
|   case ISD::BUILD_VECTOR:
 | |
|     // A weird case: legalization for BUILD_VECTOR never legalizes the
 | |
|     // operands!
 | |
|     // FIXME: This really sucks... changing it isn't semantically incorrect,
 | |
|     // but it massively pessimizes the code for floating-point BUILD_VECTORs
 | |
|     // because ConstantFP operands get legalized into constant pool loads
 | |
|     // before the BUILD_VECTOR code can see them.  It doesn't usually bite,
 | |
|     // though, because BUILD_VECTORS usually get lowered into other nodes
 | |
|     // which get legalized properly.
 | |
|     SimpleFinishLegalizing = false;
 | |
|     break;
 | |
|   default:
 | |
|     if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
 | |
|       Action = TargetLowering::Legal;
 | |
|     } else {
 | |
|       Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   if (SimpleFinishLegalizing) {
 | |
|     SmallVector<SDValue, 8> Ops, ResultVals;
 | |
|     for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
 | |
|       Ops.push_back(LegalizeOp(Node->getOperand(i)));
 | |
|     switch (Node->getOpcode()) {
 | |
|     default: break;
 | |
|     case ISD::BR:
 | |
|     case ISD::BRIND:
 | |
|     case ISD::BR_JT:
 | |
|     case ISD::BR_CC:
 | |
|     case ISD::BRCOND:
 | |
|     case ISD::RET:
 | |
|       // Branches tweak the chain to include LastCALLSEQ_END
 | |
|       Ops[0] = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ops[0],
 | |
|                             LastCALLSEQ_END);
 | |
|       Ops[0] = LegalizeOp(Ops[0]);
 | |
|       LastCALLSEQ_END = DAG.getEntryNode();
 | |
|       break;
 | |
|     case ISD::SHL:
 | |
|     case ISD::SRL:
 | |
|     case ISD::SRA:
 | |
|     case ISD::ROTL:
 | |
|     case ISD::ROTR:
 | |
|       // Legalizing shifts/rotates requires adjusting the shift amount
 | |
|       // to the appropriate width.
 | |
|       if (!Ops[1].getValueType().isVector())
 | |
|         Ops[1] = LegalizeOp(DAG.getShiftAmountOperand(Ops[1]));
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     Result = DAG.UpdateNodeOperands(Result.getValue(0), Ops.data(),
 | |
|                                     Ops.size());
 | |
|     switch (Action) {
 | |
|     case TargetLowering::Legal:
 | |
|       for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
 | |
|         ResultVals.push_back(Result.getValue(i));
 | |
|       break;
 | |
|     case TargetLowering::Custom:
 | |
|       // FIXME: The handling for custom lowering with multiple results is
 | |
|       // a complete mess.
 | |
|       Tmp1 = TLI.LowerOperation(Result, DAG);
 | |
|       if (Tmp1.getNode()) {
 | |
|         for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) {
 | |
|           if (e == 1)
 | |
|             ResultVals.push_back(Tmp1);
 | |
|           else
 | |
|             ResultVals.push_back(Tmp1.getValue(i));
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       // FALL THROUGH
 | |
|     case TargetLowering::Expand:
 | |
|       ExpandNode(Result.getNode(), ResultVals);
 | |
|       break;
 | |
|     case TargetLowering::Promote:
 | |
|       PromoteNode(Result.getNode(), ResultVals);
 | |
|       break;
 | |
|     }
 | |
|     if (!ResultVals.empty()) {
 | |
|       for (unsigned i = 0, e = ResultVals.size(); i != e; ++i) {
 | |
|         if (ResultVals[i] != SDValue(Node, i))
 | |
|           ResultVals[i] = LegalizeOp(ResultVals[i]);
 | |
|         AddLegalizedOperand(SDValue(Node, i), ResultVals[i]);
 | |
|       }
 | |
|       return ResultVals[Op.getResNo()];
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   switch (Node->getOpcode()) {
 | |
|   default:
 | |
| #ifndef NDEBUG
 | |
|     cerr << "NODE: "; Node->dump(&DAG); cerr << "\n";
 | |
| #endif
 | |
|     llvm_unreachable("Do not know how to legalize this operator!");
 | |
|   case ISD::CALL:
 | |
|     // The only option for this is to custom lower it.
 | |
|     Tmp3 = TLI.LowerOperation(Result.getValue(0), DAG);
 | |
|     assert(Tmp3.getNode() && "Target didn't custom lower this node!");
 | |
|     // A call within a calling sequence must be legalized to something
 | |
|     // other than the normal CALLSEQ_END.  Violating this gets Legalize
 | |
|     // into an infinite loop.
 | |
|     assert ((!IsLegalizingCall ||
 | |
|              Node->getOpcode() != ISD::CALL ||
 | |
|              Tmp3.getNode()->getOpcode() != ISD::CALLSEQ_END) &&
 | |
|             "Nested CALLSEQ_START..CALLSEQ_END not supported.");
 | |
| 
 | |
|     // The number of incoming and outgoing values should match; unless the final
 | |
|     // outgoing value is a flag.
 | |
|     assert((Tmp3.getNode()->getNumValues() == Result.getNode()->getNumValues() ||
 | |
|             (Tmp3.getNode()->getNumValues() == Result.getNode()->getNumValues() + 1 &&
 | |
|              Tmp3.getNode()->getValueType(Tmp3.getNode()->getNumValues() - 1) ==
 | |
|                MVT::Flag)) &&
 | |
|            "Lowering call/formal_arguments produced unexpected # results!");
 | |
| 
 | |
|     // Since CALL/FORMAL_ARGUMENTS nodes produce multiple values, make sure to
 | |
|     // remember that we legalized all of them, so it doesn't get relegalized.
 | |
|     for (unsigned i = 0, e = Tmp3.getNode()->getNumValues(); i != e; ++i) {
 | |
|       if (Tmp3.getNode()->getValueType(i) == MVT::Flag)
 | |
|         continue;
 | |
|       Tmp1 = LegalizeOp(Tmp3.getValue(i));
 | |
|       if (Op.getResNo() == i)
 | |
|         Tmp2 = Tmp1;
 | |
|       AddLegalizedOperand(SDValue(Node, i), Tmp1);
 | |
|     }
 | |
|     return Tmp2;
 | |
|   case ISD::BUILD_VECTOR:
 | |
|     switch (TLI.getOperationAction(ISD::BUILD_VECTOR, Node->getValueType(0))) {
 | |
|     default: llvm_unreachable("This action is not supported yet!");
 | |
|     case TargetLowering::Custom:
 | |
|       Tmp3 = TLI.LowerOperation(Result, DAG);
 | |
|       if (Tmp3.getNode()) {
 | |
|         Result = Tmp3;
 | |
|         break;
 | |
|       }
 | |
|       // FALLTHROUGH
 | |
|     case TargetLowering::Expand:
 | |
|       Result = ExpandBUILD_VECTOR(Result.getNode());
 | |
|       break;
 | |
|     }
 | |
|     break;
 | |
|   case ISD::CALLSEQ_START: {
 | |
|     SDNode *CallEnd = FindCallEndFromCallStart(Node);
 | |
| 
 | |
|     // Recursively Legalize all of the inputs of the call end that do not lead
 | |
|     // to this call start.  This ensures that any libcalls that need be inserted
 | |
|     // are inserted *before* the CALLSEQ_START.
 | |
|     {SmallPtrSet<SDNode*, 32> NodesLeadingTo;
 | |
|     for (unsigned i = 0, e = CallEnd->getNumOperands(); i != e; ++i)
 | |
|       LegalizeAllNodesNotLeadingTo(CallEnd->getOperand(i).getNode(), Node,
 | |
|                                    NodesLeadingTo);
 | |
|     }
 | |
| 
 | |
|     // Now that we legalized all of the inputs (which may have inserted
 | |
|     // libcalls) create the new CALLSEQ_START node.
 | |
|     Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
 | |
| 
 | |
|     // Merge in the last call, to ensure that this call start after the last
 | |
|     // call ended.
 | |
|     if (LastCALLSEQ_END.getOpcode() != ISD::EntryToken) {
 | |
|       Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
 | |
|                          Tmp1, LastCALLSEQ_END);
 | |
|       Tmp1 = LegalizeOp(Tmp1);
 | |
|     }
 | |
| 
 | |
|     // Do not try to legalize the target-specific arguments (#1+).
 | |
|     if (Tmp1 != Node->getOperand(0)) {
 | |
|       SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
 | |
|       Ops[0] = Tmp1;
 | |
|       Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
 | |
|     }
 | |
| 
 | |
|     // Remember that the CALLSEQ_START is legalized.
 | |
|     AddLegalizedOperand(Op.getValue(0), Result);
 | |
|     if (Node->getNumValues() == 2)    // If this has a flag result, remember it.
 | |
|       AddLegalizedOperand(Op.getValue(1), Result.getValue(1));
 | |
| 
 | |
|     // Now that the callseq_start and all of the non-call nodes above this call
 | |
|     // sequence have been legalized, legalize the call itself.  During this
 | |
|     // process, no libcalls can/will be inserted, guaranteeing that no calls
 | |
|     // can overlap.
 | |
|     assert(!IsLegalizingCall && "Inconsistent sequentialization of calls!");
 | |
|     // Note that we are selecting this call!
 | |
|     LastCALLSEQ_END = SDValue(CallEnd, 0);
 | |
|     IsLegalizingCall = true;
 | |
| 
 | |
|     // Legalize the call, starting from the CALLSEQ_END.
 | |
|     LegalizeOp(LastCALLSEQ_END);
 | |
|     assert(!IsLegalizingCall && "CALLSEQ_END should have cleared this!");
 | |
|     return Result;
 | |
|   }
 | |
|   case ISD::CALLSEQ_END:
 | |
|     // If the CALLSEQ_START node hasn't been legalized first, legalize it.  This
 | |
|     // will cause this node to be legalized as well as handling libcalls right.
 | |
|     if (LastCALLSEQ_END.getNode() != Node) {
 | |
|       LegalizeOp(SDValue(FindCallStartFromCallEnd(Node), 0));
 | |
|       DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
 | |
|       assert(I != LegalizedNodes.end() &&
 | |
|              "Legalizing the call start should have legalized this node!");
 | |
|       return I->second;
 | |
|     }
 | |
| 
 | |
|     // Otherwise, the call start has been legalized and everything is going
 | |
|     // according to plan.  Just legalize ourselves normally here.
 | |
|     Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
 | |
|     // Do not try to legalize the target-specific arguments (#1+), except for
 | |
|     // an optional flag input.
 | |
|     if (Node->getOperand(Node->getNumOperands()-1).getValueType() != MVT::Flag){
 | |
|       if (Tmp1 != Node->getOperand(0)) {
 | |
|         SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
 | |
|         Ops[0] = Tmp1;
 | |
|         Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
 | |
|       }
 | |
|     } else {
 | |
|       Tmp2 = LegalizeOp(Node->getOperand(Node->getNumOperands()-1));
 | |
|       if (Tmp1 != Node->getOperand(0) ||
 | |
|           Tmp2 != Node->getOperand(Node->getNumOperands()-1)) {
 | |
|         SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
 | |
|         Ops[0] = Tmp1;
 | |
|         Ops.back() = Tmp2;
 | |
|         Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
 | |
|       }
 | |
|     }
 | |
|     assert(IsLegalizingCall && "Call sequence imbalance between start/end?");
 | |
|     // This finishes up call legalization.
 | |
|     IsLegalizingCall = false;
 | |
| 
 | |
|     // If the CALLSEQ_END node has a flag, remember that we legalized it.
 | |
|     AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0));
 | |
|     if (Node->getNumValues() == 2)
 | |
|       AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1));
 | |
|     return Result.getValue(Op.getResNo());
 | |
|   case ISD::LOAD: {
 | |
|     LoadSDNode *LD = cast<LoadSDNode>(Node);
 | |
|     Tmp1 = LegalizeOp(LD->getChain());   // Legalize the chain.
 | |
|     Tmp2 = LegalizeOp(LD->getBasePtr()); // Legalize the base pointer.
 | |
| 
 | |
|     ISD::LoadExtType ExtType = LD->getExtensionType();
 | |
|     if (ExtType == ISD::NON_EXTLOAD) {
 | |
|       MVT VT = Node->getValueType(0);
 | |
|       Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset());
 | |
|       Tmp3 = Result.getValue(0);
 | |
|       Tmp4 = Result.getValue(1);
 | |
| 
 | |
|       switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
 | |
|       default: llvm_unreachable("This action is not supported yet!");
 | |
|       case TargetLowering::Legal:
 | |
|         // If this is an unaligned load and the target doesn't support it,
 | |
|         // expand it.
 | |
|         if (!TLI.allowsUnalignedMemoryAccesses()) {
 | |
|           unsigned ABIAlignment = TLI.getTargetData()->
 | |
|             getABITypeAlignment(LD->getMemoryVT().getTypeForMVT(
 | |
|                                                             *DAG.getContext()));
 | |
|           if (LD->getAlignment() < ABIAlignment){
 | |
|             Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()), DAG,
 | |
|                                          TLI);
 | |
|             Tmp3 = Result.getOperand(0);
 | |
|             Tmp4 = Result.getOperand(1);
 | |
|             Tmp3 = LegalizeOp(Tmp3);
 | |
|             Tmp4 = LegalizeOp(Tmp4);
 | |
|           }
 | |
|         }
 | |
|         break;
 | |
|       case TargetLowering::Custom:
 | |
|         Tmp1 = TLI.LowerOperation(Tmp3, DAG);
 | |
|         if (Tmp1.getNode()) {
 | |
|           Tmp3 = LegalizeOp(Tmp1);
 | |
|           Tmp4 = LegalizeOp(Tmp1.getValue(1));
 | |
|         }
 | |
|         break;
 | |
|       case TargetLowering::Promote: {
 | |
|         // Only promote a load of vector type to another.
 | |
|         assert(VT.isVector() && "Cannot promote this load!");
 | |
|         // Change base type to a different vector type.
 | |
|         MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
 | |
| 
 | |
|         Tmp1 = DAG.getLoad(NVT, dl, Tmp1, Tmp2, LD->getSrcValue(),
 | |
|                            LD->getSrcValueOffset(),
 | |
|                            LD->isVolatile(), LD->getAlignment());
 | |
|         Tmp3 = LegalizeOp(DAG.getNode(ISD::BIT_CONVERT, dl, VT, Tmp1));
 | |
|         Tmp4 = LegalizeOp(Tmp1.getValue(1));
 | |
|         break;
 | |
|       }
 | |
|       }
 | |
|       // Since loads produce two values, make sure to remember that we
 | |
|       // legalized both of them.
 | |
|       AddLegalizedOperand(SDValue(Node, 0), Tmp3);
 | |
|       AddLegalizedOperand(SDValue(Node, 1), Tmp4);
 | |
|       return Op.getResNo() ? Tmp4 : Tmp3;
 | |
|     } else {
 | |
|       MVT SrcVT = LD->getMemoryVT();
 | |
|       unsigned SrcWidth = SrcVT.getSizeInBits();
 | |
|       int SVOffset = LD->getSrcValueOffset();
 | |
|       unsigned Alignment = LD->getAlignment();
 | |
|       bool isVolatile = LD->isVolatile();
 | |
| 
 | |
|       if (SrcWidth != SrcVT.getStoreSizeInBits() &&
 | |
|           // Some targets pretend to have an i1 loading operation, and actually
 | |
|           // load an i8.  This trick is correct for ZEXTLOAD because the top 7
 | |
|           // bits are guaranteed to be zero; it helps the optimizers understand
 | |
|           // that these bits are zero.  It is also useful for EXTLOAD, since it
 | |
|           // tells the optimizers that those bits are undefined.  It would be
 | |
|           // nice to have an effective generic way of getting these benefits...
 | |
|           // Until such a way is found, don't insist on promoting i1 here.
 | |
|           (SrcVT != MVT::i1 ||
 | |
|            TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) {
 | |
|         // Promote to a byte-sized load if not loading an integral number of
 | |
|         // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
 | |
|         unsigned NewWidth = SrcVT.getStoreSizeInBits();
 | |
|         MVT NVT = MVT::getIntegerVT(NewWidth);
 | |
|         SDValue Ch;
 | |
| 
 | |
|         // The extra bits are guaranteed to be zero, since we stored them that
 | |
|         // way.  A zext load from NVT thus automatically gives zext from SrcVT.
 | |
| 
 | |
|         ISD::LoadExtType NewExtType =
 | |
|           ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
 | |
| 
 | |
|         Result = DAG.getExtLoad(NewExtType, dl, Node->getValueType(0),
 | |
|                                 Tmp1, Tmp2, LD->getSrcValue(), SVOffset,
 | |
|                                 NVT, isVolatile, Alignment);
 | |
| 
 | |
|         Ch = Result.getValue(1); // The chain.
 | |
| 
 | |
|         if (ExtType == ISD::SEXTLOAD)
 | |
|           // Having the top bits zero doesn't help when sign extending.
 | |
|           Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
 | |
|                                Result.getValueType(),
 | |
|                                Result, DAG.getValueType(SrcVT));
 | |
|         else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
 | |
|           // All the top bits are guaranteed to be zero - inform the optimizers.
 | |
|           Result = DAG.getNode(ISD::AssertZext, dl,
 | |
|                                Result.getValueType(), Result,
 | |
|                                DAG.getValueType(SrcVT));
 | |
| 
 | |
|         Tmp1 = LegalizeOp(Result);
 | |
|         Tmp2 = LegalizeOp(Ch);
 | |
|       } else if (SrcWidth & (SrcWidth - 1)) {
 | |
|         // If not loading a power-of-2 number of bits, expand as two loads.
 | |
|         assert(SrcVT.isExtended() && !SrcVT.isVector() &&
 | |
|                "Unsupported extload!");
 | |
|         unsigned RoundWidth = 1 << Log2_32(SrcWidth);
 | |
|         assert(RoundWidth < SrcWidth);
 | |
|         unsigned ExtraWidth = SrcWidth - RoundWidth;
 | |
|         assert(ExtraWidth < RoundWidth);
 | |
|         assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
 | |
|                "Load size not an integral number of bytes!");
 | |
|         MVT RoundVT = MVT::getIntegerVT(RoundWidth);
 | |
|         MVT ExtraVT = MVT::getIntegerVT(ExtraWidth);
 | |
|         SDValue Lo, Hi, Ch;
 | |
|         unsigned IncrementSize;
 | |
| 
 | |
|         if (TLI.isLittleEndian()) {
 | |
|           // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
 | |
|           // Load the bottom RoundWidth bits.
 | |
|           Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl,
 | |
|                               Node->getValueType(0), Tmp1, Tmp2,
 | |
|                               LD->getSrcValue(), SVOffset, RoundVT, isVolatile,
 | |
|                               Alignment);
 | |
| 
 | |
|           // Load the remaining ExtraWidth bits.
 | |
|           IncrementSize = RoundWidth / 8;
 | |
|           Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
 | |
|                              DAG.getIntPtrConstant(IncrementSize));
 | |
|           Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
 | |
|                               LD->getSrcValue(), SVOffset + IncrementSize,
 | |
|                               ExtraVT, isVolatile,
 | |
|                               MinAlign(Alignment, IncrementSize));
 | |
| 
 | |
|           // Build a factor node to remember that this load is independent of the
 | |
|           // other one.
 | |
|           Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
 | |
|                            Hi.getValue(1));
 | |
| 
 | |
|           // Move the top bits to the right place.
 | |
|           Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
 | |
|                            DAG.getConstant(RoundWidth, TLI.getShiftAmountTy()));
 | |
| 
 | |
|           // Join the hi and lo parts.
 | |
|           Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
 | |
|         } else {
 | |
|           // Big endian - avoid unaligned loads.
 | |
|           // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
 | |
|           // Load the top RoundWidth bits.
 | |
|           Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
 | |
|                               LD->getSrcValue(), SVOffset, RoundVT, isVolatile,
 | |
|                               Alignment);
 | |
| 
 | |
|           // Load the remaining ExtraWidth bits.
 | |
|           IncrementSize = RoundWidth / 8;
 | |
|           Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
 | |
|                              DAG.getIntPtrConstant(IncrementSize));
 | |
|           Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl,
 | |
|                               Node->getValueType(0), Tmp1, Tmp2,
 | |
|                               LD->getSrcValue(), SVOffset + IncrementSize,
 | |
|                               ExtraVT, isVolatile,
 | |
|                               MinAlign(Alignment, IncrementSize));
 | |
| 
 | |
|           // Build a factor node to remember that this load is independent of the
 | |
|           // other one.
 | |
|           Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
 | |
|                            Hi.getValue(1));
 | |
| 
 | |
|           // Move the top bits to the right place.
 | |
|           Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
 | |
|                            DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy()));
 | |
| 
 | |
|           // Join the hi and lo parts.
 | |
|           Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
 | |
|         }
 | |
| 
 | |
|         Tmp1 = LegalizeOp(Result);
 | |
|         Tmp2 = LegalizeOp(Ch);
 | |
|       } else {
 | |
|         switch (TLI.getLoadExtAction(ExtType, SrcVT)) {
 | |
|         default: llvm_unreachable("This action is not supported yet!");
 | |
|         case TargetLowering::Custom:
 | |
|           isCustom = true;
 | |
|           // FALLTHROUGH
 | |
|         case TargetLowering::Legal:
 | |
|           Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset());
 | |
|           Tmp1 = Result.getValue(0);
 | |
|           Tmp2 = Result.getValue(1);
 | |
| 
 | |
|           if (isCustom) {
 | |
|             Tmp3 = TLI.LowerOperation(Result, DAG);
 | |
|             if (Tmp3.getNode()) {
 | |
|               Tmp1 = LegalizeOp(Tmp3);
 | |
|               Tmp2 = LegalizeOp(Tmp3.getValue(1));
 | |
|             }
 | |
|           } else {
 | |
|             // If this is an unaligned load and the target doesn't support it,
 | |
|             // expand it.
 | |
|             if (!TLI.allowsUnalignedMemoryAccesses()) {
 | |
|               unsigned ABIAlignment = TLI.getTargetData()->
 | |
|                 getABITypeAlignment(LD->getMemoryVT().getTypeForMVT(
 | |
|                                                             *DAG.getContext()));
 | |
|               if (LD->getAlignment() < ABIAlignment){
 | |
|                 Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()), DAG,
 | |
|                                              TLI);
 | |
|                 Tmp1 = Result.getOperand(0);
 | |
|                 Tmp2 = Result.getOperand(1);
 | |
|                 Tmp1 = LegalizeOp(Tmp1);
 | |
|                 Tmp2 = LegalizeOp(Tmp2);
 | |
|               }
 | |
|             }
 | |
|           }
 | |
|           break;
 | |
|         case TargetLowering::Expand:
 | |
|           // f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND
 | |
|           if (SrcVT == MVT::f32 && Node->getValueType(0) == MVT::f64) {
 | |
|             SDValue Load = DAG.getLoad(SrcVT, dl, Tmp1, Tmp2, LD->getSrcValue(),
 | |
|                                          LD->getSrcValueOffset(),
 | |
|                                          LD->isVolatile(), LD->getAlignment());
 | |
|             Result = DAG.getNode(ISD::FP_EXTEND, dl,
 | |
|                                  Node->getValueType(0), Load);
 | |
|             Tmp1 = LegalizeOp(Result);  // Relegalize new nodes.
 | |
|             Tmp2 = LegalizeOp(Load.getValue(1));
 | |
|             break;
 | |
|           }
 | |
|           assert(ExtType != ISD::EXTLOAD &&"EXTLOAD should always be supported!");
 | |
|           // Turn the unsupported load into an EXTLOAD followed by an explicit
 | |
|           // zero/sign extend inreg.
 | |
|           Result = DAG.getExtLoad(ISD::EXTLOAD, dl, Node->getValueType(0),
 | |
|                                   Tmp1, Tmp2, LD->getSrcValue(),
 | |
|                                   LD->getSrcValueOffset(), SrcVT,
 | |
|                                   LD->isVolatile(), LD->getAlignment());
 | |
|           SDValue ValRes;
 | |
|           if (ExtType == ISD::SEXTLOAD)
 | |
|             ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
 | |
|                                  Result.getValueType(),
 | |
|                                  Result, DAG.getValueType(SrcVT));
 | |
|           else
 | |
|             ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT);
 | |
|           Tmp1 = LegalizeOp(ValRes);  // Relegalize new nodes.
 | |
|           Tmp2 = LegalizeOp(Result.getValue(1));  // Relegalize new nodes.
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Since loads produce two values, make sure to remember that we legalized
 | |
|       // both of them.
 | |
|       AddLegalizedOperand(SDValue(Node, 0), Tmp1);
 | |
|       AddLegalizedOperand(SDValue(Node, 1), Tmp2);
 | |
|       return Op.getResNo() ? Tmp2 : Tmp1;
 | |
|     }
 | |
|   }
 | |
|   case ISD::STORE: {
 | |
|     StoreSDNode *ST = cast<StoreSDNode>(Node);
 | |
|     Tmp1 = LegalizeOp(ST->getChain());    // Legalize the chain.
 | |
|     Tmp2 = LegalizeOp(ST->getBasePtr());  // Legalize the pointer.
 | |
|     int SVOffset = ST->getSrcValueOffset();
 | |
|     unsigned Alignment = ST->getAlignment();
 | |
|     bool isVolatile = ST->isVolatile();
 | |
| 
 | |
|     if (!ST->isTruncatingStore()) {
 | |
|       if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
 | |
|         Result = SDValue(OptStore, 0);
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       {
 | |
|         Tmp3 = LegalizeOp(ST->getValue());
 | |
|         Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2,
 | |
|                                         ST->getOffset());
 | |
| 
 | |
|         MVT VT = Tmp3.getValueType();
 | |
|         switch (TLI.getOperationAction(ISD::STORE, VT)) {
 | |
|         default: llvm_unreachable("This action is not supported yet!");
 | |
|         case TargetLowering::Legal:
 | |
|           // If this is an unaligned store and the target doesn't support it,
 | |
|           // expand it.
 | |
|           if (!TLI.allowsUnalignedMemoryAccesses()) {
 | |
|             unsigned ABIAlignment = TLI.getTargetData()->
 | |
|               getABITypeAlignment(ST->getMemoryVT().getTypeForMVT(
 | |
|                                                             *DAG.getContext()));
 | |
|             if (ST->getAlignment() < ABIAlignment)
 | |
|               Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()), DAG,
 | |
|                                             TLI);
 | |
|           }
 | |
|           break;
 | |
|         case TargetLowering::Custom:
 | |
|           Tmp1 = TLI.LowerOperation(Result, DAG);
 | |
|           if (Tmp1.getNode()) Result = Tmp1;
 | |
|           break;
 | |
|         case TargetLowering::Promote:
 | |
|           assert(VT.isVector() && "Unknown legal promote case!");
 | |
|           Tmp3 = DAG.getNode(ISD::BIT_CONVERT, dl,
 | |
|                              TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3);
 | |
|           Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2,
 | |
|                                 ST->getSrcValue(), SVOffset, isVolatile,
 | |
|                                 Alignment);
 | |
|           break;
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|     } else {
 | |
|       Tmp3 = LegalizeOp(ST->getValue());
 | |
| 
 | |
|       MVT StVT = ST->getMemoryVT();
 | |
|       unsigned StWidth = StVT.getSizeInBits();
 | |
| 
 | |
|       if (StWidth != StVT.getStoreSizeInBits()) {
 | |
|         // Promote to a byte-sized store with upper bits zero if not
 | |
|         // storing an integral number of bytes.  For example, promote
 | |
|         // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
 | |
|         MVT NVT = MVT::getIntegerVT(StVT.getStoreSizeInBits());
 | |
|         Tmp3 = DAG.getZeroExtendInReg(Tmp3, dl, StVT);
 | |
|         Result = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
 | |
|                                    SVOffset, NVT, isVolatile, Alignment);
 | |
|       } else if (StWidth & (StWidth - 1)) {
 | |
|         // If not storing a power-of-2 number of bits, expand as two stores.
 | |
|         assert(StVT.isExtended() && !StVT.isVector() &&
 | |
|                "Unsupported truncstore!");
 | |
|         unsigned RoundWidth = 1 << Log2_32(StWidth);
 | |
|         assert(RoundWidth < StWidth);
 | |
|         unsigned ExtraWidth = StWidth - RoundWidth;
 | |
|         assert(ExtraWidth < RoundWidth);
 | |
|         assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
 | |
|                "Store size not an integral number of bytes!");
 | |
|         MVT RoundVT = MVT::getIntegerVT(RoundWidth);
 | |
|         MVT ExtraVT = MVT::getIntegerVT(ExtraWidth);
 | |
|         SDValue Lo, Hi;
 | |
|         unsigned IncrementSize;
 | |
| 
 | |
|         if (TLI.isLittleEndian()) {
 | |
|           // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
 | |
|           // Store the bottom RoundWidth bits.
 | |
|           Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
 | |
|                                  SVOffset, RoundVT,
 | |
|                                  isVolatile, Alignment);
 | |
| 
 | |
|           // Store the remaining ExtraWidth bits.
 | |
|           IncrementSize = RoundWidth / 8;
 | |
|           Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
 | |
|                              DAG.getIntPtrConstant(IncrementSize));
 | |
|           Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
 | |
|                            DAG.getConstant(RoundWidth, TLI.getShiftAmountTy()));
 | |
|           Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(),
 | |
|                                  SVOffset + IncrementSize, ExtraVT, isVolatile,
 | |
|                                  MinAlign(Alignment, IncrementSize));
 | |
|         } else {
 | |
|           // Big endian - avoid unaligned stores.
 | |
|           // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
 | |
|           // Store the top RoundWidth bits.
 | |
|           Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
 | |
|                            DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy()));
 | |
|           Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(),
 | |
|                                  SVOffset, RoundVT, isVolatile, Alignment);
 | |
| 
 | |
|           // Store the remaining ExtraWidth bits.
 | |
|           IncrementSize = RoundWidth / 8;
 | |
|           Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
 | |
|                              DAG.getIntPtrConstant(IncrementSize));
 | |
|           Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
 | |
|                                  SVOffset + IncrementSize, ExtraVT, isVolatile,
 | |
|                                  MinAlign(Alignment, IncrementSize));
 | |
|         }
 | |
| 
 | |
|         // The order of the stores doesn't matter.
 | |
|         Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
 | |
|       } else {
 | |
|         if (Tmp1 != ST->getChain() || Tmp3 != ST->getValue() ||
 | |
|             Tmp2 != ST->getBasePtr())
 | |
|           Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2,
 | |
|                                           ST->getOffset());
 | |
| 
 | |
|         switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) {
 | |
|         default: llvm_unreachable("This action is not supported yet!");
 | |
|         case TargetLowering::Legal:
 | |
|           // If this is an unaligned store and the target doesn't support it,
 | |
|           // expand it.
 | |
|           if (!TLI.allowsUnalignedMemoryAccesses()) {
 | |
|             unsigned ABIAlignment = TLI.getTargetData()->
 | |
|               getABITypeAlignment(ST->getMemoryVT().getTypeForMVT(
 | |
|                                                             *DAG.getContext()));
 | |
|             if (ST->getAlignment() < ABIAlignment)
 | |
|               Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()), DAG,
 | |
|                                             TLI);
 | |
|           }
 | |
|           break;
 | |
|         case TargetLowering::Custom:
 | |
|           Result = TLI.LowerOperation(Result, DAG);
 | |
|           break;
 | |
|         case Expand:
 | |
|           // TRUNCSTORE:i16 i32 -> STORE i16
 | |
|           assert(isTypeLegal(StVT) && "Do not know how to expand this store!");
 | |
|           Tmp3 = DAG.getNode(ISD::TRUNCATE, dl, StVT, Tmp3);
 | |
|           Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
 | |
|                                 SVOffset, isVolatile, Alignment);
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
|   assert(Result.getValueType() == Op.getValueType() &&
 | |
|          "Bad legalization!");
 | |
| 
 | |
|   // Make sure that the generated code is itself legal.
 | |
|   if (Result != Op)
 | |
|     Result = LegalizeOp(Result);
 | |
| 
 | |
|   // Note that LegalizeOp may be reentered even from single-use nodes, which
 | |
|   // means that we always must cache transformed nodes.
 | |
|   AddLegalizedOperand(Op, Result);
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
 | |
|   SDValue Vec = Op.getOperand(0);
 | |
|   SDValue Idx = Op.getOperand(1);
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   // Store the value to a temporary stack slot, then LOAD the returned part.
 | |
|   SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
 | |
|   SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, NULL, 0);
 | |
| 
 | |
|   // Add the offset to the index.
 | |
|   unsigned EltSize =
 | |
|       Vec.getValueType().getVectorElementType().getSizeInBits()/8;
 | |
|   Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
 | |
|                     DAG.getConstant(EltSize, Idx.getValueType()));
 | |
| 
 | |
|   if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
 | |
|     Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
 | |
|   else
 | |
|     Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
 | |
| 
 | |
|   StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr);
 | |
| 
 | |
|   if (Op.getValueType().isVector())
 | |
|     return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, NULL, 0);
 | |
|   else
 | |
|     return DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr,
 | |
|                           NULL, 0, Vec.getValueType().getVectorElementType());
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
 | |
|   // We can't handle this case efficiently.  Allocate a sufficiently
 | |
|   // aligned object on the stack, store each element into it, then load
 | |
|   // the result as a vector.
 | |
|   // Create the stack frame object.
 | |
|   MVT VT = Node->getValueType(0);
 | |
|   MVT OpVT = Node->getOperand(0).getValueType();
 | |
|   DebugLoc dl = Node->getDebugLoc();
 | |
|   SDValue FIPtr = DAG.CreateStackTemporary(VT);
 | |
|   int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
 | |
|   const Value *SV = PseudoSourceValue::getFixedStack(FI);
 | |
| 
 | |
|   // Emit a store of each element to the stack slot.
 | |
|   SmallVector<SDValue, 8> Stores;
 | |
|   unsigned TypeByteSize = OpVT.getSizeInBits() / 8;
 | |
|   // Store (in the right endianness) the elements to memory.
 | |
|   for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
 | |
|     // Ignore undef elements.
 | |
|     if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue;
 | |
| 
 | |
|     unsigned Offset = TypeByteSize*i;
 | |
| 
 | |
|     SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType());
 | |
|     Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx);
 | |
| 
 | |
|     Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i),
 | |
|                                   Idx, SV, Offset));
 | |
|   }
 | |
| 
 | |
|   SDValue StoreChain;
 | |
|   if (!Stores.empty())    // Not all undef elements?
 | |
|     StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
 | |
|                              &Stores[0], Stores.size());
 | |
|   else
 | |
|     StoreChain = DAG.getEntryNode();
 | |
| 
 | |
|   // Result is a load from the stack slot.
 | |
|   return DAG.getLoad(VT, dl, StoreChain, FIPtr, SV, 0);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode* Node) {
 | |
|   DebugLoc dl = Node->getDebugLoc();
 | |
|   SDValue Tmp1 = Node->getOperand(0);
 | |
|   SDValue Tmp2 = Node->getOperand(1);
 | |
|   assert((Tmp2.getValueType() == MVT::f32 ||
 | |
|           Tmp2.getValueType() == MVT::f64) &&
 | |
|           "Ugly special-cased code!");
 | |
|   // Get the sign bit of the RHS.
 | |
|   SDValue SignBit;
 | |
|   MVT IVT = Tmp2.getValueType() == MVT::f64 ? MVT::i64 : MVT::i32;
 | |
|   if (isTypeLegal(IVT)) {
 | |
|     SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, IVT, Tmp2);
 | |
|   } else {
 | |
|     assert(isTypeLegal(TLI.getPointerTy()) &&
 | |
|             (TLI.getPointerTy() == MVT::i32 || 
 | |
|             TLI.getPointerTy() == MVT::i64) &&
 | |
|             "Legal type for load?!");
 | |
|     SDValue StackPtr = DAG.CreateStackTemporary(Tmp2.getValueType());
 | |
|     SDValue StorePtr = StackPtr, LoadPtr = StackPtr;
 | |
|     SDValue Ch =
 | |
|         DAG.getStore(DAG.getEntryNode(), dl, Tmp2, StorePtr, NULL, 0);
 | |
|     if (Tmp2.getValueType() == MVT::f64 && TLI.isLittleEndian())
 | |
|       LoadPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(),
 | |
|                             LoadPtr, DAG.getIntPtrConstant(4));
 | |
|     SignBit = DAG.getExtLoad(ISD::SEXTLOAD, dl, TLI.getPointerTy(),
 | |
|                               Ch, LoadPtr, NULL, 0, MVT::i32);
 | |
|   }
 | |
|   SignBit =
 | |
|       DAG.getSetCC(dl, TLI.getSetCCResultType(SignBit.getValueType()),
 | |
|                     SignBit, DAG.getConstant(0, SignBit.getValueType()),
 | |
|                     ISD::SETLT);
 | |
|   // Get the absolute value of the result.
 | |
|   SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1);
 | |
|   // Select between the nabs and abs value based on the sign bit of
 | |
|   // the input.
 | |
|   return DAG.getNode(ISD::SELECT, dl, AbsVal.getValueType(), SignBit,
 | |
|                      DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), AbsVal),
 | |
|                      AbsVal);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAGLegalize::ExpandDBG_STOPPOINT(SDNode* Node) {
 | |
|   DebugLoc dl = Node->getDebugLoc();
 | |
|   DwarfWriter *DW = DAG.getDwarfWriter();
 | |
|   bool useDEBUG_LOC = TLI.isOperationLegalOrCustom(ISD::DEBUG_LOC,
 | |
|                                                     MVT::Other);
 | |
|   bool useLABEL = TLI.isOperationLegalOrCustom(ISD::DBG_LABEL, MVT::Other);
 | |
| 
 | |
|   const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(Node);
 | |
|   GlobalVariable *CU_GV = cast<GlobalVariable>(DSP->getCompileUnit());
 | |
|   if (DW && (useDEBUG_LOC || useLABEL) && !CU_GV->isDeclaration()) {
 | |
|     DICompileUnit CU(cast<GlobalVariable>(DSP->getCompileUnit()));
 | |
| 
 | |
|     unsigned Line = DSP->getLine();
 | |
|     unsigned Col = DSP->getColumn();
 | |
| 
 | |
|     if (OptLevel == CodeGenOpt::None) {
 | |
|       // A bit self-referential to have DebugLoc on Debug_Loc nodes, but it
 | |
|       // won't hurt anything.
 | |
|       if (useDEBUG_LOC) {
 | |
|         return DAG.getNode(ISD::DEBUG_LOC, dl, MVT::Other, Node->getOperand(0),
 | |
|                            DAG.getConstant(Line, MVT::i32),
 | |
|                            DAG.getConstant(Col, MVT::i32),
 | |
|                            DAG.getSrcValue(CU.getGV()));
 | |
|       } else {
 | |
|         unsigned ID = DW->RecordSourceLine(Line, Col, CU);
 | |
|         return DAG.getLabel(ISD::DBG_LABEL, dl, Node->getOperand(0), ID);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return Node->getOperand(0);
 | |
| }
 | |
| 
 | |
| void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
 | |
|                                            SmallVectorImpl<SDValue> &Results) {
 | |
|   unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
 | |
|   assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
 | |
|           " not tell us which reg is the stack pointer!");
 | |
|   DebugLoc dl = Node->getDebugLoc();
 | |
|   MVT VT = Node->getValueType(0);
 | |
|   SDValue Tmp1 = SDValue(Node, 0);
 | |
|   SDValue Tmp2 = SDValue(Node, 1);
 | |
|   SDValue Tmp3 = Node->getOperand(2);
 | |
|   SDValue Chain = Tmp1.getOperand(0);
 | |
| 
 | |
|   // Chain the dynamic stack allocation so that it doesn't modify the stack
 | |
|   // pointer when other instructions are using the stack.
 | |
|   Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
 | |
| 
 | |
|   SDValue Size  = Tmp2.getOperand(1);
 | |
|   SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
 | |
|   Chain = SP.getValue(1);
 | |
|   unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
 | |
|   unsigned StackAlign =
 | |
|     TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
 | |
|   if (Align > StackAlign)
 | |
|     SP = DAG.getNode(ISD::AND, dl, VT, SP,
 | |
|                       DAG.getConstant(-(uint64_t)Align, VT));
 | |
|   Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size);       // Value
 | |
|   Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);     // Output chain
 | |
| 
 | |
|   Tmp2 = DAG.getCALLSEQ_END(Chain,  DAG.getIntPtrConstant(0, true),
 | |
|                             DAG.getIntPtrConstant(0, true), SDValue());
 | |
| 
 | |
|   Results.push_back(Tmp1);
 | |
|   Results.push_back(Tmp2);
 | |
| }
 | |
| 
 | |
| /// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and
 | |
| /// condition code CC on the current target. This routine assumes LHS and rHS
 | |
| /// have already been legalized by LegalizeSetCCOperands. It expands SETCC with
 | |
| /// illegal condition code into AND / OR of multiple SETCC values.
 | |
| void SelectionDAGLegalize::LegalizeSetCCCondCode(MVT VT,
 | |
|                                                  SDValue &LHS, SDValue &RHS,
 | |
|                                                  SDValue &CC,
 | |
|                                                  DebugLoc dl) {
 | |
|   MVT OpVT = LHS.getValueType();
 | |
|   ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
 | |
|   switch (TLI.getCondCodeAction(CCCode, OpVT)) {
 | |
|   default: llvm_unreachable("Unknown condition code action!");
 | |
|   case TargetLowering::Legal:
 | |
|     // Nothing to do.
 | |
|     break;
 | |
|   case TargetLowering::Expand: {
 | |
|     ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
 | |
|     unsigned Opc = 0;
 | |
|     switch (CCCode) {
 | |
|     default: llvm_unreachable("Don't know how to expand this condition!");
 | |
|     case ISD::SETOEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETO;  Opc = ISD::AND; break;
 | |
|     case ISD::SETOGT: CC1 = ISD::SETGT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
 | |
|     case ISD::SETOGE: CC1 = ISD::SETGE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
 | |
|     case ISD::SETOLT: CC1 = ISD::SETLT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
 | |
|     case ISD::SETOLE: CC1 = ISD::SETLE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
 | |
|     case ISD::SETONE: CC1 = ISD::SETNE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
 | |
|     case ISD::SETUEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
 | |
|     case ISD::SETUGT: CC1 = ISD::SETGT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
 | |
|     case ISD::SETUGE: CC1 = ISD::SETGE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
 | |
|     case ISD::SETULT: CC1 = ISD::SETLT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
 | |
|     case ISD::SETULE: CC1 = ISD::SETLE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
 | |
|     case ISD::SETUNE: CC1 = ISD::SETNE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
 | |
|     // FIXME: Implement more expansions.
 | |
|     }
 | |
| 
 | |
|     SDValue SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1);
 | |
|     SDValue SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2);
 | |
|     LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
 | |
|     RHS = SDValue();
 | |
|     CC  = SDValue();
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// EmitStackConvert - Emit a store/load combination to the stack.  This stores
 | |
| /// SrcOp to a stack slot of type SlotVT, truncating it if needed.  It then does
 | |
| /// a load from the stack slot to DestVT, extending it if needed.
 | |
| /// The resultant code need not be legal.
 | |
| SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp,
 | |
|                                                MVT SlotVT,
 | |
|                                                MVT DestVT,
 | |
|                                                DebugLoc dl) {
 | |
|   // Create the stack frame object.
 | |
|   unsigned SrcAlign =
 | |
|     TLI.getTargetData()->getPrefTypeAlignment(SrcOp.getValueType().
 | |
|                                               getTypeForMVT(*DAG.getContext()));
 | |
|   SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
 | |
| 
 | |
|   FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
 | |
|   int SPFI = StackPtrFI->getIndex();
 | |
|   const Value *SV = PseudoSourceValue::getFixedStack(SPFI);
 | |
| 
 | |
|   unsigned SrcSize = SrcOp.getValueType().getSizeInBits();
 | |
|   unsigned SlotSize = SlotVT.getSizeInBits();
 | |
|   unsigned DestSize = DestVT.getSizeInBits();
 | |
|   unsigned DestAlign =
 | |
|     TLI.getTargetData()->getPrefTypeAlignment(DestVT.getTypeForMVT(
 | |
|                                                             *DAG.getContext()));
 | |
| 
 | |
|   // Emit a store to the stack slot.  Use a truncstore if the input value is
 | |
|   // later than DestVT.
 | |
|   SDValue Store;
 | |
| 
 | |
|   if (SrcSize > SlotSize)
 | |
|     Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
 | |
|                               SV, 0, SlotVT, false, SrcAlign);
 | |
|   else {
 | |
|     assert(SrcSize == SlotSize && "Invalid store");
 | |
|     Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
 | |
|                          SV, 0, false, SrcAlign);
 | |
|   }
 | |
| 
 | |
|   // Result is a load from the stack slot.
 | |
|   if (SlotSize == DestSize)
 | |
|     return DAG.getLoad(DestVT, dl, Store, FIPtr, SV, 0, false, DestAlign);
 | |
| 
 | |
|   assert(SlotSize < DestSize && "Unknown extension!");
 | |
|   return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, SV, 0, SlotVT,
 | |
|                         false, DestAlign);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
 | |
|   DebugLoc dl = Node->getDebugLoc();
 | |
|   // Create a vector sized/aligned stack slot, store the value to element #0,
 | |
|   // then load the whole vector back out.
 | |
|   SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
 | |
| 
 | |
|   FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
 | |
|   int SPFI = StackPtrFI->getIndex();
 | |
| 
 | |
|   SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0),
 | |
|                                  StackPtr,
 | |
|                                  PseudoSourceValue::getFixedStack(SPFI), 0,
 | |
|                                  Node->getValueType(0).getVectorElementType());
 | |
|   return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr,
 | |
|                      PseudoSourceValue::getFixedStack(SPFI), 0);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't
 | |
| /// support the operation, but do support the resultant vector type.
 | |
| SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
 | |
|   LLVMContext *Context = DAG.getContext();
 | |
|   unsigned NumElems = Node->getNumOperands();
 | |
|   SDValue Value1, Value2;
 | |
|   DebugLoc dl = Node->getDebugLoc();
 | |
|   MVT VT = Node->getValueType(0);
 | |
|   MVT OpVT = Node->getOperand(0).getValueType();
 | |
|   MVT EltVT = VT.getVectorElementType();
 | |
| 
 | |
|   // If the only non-undef value is the low element, turn this into a
 | |
|   // SCALAR_TO_VECTOR node.  If this is { X, X, X, X }, determine X.
 | |
|   bool isOnlyLowElement = true;
 | |
|   bool MoreThanTwoValues = false;
 | |
|   bool isConstant = true;
 | |
|   for (unsigned i = 0; i < NumElems; ++i) {
 | |
|     SDValue V = Node->getOperand(i);
 | |
|     if (V.getOpcode() == ISD::UNDEF)
 | |
|       continue;
 | |
|     if (i > 0)
 | |
|       isOnlyLowElement = false;
 | |
|     if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
 | |
|       isConstant = false;
 | |
| 
 | |
|     if (!Value1.getNode()) {
 | |
|       Value1 = V;
 | |
|     } else if (!Value2.getNode()) {
 | |
|       if (V != Value1)
 | |
|         Value2 = V;
 | |
|     } else if (V != Value1 && V != Value2) {
 | |
|       MoreThanTwoValues = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!Value1.getNode())
 | |
|     return DAG.getUNDEF(VT);
 | |
| 
 | |
|   if (isOnlyLowElement)
 | |
|     return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
 | |
| 
 | |
|   // If all elements are constants, create a load from the constant pool.
 | |
|   if (isConstant) {
 | |
|     std::vector<Constant*> CV;
 | |
|     for (unsigned i = 0, e = NumElems; i != e; ++i) {
 | |
|       if (ConstantFPSDNode *V =
 | |
|           dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
 | |
|         CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
 | |
|       } else if (ConstantSDNode *V =
 | |
|                  dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
 | |
|         CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
 | |
|       } else {
 | |
|         assert(Node->getOperand(i).getOpcode() == ISD::UNDEF);
 | |
|         const Type *OpNTy = OpVT.getTypeForMVT(*DAG.getContext());
 | |
|         CV.push_back(Context->getUndef(OpNTy));
 | |
|       }
 | |
|     }
 | |
|     Constant *CP = Context->getConstantVector(CV);
 | |
|     SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy());
 | |
|     unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
 | |
|     return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
 | |
|                        PseudoSourceValue::getConstantPool(), 0,
 | |
|                        false, Alignment);
 | |
|   }
 | |
| 
 | |
|   if (!MoreThanTwoValues) {
 | |
|     SmallVector<int, 8> ShuffleVec(NumElems, -1);
 | |
|     for (unsigned i = 0; i < NumElems; ++i) {
 | |
|       SDValue V = Node->getOperand(i);
 | |
|       if (V.getOpcode() == ISD::UNDEF)
 | |
|         continue;
 | |
|       ShuffleVec[i] = V == Value1 ? 0 : NumElems;
 | |
|     }
 | |
|     if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) {
 | |
|       // Get the splatted value into the low element of a vector register.
 | |
|       SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1);
 | |
|       SDValue Vec2;
 | |
|       if (Value2.getNode())
 | |
|         Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2);
 | |
|       else
 | |
|         Vec2 = DAG.getUNDEF(VT);
 | |
| 
 | |
|       // Return shuffle(LowValVec, undef, <0,0,0,0>)
 | |
|       return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Otherwise, we can't handle this case efficiently.
 | |
|   return ExpandVectorBuildThroughStack(Node);
 | |
| }
 | |
| 
 | |
| // ExpandLibCall - Expand a node into a call to a libcall.  If the result value
 | |
| // does not fit into a register, return the lo part and set the hi part to the
 | |
| // by-reg argument.  If it does fit into a single register, return the result
 | |
| // and leave the Hi part unset.
 | |
| SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
 | |
|                                             bool isSigned) {
 | |
|   assert(!IsLegalizingCall && "Cannot overlap legalization of calls!");
 | |
|   // The input chain to this libcall is the entry node of the function.
 | |
|   // Legalizing the call will automatically add the previous call to the
 | |
|   // dependence.
 | |
|   SDValue InChain = DAG.getEntryNode();
 | |
| 
 | |
|   TargetLowering::ArgListTy Args;
 | |
|   TargetLowering::ArgListEntry Entry;
 | |
|   for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
 | |
|     MVT ArgVT = Node->getOperand(i).getValueType();
 | |
|     const Type *ArgTy = ArgVT.getTypeForMVT(*DAG.getContext());
 | |
|     Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
 | |
|     Entry.isSExt = isSigned;
 | |
|     Entry.isZExt = !isSigned;
 | |
|     Args.push_back(Entry);
 | |
|   }
 | |
|   SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
 | |
|                                          TLI.getPointerTy());
 | |
| 
 | |
|   // Splice the libcall in wherever FindInputOutputChains tells us to.
 | |
|   const Type *RetTy = Node->getValueType(0).getTypeForMVT(*DAG.getContext());
 | |
|   std::pair<SDValue, SDValue> CallInfo =
 | |
|     TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
 | |
|                     0, CallingConv::C, false, Callee, Args, DAG,
 | |
|                     Node->getDebugLoc());
 | |
| 
 | |
|   // Legalize the call sequence, starting with the chain.  This will advance
 | |
|   // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that
 | |
|   // was added by LowerCallTo (guaranteeing proper serialization of calls).
 | |
|   LegalizeOp(CallInfo.second);
 | |
|   return CallInfo.first;
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
 | |
|                                               RTLIB::Libcall Call_F32,
 | |
|                                               RTLIB::Libcall Call_F64,
 | |
|                                               RTLIB::Libcall Call_F80,
 | |
|                                               RTLIB::Libcall Call_PPCF128) {
 | |
|   RTLIB::Libcall LC;
 | |
|   switch (Node->getValueType(0).getSimpleVT()) {
 | |
|   default: llvm_unreachable("Unexpected request for libcall!");
 | |
|   case MVT::f32: LC = Call_F32; break;
 | |
|   case MVT::f64: LC = Call_F64; break;
 | |
|   case MVT::f80: LC = Call_F80; break;
 | |
|   case MVT::ppcf128: LC = Call_PPCF128; break;
 | |
|   }
 | |
|   return ExpandLibCall(LC, Node, false);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
 | |
|                                                RTLIB::Libcall Call_I16,
 | |
|                                                RTLIB::Libcall Call_I32,
 | |
|                                                RTLIB::Libcall Call_I64,
 | |
|                                                RTLIB::Libcall Call_I128) {
 | |
|   RTLIB::Libcall LC;
 | |
|   switch (Node->getValueType(0).getSimpleVT()) {
 | |
|   default: llvm_unreachable("Unexpected request for libcall!");
 | |
|   case MVT::i16: LC = Call_I16; break;
 | |
|   case MVT::i32: LC = Call_I32; break;
 | |
|   case MVT::i64: LC = Call_I64; break;
 | |
|   case MVT::i128: LC = Call_I128; break;
 | |
|   }
 | |
|   return ExpandLibCall(LC, Node, isSigned);
 | |
| }
 | |
| 
 | |
| /// ExpandLegalINT_TO_FP - This function is responsible for legalizing a
 | |
| /// INT_TO_FP operation of the specified operand when the target requests that
 | |
| /// we expand it.  At this point, we know that the result and operand types are
 | |
| /// legal for the target.
 | |
| SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned,
 | |
|                                                    SDValue Op0,
 | |
|                                                    MVT DestVT,
 | |
|                                                    DebugLoc dl) {
 | |
|   if (Op0.getValueType() == MVT::i32) {
 | |
|     // simple 32-bit [signed|unsigned] integer to float/double expansion
 | |
| 
 | |
|     // Get the stack frame index of a 8 byte buffer.
 | |
|     SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
 | |
| 
 | |
|     // word offset constant for Hi/Lo address computation
 | |
|     SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy());
 | |
|     // set up Hi and Lo (into buffer) address based on endian
 | |
|     SDValue Hi = StackSlot;
 | |
|     SDValue Lo = DAG.getNode(ISD::ADD, dl,
 | |
|                              TLI.getPointerTy(), StackSlot, WordOff);
 | |
|     if (TLI.isLittleEndian())
 | |
|       std::swap(Hi, Lo);
 | |
| 
 | |
|     // if signed map to unsigned space
 | |
|     SDValue Op0Mapped;
 | |
|     if (isSigned) {
 | |
|       // constant used to invert sign bit (signed to unsigned mapping)
 | |
|       SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32);
 | |
|       Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit);
 | |
|     } else {
 | |
|       Op0Mapped = Op0;
 | |
|     }
 | |
|     // store the lo of the constructed double - based on integer input
 | |
|     SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl,
 | |
|                                   Op0Mapped, Lo, NULL, 0);
 | |
|     // initial hi portion of constructed double
 | |
|     SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32);
 | |
|     // store the hi of the constructed double - biased exponent
 | |
|     SDValue Store2=DAG.getStore(Store1, dl, InitialHi, Hi, NULL, 0);
 | |
|     // load the constructed double
 | |
|     SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot, NULL, 0);
 | |
|     // FP constant to bias correct the final result
 | |
|     SDValue Bias = DAG.getConstantFP(isSigned ?
 | |
|                                      BitsToDouble(0x4330000080000000ULL) :
 | |
|                                      BitsToDouble(0x4330000000000000ULL),
 | |
|                                      MVT::f64);
 | |
|     // subtract the bias
 | |
|     SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
 | |
|     // final result
 | |
|     SDValue Result;
 | |
|     // handle final rounding
 | |
|     if (DestVT == MVT::f64) {
 | |
|       // do nothing
 | |
|       Result = Sub;
 | |
|     } else if (DestVT.bitsLT(MVT::f64)) {
 | |
|       Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
 | |
|                            DAG.getIntPtrConstant(0));
 | |
|     } else if (DestVT.bitsGT(MVT::f64)) {
 | |
|       Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
 | |
|     }
 | |
|     return Result;
 | |
|   }
 | |
|   assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
 | |
|   SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
 | |
| 
 | |
|   SDValue SignSet = DAG.getSetCC(dl, TLI.getSetCCResultType(Op0.getValueType()),
 | |
|                                  Op0, DAG.getConstant(0, Op0.getValueType()),
 | |
|                                  ISD::SETLT);
 | |
|   SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4);
 | |
|   SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(),
 | |
|                                     SignSet, Four, Zero);
 | |
| 
 | |
|   // If the sign bit of the integer is set, the large number will be treated
 | |
|   // as a negative number.  To counteract this, the dynamic code adds an
 | |
|   // offset depending on the data type.
 | |
|   uint64_t FF;
 | |
|   switch (Op0.getValueType().getSimpleVT()) {
 | |
|   default: llvm_unreachable("Unsupported integer type!");
 | |
|   case MVT::i8 : FF = 0x43800000ULL; break;  // 2^8  (as a float)
 | |
|   case MVT::i16: FF = 0x47800000ULL; break;  // 2^16 (as a float)
 | |
|   case MVT::i32: FF = 0x4F800000ULL; break;  // 2^32 (as a float)
 | |
|   case MVT::i64: FF = 0x5F800000ULL; break;  // 2^64 (as a float)
 | |
|   }
 | |
|   if (TLI.isLittleEndian()) FF <<= 32;
 | |
|   Constant *FudgeFactor = ConstantInt::get(Type::Int64Ty, FF);
 | |
| 
 | |
|   SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
 | |
|   unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
 | |
|   CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset);
 | |
|   Alignment = std::min(Alignment, 4u);
 | |
|   SDValue FudgeInReg;
 | |
|   if (DestVT == MVT::f32)
 | |
|     FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx,
 | |
|                              PseudoSourceValue::getConstantPool(), 0,
 | |
|                              false, Alignment);
 | |
|   else {
 | |
|     FudgeInReg =
 | |
|       LegalizeOp(DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT,
 | |
|                                 DAG.getEntryNode(), CPIdx,
 | |
|                                 PseudoSourceValue::getConstantPool(), 0,
 | |
|                                 MVT::f32, false, Alignment));
 | |
|   }
 | |
| 
 | |
|   return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
 | |
| }
 | |
| 
 | |
| /// PromoteLegalINT_TO_FP - This function is responsible for legalizing a
 | |
| /// *INT_TO_FP operation of the specified operand when the target requests that
 | |
| /// we promote it.  At this point, we know that the result and operand types are
 | |
| /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
 | |
| /// operation that takes a larger input.
 | |
| SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp,
 | |
|                                                     MVT DestVT,
 | |
|                                                     bool isSigned,
 | |
|                                                     DebugLoc dl) {
 | |
|   // First step, figure out the appropriate *INT_TO_FP operation to use.
 | |
|   MVT NewInTy = LegalOp.getValueType();
 | |
| 
 | |
|   unsigned OpToUse = 0;
 | |
| 
 | |
|   // Scan for the appropriate larger type to use.
 | |
|   while (1) {
 | |
|     NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT()+1);
 | |
|     assert(NewInTy.isInteger() && "Ran out of possibilities!");
 | |
| 
 | |
|     // If the target supports SINT_TO_FP of this type, use it.
 | |
|     if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) {
 | |
|       OpToUse = ISD::SINT_TO_FP;
 | |
|       break;
 | |
|     }
 | |
|     if (isSigned) continue;
 | |
| 
 | |
|     // If the target supports UINT_TO_FP of this type, use it.
 | |
|     if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) {
 | |
|       OpToUse = ISD::UINT_TO_FP;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // Otherwise, try a larger type.
 | |
|   }
 | |
| 
 | |
|   // Okay, we found the operation and type to use.  Zero extend our input to the
 | |
|   // desired type then run the operation on it.
 | |
|   return DAG.getNode(OpToUse, dl, DestVT,
 | |
|                      DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
 | |
|                                  dl, NewInTy, LegalOp));
 | |
| }
 | |
| 
 | |
| /// PromoteLegalFP_TO_INT - This function is responsible for legalizing a
 | |
| /// FP_TO_*INT operation of the specified operand when the target requests that
 | |
| /// we promote it.  At this point, we know that the result and operand types are
 | |
| /// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
 | |
| /// operation that returns a larger result.
 | |
| SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp,
 | |
|                                                     MVT DestVT,
 | |
|                                                     bool isSigned,
 | |
|                                                     DebugLoc dl) {
 | |
|   // First step, figure out the appropriate FP_TO*INT operation to use.
 | |
|   MVT NewOutTy = DestVT;
 | |
| 
 | |
|   unsigned OpToUse = 0;
 | |
| 
 | |
|   // Scan for the appropriate larger type to use.
 | |
|   while (1) {
 | |
|     NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT()+1);
 | |
|     assert(NewOutTy.isInteger() && "Ran out of possibilities!");
 | |
| 
 | |
|     if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) {
 | |
|       OpToUse = ISD::FP_TO_SINT;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     if (TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) {
 | |
|       OpToUse = ISD::FP_TO_UINT;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // Otherwise, try a larger type.
 | |
|   }
 | |
| 
 | |
| 
 | |
|   // Okay, we found the operation and type to use.
 | |
|   SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
 | |
| 
 | |
|   // Truncate the result of the extended FP_TO_*INT operation to the desired
 | |
|   // size.
 | |
|   return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
 | |
| }
 | |
| 
 | |
| /// ExpandBSWAP - Open code the operations for BSWAP of the specified operation.
 | |
| ///
 | |
| SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, DebugLoc dl) {
 | |
|   MVT VT = Op.getValueType();
 | |
|   MVT SHVT = TLI.getShiftAmountTy();
 | |
|   SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
 | |
|   switch (VT.getSimpleVT()) {
 | |
|   default: llvm_unreachable("Unhandled Expand type in BSWAP!");
 | |
|   case MVT::i16:
 | |
|     Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
 | |
|     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
 | |
|     return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
 | |
|   case MVT::i32:
 | |
|     Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
 | |
|     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
 | |
|     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
 | |
|     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
 | |
|     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT));
 | |
|     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT));
 | |
|     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
 | |
|     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
 | |
|     return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
 | |
|   case MVT::i64:
 | |
|     Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT));
 | |
|     Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT));
 | |
|     Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
 | |
|     Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
 | |
|     Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
 | |
|     Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
 | |
|     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT));
 | |
|     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT));
 | |
|     Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT));
 | |
|     Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT));
 | |
|     Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT));
 | |
|     Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT));
 | |
|     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT));
 | |
|     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT));
 | |
|     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
 | |
|     Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
 | |
|     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
 | |
|     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
 | |
|     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
 | |
|     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
 | |
|     return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// ExpandBitCount - Expand the specified bitcount instruction into operations.
 | |
| ///
 | |
| SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op,
 | |
|                                              DebugLoc dl) {
 | |
|   switch (Opc) {
 | |
|   default: llvm_unreachable("Cannot expand this yet!");
 | |
|   case ISD::CTPOP: {
 | |
|     static const uint64_t mask[6] = {
 | |
|       0x5555555555555555ULL, 0x3333333333333333ULL,
 | |
|       0x0F0F0F0F0F0F0F0FULL, 0x00FF00FF00FF00FFULL,
 | |
|       0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL
 | |
|     };
 | |
|     MVT VT = Op.getValueType();
 | |
|     MVT ShVT = TLI.getShiftAmountTy();
 | |
|     unsigned len = VT.getSizeInBits();
 | |
|     for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
 | |
|       //x = (x & mask[i][len/8]) + (x >> (1 << i) & mask[i][len/8])
 | |
|       unsigned EltSize = VT.isVector() ?
 | |
|         VT.getVectorElementType().getSizeInBits() : len;
 | |
|       SDValue Tmp2 = DAG.getConstant(APInt(EltSize, mask[i]), VT);
 | |
|       SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
 | |
|       Op = DAG.getNode(ISD::ADD, dl, VT,
 | |
|                        DAG.getNode(ISD::AND, dl, VT, Op, Tmp2),
 | |
|                        DAG.getNode(ISD::AND, dl, VT,
 | |
|                                    DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3),
 | |
|                                    Tmp2));
 | |
|     }
 | |
|     return Op;
 | |
|   }
 | |
|   case ISD::CTLZ: {
 | |
|     // for now, we do this:
 | |
|     // x = x | (x >> 1);
 | |
|     // x = x | (x >> 2);
 | |
|     // ...
 | |
|     // x = x | (x >>16);
 | |
|     // x = x | (x >>32); // for 64-bit input
 | |
|     // return popcount(~x);
 | |
|     //
 | |
|     // but see also: http://www.hackersdelight.org/HDcode/nlz.cc
 | |
|     MVT VT = Op.getValueType();
 | |
|     MVT ShVT = TLI.getShiftAmountTy();
 | |
|     unsigned len = VT.getSizeInBits();
 | |
|     for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
 | |
|       SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
 | |
|       Op = DAG.getNode(ISD::OR, dl, VT, Op,
 | |
|                        DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3));
 | |
|     }
 | |
|     Op = DAG.getNOT(dl, Op, VT);
 | |
|     return DAG.getNode(ISD::CTPOP, dl, VT, Op);
 | |
|   }
 | |
|   case ISD::CTTZ: {
 | |
|     // for now, we use: { return popcount(~x & (x - 1)); }
 | |
|     // unless the target has ctlz but not ctpop, in which case we use:
 | |
|     // { return 32 - nlz(~x & (x-1)); }
 | |
|     // see also http://www.hackersdelight.org/HDcode/ntz.cc
 | |
|     MVT VT = Op.getValueType();
 | |
|     SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT,
 | |
|                                DAG.getNOT(dl, Op, VT),
 | |
|                                DAG.getNode(ISD::SUB, dl, VT, Op,
 | |
|                                            DAG.getConstant(1, VT)));
 | |
|     // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
 | |
|     if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) &&
 | |
|         TLI.isOperationLegalOrCustom(ISD::CTLZ, VT))
 | |
|       return DAG.getNode(ISD::SUB, dl, VT,
 | |
|                          DAG.getConstant(VT.getSizeInBits(), VT),
 | |
|                          DAG.getNode(ISD::CTLZ, dl, VT, Tmp3));
 | |
|     return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3);
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SelectionDAGLegalize::ExpandNode(SDNode *Node,
 | |
|                                       SmallVectorImpl<SDValue> &Results) {
 | |
|   DebugLoc dl = Node->getDebugLoc();
 | |
|   SDValue Tmp1, Tmp2, Tmp3, Tmp4;
 | |
|   switch (Node->getOpcode()) {
 | |
|   case ISD::CTPOP:
 | |
|   case ISD::CTLZ:
 | |
|   case ISD::CTTZ:
 | |
|     Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl);
 | |
|     Results.push_back(Tmp1);
 | |
|     break;
 | |
|   case ISD::BSWAP:
 | |
|     Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
 | |
|     break;
 | |
|   case ISD::FRAMEADDR:
 | |
|   case ISD::RETURNADDR:
 | |
|   case ISD::FRAME_TO_ARGS_OFFSET:
 | |
|     Results.push_back(DAG.getConstant(0, Node->getValueType(0)));
 | |
|     break;
 | |
|   case ISD::FLT_ROUNDS_:
 | |
|     Results.push_back(DAG.getConstant(1, Node->getValueType(0)));
 | |
|     break;
 | |
|   case ISD::EH_RETURN:
 | |
|   case ISD::DECLARE:
 | |
|   case ISD::DBG_LABEL:
 | |
|   case ISD::EH_LABEL:
 | |
|   case ISD::PREFETCH:
 | |
|   case ISD::MEMBARRIER:
 | |
|   case ISD::VAEND:
 | |
|     Results.push_back(Node->getOperand(0));
 | |
|     break;
 | |
|   case ISD::DBG_STOPPOINT:
 | |
|     Results.push_back(ExpandDBG_STOPPOINT(Node));
 | |
|     break;
 | |
|   case ISD::DYNAMIC_STACKALLOC:
 | |
|     ExpandDYNAMIC_STACKALLOC(Node, Results);
 | |
|     break;
 | |
|   case ISD::MERGE_VALUES:
 | |
|     for (unsigned i = 0; i < Node->getNumValues(); i++)
 | |
|       Results.push_back(Node->getOperand(i));
 | |
|     break;
 | |
|   case ISD::UNDEF: {
 | |
|     MVT VT = Node->getValueType(0);
 | |
|     if (VT.isInteger())
 | |
|       Results.push_back(DAG.getConstant(0, VT));
 | |
|     else if (VT.isFloatingPoint())
 | |
|       Results.push_back(DAG.getConstantFP(0, VT));
 | |
|     else
 | |
|       llvm_unreachable("Unknown value type!");
 | |
|     break;
 | |
|   }
 | |
|   case ISD::TRAP: {
 | |
|     // If this operation is not supported, lower it to 'abort()' call
 | |
|     TargetLowering::ArgListTy Args;
 | |
|     std::pair<SDValue, SDValue> CallResult =
 | |
|       TLI.LowerCallTo(Node->getOperand(0), Type::VoidTy,
 | |
|                       false, false, false, false, 0, CallingConv::C, false,
 | |
|                       DAG.getExternalSymbol("abort", TLI.getPointerTy()),
 | |
|                       Args, DAG, dl);
 | |
|     Results.push_back(CallResult.second);
 | |
|     break;
 | |
|   }
 | |
|   case ISD::FP_ROUND:
 | |
|   case ISD::BIT_CONVERT:
 | |
|     Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
 | |
|                             Node->getValueType(0), dl);
 | |
|     Results.push_back(Tmp1);
 | |
|     break;
 | |
|   case ISD::FP_EXTEND:
 | |
|     Tmp1 = EmitStackConvert(Node->getOperand(0),
 | |
|                             Node->getOperand(0).getValueType(),
 | |
|                             Node->getValueType(0), dl);
 | |
|     Results.push_back(Tmp1);
 | |
|     break;
 | |
|   case ISD::SIGN_EXTEND_INREG: {
 | |
|     // NOTE: we could fall back on load/store here too for targets without
 | |
|     // SAR.  However, it is doubtful that any exist.
 | |
|     MVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
 | |
|     unsigned BitsDiff = Node->getValueType(0).getSizeInBits() -
 | |
|                         ExtraVT.getSizeInBits();
 | |
|     SDValue ShiftCst = DAG.getConstant(BitsDiff, TLI.getShiftAmountTy());
 | |
|     Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
 | |
|                        Node->getOperand(0), ShiftCst);
 | |
|     Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
 | |
|     Results.push_back(Tmp1);
 | |
|     break;
 | |
|   }
 | |
|   case ISD::FP_ROUND_INREG: {
 | |
|     // The only way we can lower this is to turn it into a TRUNCSTORE,
 | |
|     // EXTLOAD pair, targetting a temporary location (a stack slot).
 | |
| 
 | |
|     // NOTE: there is a choice here between constantly creating new stack
 | |
|     // slots and always reusing the same one.  We currently always create
 | |
|     // new ones, as reuse may inhibit scheduling.
 | |
|     MVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
 | |
|     Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT,
 | |
|                             Node->getValueType(0), dl);
 | |
|     Results.push_back(Tmp1);
 | |
|     break;
 | |
|   }
 | |
|   case ISD::SINT_TO_FP:
 | |
|   case ISD::UINT_TO_FP:
 | |
|     Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP,
 | |
|                                 Node->getOperand(0), Node->getValueType(0), dl);
 | |
|     Results.push_back(Tmp1);
 | |
|     break;
 | |
|   case ISD::FP_TO_UINT: {
 | |
|     SDValue True, False;
 | |
|     MVT VT =  Node->getOperand(0).getValueType();
 | |
|     MVT NVT = Node->getValueType(0);
 | |
|     const uint64_t zero[] = {0, 0};
 | |
|     APFloat apf = APFloat(APInt(VT.getSizeInBits(), 2, zero));
 | |
|     APInt x = APInt::getSignBit(NVT.getSizeInBits());
 | |
|     (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven);
 | |
|     Tmp1 = DAG.getConstantFP(apf, VT);
 | |
|     Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(VT),
 | |
|                         Node->getOperand(0),
 | |
|                         Tmp1, ISD::SETLT);
 | |
|     True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0));
 | |
|     False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT,
 | |
|                         DAG.getNode(ISD::FSUB, dl, VT,
 | |
|                                     Node->getOperand(0), Tmp1));
 | |
|     False = DAG.getNode(ISD::XOR, dl, NVT, False,
 | |
|                         DAG.getConstant(x, NVT));
 | |
|     Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, True, False);
 | |
|     Results.push_back(Tmp1);
 | |
|     break;
 | |
|   }
 | |
|   case ISD::VAARG: {
 | |
|     const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
 | |
|     MVT VT = Node->getValueType(0);
 | |
|     Tmp1 = Node->getOperand(0);
 | |
|     Tmp2 = Node->getOperand(1);
 | |
|     SDValue VAList = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2, V, 0);
 | |
|     // Increment the pointer, VAList, to the next vaarg
 | |
|     Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
 | |
|                        DAG.getConstant(TLI.getTargetData()->
 | |
|                                        getTypeAllocSize(VT.getTypeForMVT(
 | |
|                                                             *DAG.getContext())),
 | |
|                                        TLI.getPointerTy()));
 | |
|     // Store the incremented VAList to the legalized pointer
 | |
|     Tmp3 = DAG.getStore(VAList.getValue(1), dl, Tmp3, Tmp2, V, 0);
 | |
|     // Load the actual argument out of the pointer VAList
 | |
|     Results.push_back(DAG.getLoad(VT, dl, Tmp3, VAList, NULL, 0));
 | |
|     Results.push_back(Results[0].getValue(1));
 | |
|     break;
 | |
|   }
 | |
|   case ISD::VACOPY: {
 | |
|     // This defaults to loading a pointer from the input and storing it to the
 | |
|     // output, returning the chain.
 | |
|     const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
 | |
|     const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
 | |
|     Tmp1 = DAG.getLoad(TLI.getPointerTy(), dl, Node->getOperand(0),
 | |
|                        Node->getOperand(2), VS, 0);
 | |
|     Tmp1 = DAG.getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), VD, 0);
 | |
|     Results.push_back(Tmp1);
 | |
|     break;
 | |
|   }
 | |
|   case ISD::EXTRACT_VECTOR_ELT:
 | |
|     if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
 | |
|       // This must be an access of the only element.  Return it.
 | |
|       Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, Node->getValueType(0), 
 | |
|                          Node->getOperand(0));
 | |
|     else
 | |
|       Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
 | |
|     Results.push_back(Tmp1);
 | |
|     break;
 | |
|   case ISD::EXTRACT_SUBVECTOR:
 | |
|     Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
 | |
|     break;
 | |
|   case ISD::CONCAT_VECTORS: {
 | |
|     Results.push_back(ExpandVectorBuildThroughStack(Node));
 | |
|     break;
 | |
|   }
 | |
|   case ISD::SCALAR_TO_VECTOR:
 | |
|     Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
 | |
|     break;
 | |
|   case ISD::INSERT_VECTOR_ELT:
 | |
|     Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
 | |
|                                               Node->getOperand(1),
 | |
|                                               Node->getOperand(2), dl));
 | |
|     break;
 | |
|   case ISD::VECTOR_SHUFFLE: {
 | |
|     SmallVector<int, 8> Mask;
 | |
|     cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
 | |
| 
 | |
|     MVT VT = Node->getValueType(0);
 | |
|     MVT EltVT = VT.getVectorElementType();
 | |
|     unsigned NumElems = VT.getVectorNumElements();
 | |
|     SmallVector<SDValue, 8> Ops;
 | |
|     for (unsigned i = 0; i != NumElems; ++i) {
 | |
|       if (Mask[i] < 0) {
 | |
|         Ops.push_back(DAG.getUNDEF(EltVT));
 | |
|         continue;
 | |
|       }
 | |
|       unsigned Idx = Mask[i];
 | |
|       if (Idx < NumElems)
 | |
|         Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
 | |
|                                   Node->getOperand(0),
 | |
|                                   DAG.getIntPtrConstant(Idx)));
 | |
|       else
 | |
|         Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
 | |
|                                   Node->getOperand(1),
 | |
|                                   DAG.getIntPtrConstant(Idx - NumElems)));
 | |
|     }
 | |
|     Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], Ops.size());
 | |
|     Results.push_back(Tmp1);
 | |
|     break;
 | |
|   }
 | |
|   case ISD::EXTRACT_ELEMENT: {
 | |
|     MVT OpTy = Node->getOperand(0).getValueType();
 | |
|     if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
 | |
|       // 1 -> Hi
 | |
|       Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
 | |
|                          DAG.getConstant(OpTy.getSizeInBits()/2,
 | |
|                                          TLI.getShiftAmountTy()));
 | |
|       Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
 | |
|     } else {
 | |
|       // 0 -> Lo
 | |
|       Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
 | |
|                          Node->getOperand(0));
 | |
|     }
 | |
|     Results.push_back(Tmp1);
 | |
|     break;
 | |
|   }
 | |
|   case ISD::STACKSAVE:
 | |
|     // Expand to CopyFromReg if the target set
 | |
|     // StackPointerRegisterToSaveRestore.
 | |
|     if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
 | |
|       Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
 | |
|                                            Node->getValueType(0)));
 | |
|       Results.push_back(Results[0].getValue(1));
 | |
|     } else {
 | |
|       Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
 | |
|       Results.push_back(Node->getOperand(0));
 | |
|     }
 | |
|     break;
 | |
|   case ISD::STACKRESTORE:
 | |
|     // Expand to CopyToReg if the target set
 | |
|     // StackPointerRegisterToSaveRestore.
 | |
|     if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
 | |
|       Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
 | |
|                                          Node->getOperand(1)));
 | |
|     } else {
 | |
|       Results.push_back(Node->getOperand(0));
 | |
|     }
 | |
|     break;
 | |
|   case ISD::FCOPYSIGN:
 | |
|     Results.push_back(ExpandFCOPYSIGN(Node));
 | |
|     break;
 | |
|   case ISD::FNEG:
 | |
|     // Expand Y = FNEG(X) ->  Y = SUB -0.0, X
 | |
|     Tmp1 = DAG.getConstantFP(-0.0, Node->getValueType(0));
 | |
|     Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1,
 | |
|                        Node->getOperand(0));
 | |
|     Results.push_back(Tmp1);
 | |
|     break;
 | |
|   case ISD::FABS: {
 | |
|     // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X).
 | |
|     MVT VT = Node->getValueType(0);
 | |
|     Tmp1 = Node->getOperand(0);
 | |
|     Tmp2 = DAG.getConstantFP(0.0, VT);
 | |
|     Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()),
 | |
|                         Tmp1, Tmp2, ISD::SETUGT);
 | |
|     Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1);
 | |
|     Tmp1 = DAG.getNode(ISD::SELECT, dl, VT, Tmp2, Tmp1, Tmp3);
 | |
|     Results.push_back(Tmp1);
 | |
|     break;
 | |
|   }
 | |
|   case ISD::FSQRT:
 | |
|     Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
 | |
|                                       RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128));
 | |
|     break;
 | |
|   case ISD::FSIN:
 | |
|     Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
 | |
|                                       RTLIB::SIN_F80, RTLIB::SIN_PPCF128));
 | |
|     break;
 | |
|   case ISD::FCOS:
 | |
|     Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
 | |
|                                       RTLIB::COS_F80, RTLIB::COS_PPCF128));
 | |
|     break;
 | |
|   case ISD::FLOG:
 | |
|     Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64,
 | |
|                                       RTLIB::LOG_F80, RTLIB::LOG_PPCF128));
 | |
|     break;
 | |
|   case ISD::FLOG2:
 | |
|     Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64,
 | |
|                                       RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128));
 | |
|     break;
 | |
|   case ISD::FLOG10:
 | |
|     Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64,
 | |
|                                       RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128));
 | |
|     break;
 | |
|   case ISD::FEXP:
 | |
|     Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64,
 | |
|                                       RTLIB::EXP_F80, RTLIB::EXP_PPCF128));
 | |
|     break;
 | |
|   case ISD::FEXP2:
 | |
|     Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64,
 | |
|                                       RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128));
 | |
|     break;
 | |
|   case ISD::FTRUNC:
 | |
|     Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
 | |
|                                       RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128));
 | |
|     break;
 | |
|   case ISD::FFLOOR:
 | |
|     Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
 | |
|                                       RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128));
 | |
|     break;
 | |
|   case ISD::FCEIL:
 | |
|     Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
 | |
|                                       RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128));
 | |
|     break;
 | |
|   case ISD::FRINT:
 | |
|     Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
 | |
|                                       RTLIB::RINT_F80, RTLIB::RINT_PPCF128));
 | |
|     break;
 | |
|   case ISD::FNEARBYINT:
 | |
|     Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
 | |
|                                       RTLIB::NEARBYINT_F64,
 | |
|                                       RTLIB::NEARBYINT_F80,
 | |
|                                       RTLIB::NEARBYINT_PPCF128));
 | |
|     break;
 | |
|   case ISD::FPOWI:
 | |
|     Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
 | |
|                                       RTLIB::POWI_F80, RTLIB::POWI_PPCF128));
 | |
|     break;
 | |
|   case ISD::FPOW:
 | |
|     Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64,
 | |
|                                       RTLIB::POW_F80, RTLIB::POW_PPCF128));
 | |
|     break;
 | |
|   case ISD::FDIV:
 | |
|     Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
 | |
|                                       RTLIB::DIV_F80, RTLIB::DIV_PPCF128));
 | |
|     break;
 | |
|   case ISD::FREM:
 | |
|     Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
 | |
|                                       RTLIB::REM_F80, RTLIB::REM_PPCF128));
 | |
|     break;
 | |
|   case ISD::ConstantFP: {
 | |
|     ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
 | |
|     // Check to see if this FP immediate is already legal.
 | |
|     bool isLegal = false;
 | |
|     for (TargetLowering::legal_fpimm_iterator I = TLI.legal_fpimm_begin(),
 | |
|             E = TLI.legal_fpimm_end(); I != E; ++I) {
 | |
|       if (CFP->isExactlyValue(*I)) {
 | |
|         isLegal = true;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     // If this is a legal constant, turn it into a TargetConstantFP node.
 | |
|     if (isLegal)
 | |
|       Results.push_back(SDValue(Node, 0));
 | |
|     else
 | |
|       Results.push_back(ExpandConstantFP(CFP, true, DAG, TLI));
 | |
|     break;
 | |
|   }
 | |
|   case ISD::EHSELECTION: {
 | |
|     unsigned Reg = TLI.getExceptionSelectorRegister();
 | |
|     assert(Reg && "Can't expand to unknown register!");
 | |
|     Results.push_back(DAG.getCopyFromReg(Node->getOperand(1), dl, Reg,
 | |
|                                          Node->getValueType(0)));
 | |
|     Results.push_back(Results[0].getValue(1));
 | |
|     break;
 | |
|   }
 | |
|   case ISD::EXCEPTIONADDR: {
 | |
|     unsigned Reg = TLI.getExceptionAddressRegister();
 | |
|     assert(Reg && "Can't expand to unknown register!");
 | |
|     Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, Reg,
 | |
|                                          Node->getValueType(0)));
 | |
|     Results.push_back(Results[0].getValue(1));
 | |
|     break;
 | |
|   }
 | |
|   case ISD::SUB: {
 | |
|     MVT VT = Node->getValueType(0);
 | |
|     assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
 | |
|            TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
 | |
|            "Don't know how to expand this subtraction!");
 | |
|     Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
 | |
|                DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT));
 | |
|     Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp2, DAG.getConstant(1, VT));
 | |
|     Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
 | |
|     break;
 | |
|   }
 | |
|   case ISD::UREM:
 | |
|   case ISD::SREM: {
 | |
|     MVT VT = Node->getValueType(0);
 | |
|     SDVTList VTs = DAG.getVTList(VT, VT);
 | |
|     bool isSigned = Node->getOpcode() == ISD::SREM;
 | |
|     unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
 | |
|     unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
 | |
|     Tmp2 = Node->getOperand(0);
 | |
|     Tmp3 = Node->getOperand(1);
 | |
|     if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) {
 | |
|       Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1);
 | |
|     } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) {
 | |
|       // X % Y -> X-X/Y*Y
 | |
|       Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3);
 | |
|       Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3);
 | |
|       Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1);
 | |
|     } else if (isSigned) {
 | |
|       Tmp1 = ExpandIntLibCall(Node, true, RTLIB::SREM_I16, RTLIB::SREM_I32,
 | |
|                               RTLIB::SREM_I64, RTLIB::SREM_I128);
 | |
|     } else {
 | |
|       Tmp1 = ExpandIntLibCall(Node, false, RTLIB::UREM_I16, RTLIB::UREM_I32,
 | |
|                               RTLIB::UREM_I64, RTLIB::UREM_I128);
 | |
|     }
 | |
|     Results.push_back(Tmp1);
 | |
|     break;
 | |
|   }
 | |
|   case ISD::UDIV:
 | |
|   case ISD::SDIV: {
 | |
|     bool isSigned = Node->getOpcode() == ISD::SDIV;
 | |
|     unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
 | |
|     MVT VT = Node->getValueType(0);
 | |
|     SDVTList VTs = DAG.getVTList(VT, VT);
 | |
|     if (TLI.isOperationLegalOrCustom(DivRemOpc, VT))
 | |
|       Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
 | |
|                          Node->getOperand(1));
 | |
|     else if (isSigned)
 | |
|       Tmp1 = ExpandIntLibCall(Node, true, RTLIB::SDIV_I16, RTLIB::SDIV_I32,
 | |
|                               RTLIB::SDIV_I64, RTLIB::SDIV_I128);
 | |
|     else
 | |
|       Tmp1 = ExpandIntLibCall(Node, false, RTLIB::UDIV_I16, RTLIB::UDIV_I32,
 | |
|                               RTLIB::UDIV_I64, RTLIB::UDIV_I128);
 | |
|     Results.push_back(Tmp1);
 | |
|     break;
 | |
|   }
 | |
|   case ISD::MULHU:
 | |
|   case ISD::MULHS: {
 | |
|     unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI :
 | |
|                                                               ISD::SMUL_LOHI;
 | |
|     MVT VT = Node->getValueType(0);
 | |
|     SDVTList VTs = DAG.getVTList(VT, VT);
 | |
|     assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) &&
 | |
|            "If this wasn't legal, it shouldn't have been created!");
 | |
|     Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
 | |
|                        Node->getOperand(1));
 | |
|     Results.push_back(Tmp1.getValue(1));
 | |
|     break;
 | |
|   }
 | |
|   case ISD::MUL: {
 | |
|     MVT VT = Node->getValueType(0);
 | |
|     SDVTList VTs = DAG.getVTList(VT, VT);
 | |
|     // See if multiply or divide can be lowered using two-result operations.
 | |
|     // We just need the low half of the multiply; try both the signed
 | |
|     // and unsigned forms. If the target supports both SMUL_LOHI and
 | |
|     // UMUL_LOHI, form a preference by checking which forms of plain
 | |
|     // MULH it supports.
 | |
|     bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
 | |
|     bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
 | |
|     bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
 | |
|     bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
 | |
|     unsigned OpToUse = 0;
 | |
|     if (HasSMUL_LOHI && !HasMULHS) {
 | |
|       OpToUse = ISD::SMUL_LOHI;
 | |
|     } else if (HasUMUL_LOHI && !HasMULHU) {
 | |
|       OpToUse = ISD::UMUL_LOHI;
 | |
|     } else if (HasSMUL_LOHI) {
 | |
|       OpToUse = ISD::SMUL_LOHI;
 | |
|     } else if (HasUMUL_LOHI) {
 | |
|       OpToUse = ISD::UMUL_LOHI;
 | |
|     }
 | |
|     if (OpToUse) {
 | |
|       Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
 | |
|                                     Node->getOperand(1)));
 | |
|       break;
 | |
|     }
 | |
|     Tmp1 = ExpandIntLibCall(Node, false, RTLIB::MUL_I16, RTLIB::MUL_I32,
 | |
|                             RTLIB::MUL_I64, RTLIB::MUL_I128);
 | |
|     Results.push_back(Tmp1);
 | |
|     break;
 | |
|   }
 | |
|   case ISD::SADDO:
 | |
|   case ISD::SSUBO: {
 | |
|     SDValue LHS = Node->getOperand(0);
 | |
|     SDValue RHS = Node->getOperand(1);
 | |
|     SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
 | |
|                               ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
 | |
|                               LHS, RHS);
 | |
|     Results.push_back(Sum);
 | |
|     MVT OType = Node->getValueType(1);
 | |
| 
 | |
|     SDValue Zero = DAG.getConstant(0, LHS.getValueType());
 | |
| 
 | |
|     //   LHSSign -> LHS >= 0
 | |
|     //   RHSSign -> RHS >= 0
 | |
|     //   SumSign -> Sum >= 0
 | |
|     //
 | |
|     //   Add:
 | |
|     //   Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
 | |
|     //   Sub:
 | |
|     //   Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
 | |
|     //
 | |
|     SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
 | |
|     SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
 | |
|     SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
 | |
|                                       Node->getOpcode() == ISD::SADDO ?
 | |
|                                       ISD::SETEQ : ISD::SETNE);
 | |
| 
 | |
|     SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
 | |
|     SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
 | |
| 
 | |
|     SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
 | |
|     Results.push_back(Cmp);
 | |
|     break;
 | |
|   }
 | |
|   case ISD::UADDO:
 | |
|   case ISD::USUBO: {
 | |
|     SDValue LHS = Node->getOperand(0);
 | |
|     SDValue RHS = Node->getOperand(1);
 | |
|     SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ?
 | |
|                               ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
 | |
|                               LHS, RHS);
 | |
|     Results.push_back(Sum);
 | |
|     Results.push_back(DAG.getSetCC(dl, Node->getValueType(1), Sum, LHS,
 | |
|                                    Node->getOpcode () == ISD::UADDO ?
 | |
|                                    ISD::SETULT : ISD::SETUGT));
 | |
|     break;
 | |
|   }
 | |
|   case ISD::UMULO:
 | |
|   case ISD::SMULO: {
 | |
|     MVT VT = Node->getValueType(0);
 | |
|     SDValue LHS = Node->getOperand(0);
 | |
|     SDValue RHS = Node->getOperand(1);
 | |
|     SDValue BottomHalf;
 | |
|     SDValue TopHalf;
 | |
|     static unsigned Ops[2][3] =
 | |
|         { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
 | |
|           { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
 | |
|     bool isSigned = Node->getOpcode() == ISD::SMULO;
 | |
|     if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
 | |
|       BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
 | |
|       TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
 | |
|     } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
 | |
|       BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
 | |
|                                RHS);
 | |
|       TopHalf = BottomHalf.getValue(1);
 | |
|     } else if (TLI.isTypeLegal(MVT::getIntegerVT(VT.getSizeInBits() * 2))) {
 | |
|       MVT WideVT = MVT::getIntegerVT(VT.getSizeInBits() * 2);
 | |
|       LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
 | |
|       RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
 | |
|       Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
 | |
|       BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
 | |
|                                DAG.getIntPtrConstant(0));
 | |
|       TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
 | |
|                             DAG.getIntPtrConstant(1));
 | |
|     } else {
 | |
|       // FIXME: We should be able to fall back to a libcall with an illegal
 | |
|       // type in some cases cases.
 | |
|       // Also, we can fall back to a division in some cases, but that's a big
 | |
|       // performance hit in the general case.
 | |
|       llvm_unreachable("Don't know how to expand this operation yet!");
 | |
|     }
 | |
|     if (isSigned) {
 | |
|       Tmp1 = DAG.getConstant(VT.getSizeInBits() - 1, TLI.getShiftAmountTy());
 | |
|       Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1);
 | |
|       TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf, Tmp1,
 | |
|                              ISD::SETNE);
 | |
|     } else {
 | |
|       TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf,
 | |
|                              DAG.getConstant(0, VT), ISD::SETNE);
 | |
|     }
 | |
|     Results.push_back(BottomHalf);
 | |
|     Results.push_back(TopHalf);
 | |
|     break;
 | |
|   }
 | |
|   case ISD::BUILD_PAIR: {
 | |
|     MVT PairTy = Node->getValueType(0);
 | |
|     Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
 | |
|     Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
 | |
|     Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2,
 | |
|                        DAG.getConstant(PairTy.getSizeInBits()/2,
 | |
|                                        TLI.getShiftAmountTy()));
 | |
|     Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
 | |
|     break;
 | |
|   }
 | |
|   case ISD::SELECT:
 | |
|     Tmp1 = Node->getOperand(0);
 | |
|     Tmp2 = Node->getOperand(1);
 | |
|     Tmp3 = Node->getOperand(2);
 | |
|     if (Tmp1.getOpcode() == ISD::SETCC) {
 | |
|       Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
 | |
|                              Tmp2, Tmp3,
 | |
|                              cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
 | |
|     } else {
 | |
|       Tmp1 = DAG.getSelectCC(dl, Tmp1,
 | |
|                              DAG.getConstant(0, Tmp1.getValueType()),
 | |
|                              Tmp2, Tmp3, ISD::SETNE);
 | |
|     }
 | |
|     Results.push_back(Tmp1);
 | |
|     break;
 | |
|   case ISD::BR_JT: {
 | |
|     SDValue Chain = Node->getOperand(0);
 | |
|     SDValue Table = Node->getOperand(1);
 | |
|     SDValue Index = Node->getOperand(2);
 | |
| 
 | |
|     MVT PTy = TLI.getPointerTy();
 | |
|     MachineFunction &MF = DAG.getMachineFunction();
 | |
|     unsigned EntrySize = MF.getJumpTableInfo()->getEntrySize();
 | |
|     Index= DAG.getNode(ISD::MUL, dl, PTy,
 | |
|                         Index, DAG.getConstant(EntrySize, PTy));
 | |
|     SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
 | |
| 
 | |
|     MVT MemVT = MVT::getIntegerVT(EntrySize * 8);
 | |
|     SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, dl, PTy, Chain, Addr,
 | |
|                                 PseudoSourceValue::getJumpTable(), 0, MemVT);
 | |
|     Addr = LD;
 | |
|     if (TLI.getTargetMachine().getRelocationModel() == Reloc::PIC_) {
 | |
|       // For PIC, the sequence is:
 | |
|       // BRIND(load(Jumptable + index) + RelocBase)
 | |
|       // RelocBase can be JumpTable, GOT or some sort of global base.
 | |
|       Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
 | |
|                           TLI.getPICJumpTableRelocBase(Table, DAG));
 | |
|     }
 | |
|     Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr);
 | |
|     Results.push_back(Tmp1);
 | |
|     break;
 | |
|   }
 | |
|   case ISD::BRCOND:
 | |
|     // Expand brcond's setcc into its constituent parts and create a BR_CC
 | |
|     // Node.
 | |
|     Tmp1 = Node->getOperand(0);
 | |
|     Tmp2 = Node->getOperand(1);
 | |
|     if (Tmp2.getOpcode() == ISD::SETCC) {
 | |
|       Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
 | |
|                          Tmp1, Tmp2.getOperand(2),
 | |
|                          Tmp2.getOperand(0), Tmp2.getOperand(1),
 | |
|                          Node->getOperand(2));
 | |
|     } else {
 | |
|       Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
 | |
|                          DAG.getCondCode(ISD::SETNE), Tmp2,
 | |
|                          DAG.getConstant(0, Tmp2.getValueType()),
 | |
|                          Node->getOperand(2));
 | |
|     }
 | |
|     Results.push_back(Tmp1);
 | |
|     break;
 | |
|   case ISD::SETCC: {
 | |
|     Tmp1 = Node->getOperand(0);
 | |
|     Tmp2 = Node->getOperand(1);
 | |
|     Tmp3 = Node->getOperand(2);
 | |
|     LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, dl);
 | |
| 
 | |
|     // If we expanded the SETCC into an AND/OR, return the new node
 | |
|     if (Tmp2.getNode() == 0) {
 | |
|       Results.push_back(Tmp1);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // Otherwise, SETCC for the given comparison type must be completely
 | |
|     // illegal; expand it into a SELECT_CC.
 | |
|     MVT VT = Node->getValueType(0);
 | |
|     Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
 | |
|                        DAG.getConstant(1, VT), DAG.getConstant(0, VT), Tmp3);
 | |
|     Results.push_back(Tmp1);
 | |
|     break;
 | |
|   }
 | |
|   case ISD::SELECT_CC: {
 | |
|     Tmp1 = Node->getOperand(0);   // LHS
 | |
|     Tmp2 = Node->getOperand(1);   // RHS
 | |
|     Tmp3 = Node->getOperand(2);   // True
 | |
|     Tmp4 = Node->getOperand(3);   // False
 | |
|     SDValue CC = Node->getOperand(4);
 | |
| 
 | |
|     LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp1.getValueType()),
 | |
|                           Tmp1, Tmp2, CC, dl);
 | |
| 
 | |
|     assert(!Tmp2.getNode() && "Can't legalize SELECT_CC with legal condition!");
 | |
|     Tmp2 = DAG.getConstant(0, Tmp1.getValueType());
 | |
|     CC = DAG.getCondCode(ISD::SETNE);
 | |
|     Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, Tmp2,
 | |
|                        Tmp3, Tmp4, CC);
 | |
|     Results.push_back(Tmp1);
 | |
|     break;
 | |
|   }
 | |
|   case ISD::BR_CC: {
 | |
|     Tmp1 = Node->getOperand(0);              // Chain
 | |
|     Tmp2 = Node->getOperand(2);              // LHS
 | |
|     Tmp3 = Node->getOperand(3);              // RHS
 | |
|     Tmp4 = Node->getOperand(1);              // CC
 | |
| 
 | |
|     LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp2.getValueType()),
 | |
|                           Tmp2, Tmp3, Tmp4, dl);
 | |
|     LastCALLSEQ_END = DAG.getEntryNode();
 | |
| 
 | |
|     assert(!Tmp3.getNode() && "Can't legalize BR_CC with legal condition!");
 | |
|     Tmp3 = DAG.getConstant(0, Tmp2.getValueType());
 | |
|     Tmp4 = DAG.getCondCode(ISD::SETNE);
 | |
|     Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, Tmp2,
 | |
|                        Tmp3, Node->getOperand(4));
 | |
|     Results.push_back(Tmp1);
 | |
|     break;
 | |
|   }
 | |
|   case ISD::GLOBAL_OFFSET_TABLE:
 | |
|   case ISD::GlobalAddress:
 | |
|   case ISD::GlobalTLSAddress:
 | |
|   case ISD::ExternalSymbol:
 | |
|   case ISD::ConstantPool:
 | |
|   case ISD::JumpTable:
 | |
|   case ISD::INTRINSIC_W_CHAIN:
 | |
|   case ISD::INTRINSIC_WO_CHAIN:
 | |
|   case ISD::INTRINSIC_VOID:
 | |
|     // FIXME: Custom lowering for these operations shouldn't return null!
 | |
|     for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
 | |
|       Results.push_back(SDValue(Node, i));
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| void SelectionDAGLegalize::PromoteNode(SDNode *Node,
 | |
|                                        SmallVectorImpl<SDValue> &Results) {
 | |
|   MVT OVT = Node->getValueType(0);
 | |
|   if (Node->getOpcode() == ISD::UINT_TO_FP ||
 | |
|       Node->getOpcode() == ISD::SINT_TO_FP ||
 | |
|       Node->getOpcode() == ISD::SETCC) {
 | |
|     OVT = Node->getOperand(0).getValueType();
 | |
|   }
 | |
|   MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
 | |
|   DebugLoc dl = Node->getDebugLoc();
 | |
|   SDValue Tmp1, Tmp2, Tmp3;
 | |
|   switch (Node->getOpcode()) {
 | |
|   case ISD::CTTZ:
 | |
|   case ISD::CTLZ:
 | |
|   case ISD::CTPOP:
 | |
|     // Zero extend the argument.
 | |
|     Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
 | |
|     // Perform the larger operation.
 | |
|     Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
 | |
|     if (Node->getOpcode() == ISD::CTTZ) {
 | |
|       //if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT)
 | |
|       Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT),
 | |
|                           Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT),
 | |
|                           ISD::SETEQ);
 | |
|       Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2,
 | |
|                           DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1);
 | |
|     } else if (Node->getOpcode() == ISD::CTLZ) {
 | |
|       // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
 | |
|       Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
 | |
|                           DAG.getConstant(NVT.getSizeInBits() -
 | |
|                                           OVT.getSizeInBits(), NVT));
 | |
|     }
 | |
|     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
 | |
|     break;
 | |
|   case ISD::BSWAP: {
 | |
|     unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
 | |
|     Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Tmp1);
 | |
|     Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1);
 | |
|     Tmp1 = DAG.getNode(ISD::SRL, dl, NVT, Tmp1,
 | |
|                           DAG.getConstant(DiffBits, TLI.getShiftAmountTy()));
 | |
|     Results.push_back(Tmp1);
 | |
|     break;
 | |
|   }
 | |
|   case ISD::FP_TO_UINT:
 | |
|   case ISD::FP_TO_SINT:
 | |
|     Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0),
 | |
|                                  Node->getOpcode() == ISD::FP_TO_SINT, dl);
 | |
|     Results.push_back(Tmp1);
 | |
|     break;
 | |
|   case ISD::UINT_TO_FP:
 | |
|   case ISD::SINT_TO_FP:
 | |
|     Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0),
 | |
|                                  Node->getOpcode() == ISD::SINT_TO_FP, dl);
 | |
|     Results.push_back(Tmp1);
 | |
|     break;
 | |
|   case ISD::AND:
 | |
|   case ISD::OR:
 | |
|   case ISD::XOR: {
 | |
|     unsigned ExtOp, TruncOp;
 | |
|     if (OVT.isVector()) {
 | |
|       ExtOp   = ISD::BIT_CONVERT;
 | |
|       TruncOp = ISD::BIT_CONVERT;
 | |
|     } else if (OVT.isInteger()) {
 | |
|       ExtOp   = ISD::ANY_EXTEND;
 | |
|       TruncOp = ISD::TRUNCATE;
 | |
|     } else {
 | |
|       llvm_report_error("Cannot promote logic operation");
 | |
|     }
 | |
|     // Promote each of the values to the new type.
 | |
|     Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
 | |
|     Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
 | |
|     // Perform the larger operation, then convert back
 | |
|     Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
 | |
|     Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
 | |
|     break;
 | |
|   }
 | |
|   case ISD::SELECT: {
 | |
|     unsigned ExtOp, TruncOp;
 | |
|     if (Node->getValueType(0).isVector()) {
 | |
|       ExtOp   = ISD::BIT_CONVERT;
 | |
|       TruncOp = ISD::BIT_CONVERT;
 | |
|     } else if (Node->getValueType(0).isInteger()) {
 | |
|       ExtOp   = ISD::ANY_EXTEND;
 | |
|       TruncOp = ISD::TRUNCATE;
 | |
|     } else {
 | |
|       ExtOp   = ISD::FP_EXTEND;
 | |
|       TruncOp = ISD::FP_ROUND;
 | |
|     }
 | |
|     Tmp1 = Node->getOperand(0);
 | |
|     // Promote each of the values to the new type.
 | |
|     Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
 | |
|     Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
 | |
|     // Perform the larger operation, then round down.
 | |
|     Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp1, Tmp2, Tmp3);
 | |
|     if (TruncOp != ISD::FP_ROUND)
 | |
|       Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
 | |
|     else
 | |
|       Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
 | |
|                          DAG.getIntPtrConstant(0));
 | |
|     Results.push_back(Tmp1);
 | |
|     break;
 | |
|   }
 | |
|   case ISD::VECTOR_SHUFFLE: {
 | |
|     SmallVector<int, 8> Mask;
 | |
|     cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
 | |
| 
 | |
|     // Cast the two input vectors.
 | |
|     Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(0));
 | |
|     Tmp2 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(1));
 | |
| 
 | |
|     // Convert the shuffle mask to the right # elements.
 | |
|     Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
 | |
|     Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, OVT, Tmp1);
 | |
|     Results.push_back(Tmp1);
 | |
|     break;
 | |
|   }
 | |
|   case ISD::SETCC: {
 | |
|     unsigned ExtOp = ISD::FP_EXTEND;
 | |
|     if (NVT.isInteger()) {
 | |
|       ISD::CondCode CCCode =
 | |
|         cast<CondCodeSDNode>(Node->getOperand(2))->get();
 | |
|       ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
 | |
|     }
 | |
|     Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
 | |
|     Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
 | |
|     Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
 | |
|                                   Tmp1, Tmp2, Node->getOperand(2)));
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // SelectionDAG::Legalize - This is the entry point for the file.
 | |
| //
 | |
| void SelectionDAG::Legalize(bool TypesNeedLegalizing,
 | |
|                             CodeGenOpt::Level OptLevel) {
 | |
|   /// run - This is the main entry point to this class.
 | |
|   ///
 | |
|   SelectionDAGLegalize(*this, OptLevel).LegalizeDAG();
 | |
| }
 | |
| 
 |