mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@62279 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1856 lines
		
	
	
		
			70 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1856 lines
		
	
	
		
			70 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements sparse conditional constant propagation and merging:
 | |
| //
 | |
| // Specifically, this:
 | |
| //   * Assumes values are constant unless proven otherwise
 | |
| //   * Assumes BasicBlocks are dead unless proven otherwise
 | |
| //   * Proves values to be constant, and replaces them with constants
 | |
| //   * Proves conditional branches to be unconditional
 | |
| //
 | |
| // Notice that:
 | |
| //   * This pass has a habit of making definitions be dead.  It is a good idea
 | |
| //     to to run a DCE pass sometime after running this pass.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "sccp"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/Transforms/IPO.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Analysis/ConstantFolding.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include "llvm/Support/CallSite.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/InstVisitor.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/DenseSet.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include <algorithm>
 | |
| #include <map>
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumInstRemoved, "Number of instructions removed");
 | |
| STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable");
 | |
| 
 | |
| STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP");
 | |
| STATISTIC(IPNumDeadBlocks , "Number of basic blocks unreachable by IPSCCP");
 | |
| STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP");
 | |
| STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP");
 | |
| 
 | |
| namespace {
 | |
| /// LatticeVal class - This class represents the different lattice values that
 | |
| /// an LLVM value may occupy.  It is a simple class with value semantics.
 | |
| ///
 | |
| class VISIBILITY_HIDDEN LatticeVal {
 | |
|   enum {
 | |
|     /// undefined - This LLVM Value has no known value yet.
 | |
|     undefined,
 | |
|     
 | |
|     /// constant - This LLVM Value has a specific constant value.
 | |
|     constant,
 | |
| 
 | |
|     /// forcedconstant - This LLVM Value was thought to be undef until
 | |
|     /// ResolvedUndefsIn.  This is treated just like 'constant', but if merged
 | |
|     /// with another (different) constant, it goes to overdefined, instead of
 | |
|     /// asserting.
 | |
|     forcedconstant,
 | |
|     
 | |
|     /// overdefined - This instruction is not known to be constant, and we know
 | |
|     /// it has a value.
 | |
|     overdefined
 | |
|   } LatticeValue;    // The current lattice position
 | |
|   
 | |
|   Constant *ConstantVal; // If Constant value, the current value
 | |
| public:
 | |
|   inline LatticeVal() : LatticeValue(undefined), ConstantVal(0) {}
 | |
|   
 | |
|   // markOverdefined - Return true if this is a new status to be in...
 | |
|   inline bool markOverdefined() {
 | |
|     if (LatticeValue != overdefined) {
 | |
|       LatticeValue = overdefined;
 | |
|       return true;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // markConstant - Return true if this is a new status for us.
 | |
|   inline bool markConstant(Constant *V) {
 | |
|     if (LatticeValue != constant) {
 | |
|       if (LatticeValue == undefined) {
 | |
|         LatticeValue = constant;
 | |
|         assert(V && "Marking constant with NULL");
 | |
|         ConstantVal = V;
 | |
|       } else {
 | |
|         assert(LatticeValue == forcedconstant && 
 | |
|                "Cannot move from overdefined to constant!");
 | |
|         // Stay at forcedconstant if the constant is the same.
 | |
|         if (V == ConstantVal) return false;
 | |
|         
 | |
|         // Otherwise, we go to overdefined.  Assumptions made based on the
 | |
|         // forced value are possibly wrong.  Assuming this is another constant
 | |
|         // could expose a contradiction.
 | |
|         LatticeValue = overdefined;
 | |
|       }
 | |
|       return true;
 | |
|     } else {
 | |
|       assert(ConstantVal == V && "Marking constant with different value");
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   inline void markForcedConstant(Constant *V) {
 | |
|     assert(LatticeValue == undefined && "Can't force a defined value!");
 | |
|     LatticeValue = forcedconstant;
 | |
|     ConstantVal = V;
 | |
|   }
 | |
|   
 | |
|   inline bool isUndefined() const { return LatticeValue == undefined; }
 | |
|   inline bool isConstant() const {
 | |
|     return LatticeValue == constant || LatticeValue == forcedconstant;
 | |
|   }
 | |
|   inline bool isOverdefined() const { return LatticeValue == overdefined; }
 | |
| 
 | |
|   inline Constant *getConstant() const {
 | |
|     assert(isConstant() && "Cannot get the constant of a non-constant!");
 | |
|     return ConstantVal;
 | |
|   }
 | |
| };
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| /// SCCPSolver - This class is a general purpose solver for Sparse Conditional
 | |
| /// Constant Propagation.
 | |
| ///
 | |
| class SCCPSolver : public InstVisitor<SCCPSolver> {
 | |
|   DenseSet<BasicBlock*> BBExecutable;// The basic blocks that are executable
 | |
|   std::map<Value*, LatticeVal> ValueState;  // The state each value is in.
 | |
| 
 | |
|   /// GlobalValue - If we are tracking any values for the contents of a global
 | |
|   /// variable, we keep a mapping from the constant accessor to the element of
 | |
|   /// the global, to the currently known value.  If the value becomes
 | |
|   /// overdefined, it's entry is simply removed from this map.
 | |
|   DenseMap<GlobalVariable*, LatticeVal> TrackedGlobals;
 | |
| 
 | |
|   /// TrackedRetVals - If we are tracking arguments into and the return
 | |
|   /// value out of a function, it will have an entry in this map, indicating
 | |
|   /// what the known return value for the function is.
 | |
|   DenseMap<Function*, LatticeVal> TrackedRetVals;
 | |
| 
 | |
|   /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
 | |
|   /// that return multiple values.
 | |
|   DenseMap<std::pair<Function*, unsigned>, LatticeVal> TrackedMultipleRetVals;
 | |
| 
 | |
|   // The reason for two worklists is that overdefined is the lowest state
 | |
|   // on the lattice, and moving things to overdefined as fast as possible
 | |
|   // makes SCCP converge much faster.
 | |
|   // By having a separate worklist, we accomplish this because everything
 | |
|   // possibly overdefined will become overdefined at the soonest possible
 | |
|   // point.
 | |
|   SmallVector<Value*, 64> OverdefinedInstWorkList;
 | |
|   SmallVector<Value*, 64> InstWorkList;
 | |
| 
 | |
| 
 | |
|   SmallVector<BasicBlock*, 64>  BBWorkList;  // The BasicBlock work list
 | |
| 
 | |
|   /// UsersOfOverdefinedPHIs - Keep track of any users of PHI nodes that are not
 | |
|   /// overdefined, despite the fact that the PHI node is overdefined.
 | |
|   std::multimap<PHINode*, Instruction*> UsersOfOverdefinedPHIs;
 | |
| 
 | |
|   /// KnownFeasibleEdges - Entries in this set are edges which have already had
 | |
|   /// PHI nodes retriggered.
 | |
|   typedef std::pair<BasicBlock*, BasicBlock*> Edge;
 | |
|   DenseSet<Edge> KnownFeasibleEdges;
 | |
| public:
 | |
| 
 | |
|   /// MarkBlockExecutable - This method can be used by clients to mark all of
 | |
|   /// the blocks that are known to be intrinsically live in the processed unit.
 | |
|   void MarkBlockExecutable(BasicBlock *BB) {
 | |
|     DOUT << "Marking Block Executable: " << BB->getNameStart() << "\n";
 | |
|     BBExecutable.insert(BB);   // Basic block is executable!
 | |
|     BBWorkList.push_back(BB);  // Add the block to the work list!
 | |
|   }
 | |
| 
 | |
|   /// TrackValueOfGlobalVariable - Clients can use this method to
 | |
|   /// inform the SCCPSolver that it should track loads and stores to the
 | |
|   /// specified global variable if it can.  This is only legal to call if
 | |
|   /// performing Interprocedural SCCP.
 | |
|   void TrackValueOfGlobalVariable(GlobalVariable *GV) {
 | |
|     const Type *ElTy = GV->getType()->getElementType();
 | |
|     if (ElTy->isFirstClassType()) {
 | |
|       LatticeVal &IV = TrackedGlobals[GV];
 | |
|       if (!isa<UndefValue>(GV->getInitializer()))
 | |
|         IV.markConstant(GV->getInitializer());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /// AddTrackedFunction - If the SCCP solver is supposed to track calls into
 | |
|   /// and out of the specified function (which cannot have its address taken),
 | |
|   /// this method must be called.
 | |
|   void AddTrackedFunction(Function *F) {
 | |
|     assert(F->hasLocalLinkage() && "Can only track internal functions!");
 | |
|     // Add an entry, F -> undef.
 | |
|     if (const StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
 | |
|       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
 | |
|         TrackedMultipleRetVals.insert(std::make_pair(std::make_pair(F, i),
 | |
|                                                      LatticeVal()));
 | |
|     } else
 | |
|       TrackedRetVals.insert(std::make_pair(F, LatticeVal()));
 | |
|   }
 | |
| 
 | |
|   /// Solve - Solve for constants and executable blocks.
 | |
|   ///
 | |
|   void Solve();
 | |
| 
 | |
|   /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
 | |
|   /// that branches on undef values cannot reach any of their successors.
 | |
|   /// However, this is not a safe assumption.  After we solve dataflow, this
 | |
|   /// method should be use to handle this.  If this returns true, the solver
 | |
|   /// should be rerun.
 | |
|   bool ResolvedUndefsIn(Function &F);
 | |
| 
 | |
|   bool isBlockExecutable(BasicBlock *BB) const {
 | |
|     return BBExecutable.count(BB);
 | |
|   }
 | |
| 
 | |
|   /// getValueMapping - Once we have solved for constants, return the mapping of
 | |
|   /// LLVM values to LatticeVals.
 | |
|   std::map<Value*, LatticeVal> &getValueMapping() {
 | |
|     return ValueState;
 | |
|   }
 | |
| 
 | |
|   /// getTrackedRetVals - Get the inferred return value map.
 | |
|   ///
 | |
|   const DenseMap<Function*, LatticeVal> &getTrackedRetVals() {
 | |
|     return TrackedRetVals;
 | |
|   }
 | |
| 
 | |
|   /// getTrackedGlobals - Get and return the set of inferred initializers for
 | |
|   /// global variables.
 | |
|   const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() {
 | |
|     return TrackedGlobals;
 | |
|   }
 | |
| 
 | |
|   inline void markOverdefined(Value *V) {
 | |
|     markOverdefined(ValueState[V], V);
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   // markConstant - Make a value be marked as "constant".  If the value
 | |
|   // is not already a constant, add it to the instruction work list so that
 | |
|   // the users of the instruction are updated later.
 | |
|   //
 | |
|   inline void markConstant(LatticeVal &IV, Value *V, Constant *C) {
 | |
|     if (IV.markConstant(C)) {
 | |
|       DOUT << "markConstant: " << *C << ": " << *V;
 | |
|       InstWorkList.push_back(V);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   inline void markForcedConstant(LatticeVal &IV, Value *V, Constant *C) {
 | |
|     IV.markForcedConstant(C);
 | |
|     DOUT << "markForcedConstant: " << *C << ": " << *V;
 | |
|     InstWorkList.push_back(V);
 | |
|   }
 | |
|   
 | |
|   inline void markConstant(Value *V, Constant *C) {
 | |
|     markConstant(ValueState[V], V, C);
 | |
|   }
 | |
| 
 | |
|   // markOverdefined - Make a value be marked as "overdefined". If the
 | |
|   // value is not already overdefined, add it to the overdefined instruction
 | |
|   // work list so that the users of the instruction are updated later.
 | |
|   inline void markOverdefined(LatticeVal &IV, Value *V) {
 | |
|     if (IV.markOverdefined()) {
 | |
|       DEBUG(DOUT << "markOverdefined: ";
 | |
|             if (Function *F = dyn_cast<Function>(V))
 | |
|               DOUT << "Function '" << F->getName() << "'\n";
 | |
|             else
 | |
|               DOUT << *V);
 | |
|       // Only instructions go on the work list
 | |
|       OverdefinedInstWorkList.push_back(V);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   inline void mergeInValue(LatticeVal &IV, Value *V, LatticeVal &MergeWithV) {
 | |
|     if (IV.isOverdefined() || MergeWithV.isUndefined())
 | |
|       return;  // Noop.
 | |
|     if (MergeWithV.isOverdefined())
 | |
|       markOverdefined(IV, V);
 | |
|     else if (IV.isUndefined())
 | |
|       markConstant(IV, V, MergeWithV.getConstant());
 | |
|     else if (IV.getConstant() != MergeWithV.getConstant())
 | |
|       markOverdefined(IV, V);
 | |
|   }
 | |
|   
 | |
|   inline void mergeInValue(Value *V, LatticeVal &MergeWithV) {
 | |
|     return mergeInValue(ValueState[V], V, MergeWithV);
 | |
|   }
 | |
| 
 | |
| 
 | |
|   // getValueState - Return the LatticeVal object that corresponds to the value.
 | |
|   // This function is necessary because not all values should start out in the
 | |
|   // underdefined state... Argument's should be overdefined, and
 | |
|   // constants should be marked as constants.  If a value is not known to be an
 | |
|   // Instruction object, then use this accessor to get its value from the map.
 | |
|   //
 | |
|   inline LatticeVal &getValueState(Value *V) {
 | |
|     std::map<Value*, LatticeVal>::iterator I = ValueState.find(V);
 | |
|     if (I != ValueState.end()) return I->second;  // Common case, in the map
 | |
| 
 | |
|     if (Constant *C = dyn_cast<Constant>(V)) {
 | |
|       if (isa<UndefValue>(V)) {
 | |
|         // Nothing to do, remain undefined.
 | |
|       } else {
 | |
|         LatticeVal &LV = ValueState[C];
 | |
|         LV.markConstant(C);          // Constants are constant
 | |
|         return LV;
 | |
|       }
 | |
|     }
 | |
|     // All others are underdefined by default...
 | |
|     return ValueState[V];
 | |
|   }
 | |
| 
 | |
|   // markEdgeExecutable - Mark a basic block as executable, adding it to the BB
 | |
|   // work list if it is not already executable...
 | |
|   //
 | |
|   void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
 | |
|     if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
 | |
|       return;  // This edge is already known to be executable!
 | |
| 
 | |
|     if (BBExecutable.count(Dest)) {
 | |
|       DOUT << "Marking Edge Executable: " << Source->getNameStart()
 | |
|            << " -> " << Dest->getNameStart() << "\n";
 | |
| 
 | |
|       // The destination is already executable, but we just made an edge
 | |
|       // feasible that wasn't before.  Revisit the PHI nodes in the block
 | |
|       // because they have potentially new operands.
 | |
|       for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I)
 | |
|         visitPHINode(*cast<PHINode>(I));
 | |
| 
 | |
|     } else {
 | |
|       MarkBlockExecutable(Dest);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // getFeasibleSuccessors - Return a vector of booleans to indicate which
 | |
|   // successors are reachable from a given terminator instruction.
 | |
|   //
 | |
|   void getFeasibleSuccessors(TerminatorInst &TI, SmallVector<bool, 16> &Succs);
 | |
| 
 | |
|   // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
 | |
|   // block to the 'To' basic block is currently feasible...
 | |
|   //
 | |
|   bool isEdgeFeasible(BasicBlock *From, BasicBlock *To);
 | |
| 
 | |
|   // OperandChangedState - This method is invoked on all of the users of an
 | |
|   // instruction that was just changed state somehow....  Based on this
 | |
|   // information, we need to update the specified user of this instruction.
 | |
|   //
 | |
|   void OperandChangedState(User *U) {
 | |
|     // Only instructions use other variable values!
 | |
|     Instruction &I = cast<Instruction>(*U);
 | |
|     if (BBExecutable.count(I.getParent()))   // Inst is executable?
 | |
|       visit(I);
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   friend class InstVisitor<SCCPSolver>;
 | |
| 
 | |
|   // visit implementations - Something changed in this instruction... Either an
 | |
|   // operand made a transition, or the instruction is newly executable.  Change
 | |
|   // the value type of I to reflect these changes if appropriate.
 | |
|   //
 | |
|   void visitPHINode(PHINode &I);
 | |
| 
 | |
|   // Terminators
 | |
|   void visitReturnInst(ReturnInst &I);
 | |
|   void visitTerminatorInst(TerminatorInst &TI);
 | |
| 
 | |
|   void visitCastInst(CastInst &I);
 | |
|   void visitSelectInst(SelectInst &I);
 | |
|   void visitBinaryOperator(Instruction &I);
 | |
|   void visitCmpInst(CmpInst &I);
 | |
|   void visitExtractElementInst(ExtractElementInst &I);
 | |
|   void visitInsertElementInst(InsertElementInst &I);
 | |
|   void visitShuffleVectorInst(ShuffleVectorInst &I);
 | |
|   void visitExtractValueInst(ExtractValueInst &EVI);
 | |
|   void visitInsertValueInst(InsertValueInst &IVI);
 | |
| 
 | |
|   // Instructions that cannot be folded away...
 | |
|   void visitStoreInst     (Instruction &I);
 | |
|   void visitLoadInst      (LoadInst &I);
 | |
|   void visitGetElementPtrInst(GetElementPtrInst &I);
 | |
|   void visitCallInst      (CallInst &I) { visitCallSite(CallSite::get(&I)); }
 | |
|   void visitInvokeInst    (InvokeInst &II) {
 | |
|     visitCallSite(CallSite::get(&II));
 | |
|     visitTerminatorInst(II);
 | |
|   }
 | |
|   void visitCallSite      (CallSite CS);
 | |
|   void visitUnwindInst    (TerminatorInst &I) { /*returns void*/ }
 | |
|   void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ }
 | |
|   void visitAllocationInst(Instruction &I) { markOverdefined(&I); }
 | |
|   void visitVANextInst    (Instruction &I) { markOverdefined(&I); }
 | |
|   void visitVAArgInst     (Instruction &I) { markOverdefined(&I); }
 | |
|   void visitFreeInst      (Instruction &I) { /*returns void*/ }
 | |
| 
 | |
|   void visitInstruction(Instruction &I) {
 | |
|     // If a new instruction is added to LLVM that we don't handle...
 | |
|     cerr << "SCCP: Don't know how to handle: " << I;
 | |
|     markOverdefined(&I);   // Just in case
 | |
|   }
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| 
 | |
| // getFeasibleSuccessors - Return a vector of booleans to indicate which
 | |
| // successors are reachable from a given terminator instruction.
 | |
| //
 | |
| void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI,
 | |
|                                        SmallVector<bool, 16> &Succs) {
 | |
|   Succs.resize(TI.getNumSuccessors());
 | |
|   if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
 | |
|     if (BI->isUnconditional()) {
 | |
|       Succs[0] = true;
 | |
|     } else {
 | |
|       LatticeVal &BCValue = getValueState(BI->getCondition());
 | |
|       if (BCValue.isOverdefined() ||
 | |
|           (BCValue.isConstant() && !isa<ConstantInt>(BCValue.getConstant()))) {
 | |
|         // Overdefined condition variables, and branches on unfoldable constant
 | |
|         // conditions, mean the branch could go either way.
 | |
|         Succs[0] = Succs[1] = true;
 | |
|       } else if (BCValue.isConstant()) {
 | |
|         // Constant condition variables mean the branch can only go a single way
 | |
|         Succs[BCValue.getConstant() == ConstantInt::getFalse()] = true;
 | |
|       }
 | |
|     }
 | |
|   } else if (isa<InvokeInst>(&TI)) {
 | |
|     // Invoke instructions successors are always executable.
 | |
|     Succs[0] = Succs[1] = true;
 | |
|   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) {
 | |
|     LatticeVal &SCValue = getValueState(SI->getCondition());
 | |
|     if (SCValue.isOverdefined() ||   // Overdefined condition?
 | |
|         (SCValue.isConstant() && !isa<ConstantInt>(SCValue.getConstant()))) {
 | |
|       // All destinations are executable!
 | |
|       Succs.assign(TI.getNumSuccessors(), true);
 | |
|     } else if (SCValue.isConstant())
 | |
|       Succs[SI->findCaseValue(cast<ConstantInt>(SCValue.getConstant()))] = true;
 | |
|   } else {
 | |
|     assert(0 && "SCCP: Don't know how to handle this terminator!");
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
 | |
| // block to the 'To' basic block is currently feasible...
 | |
| //
 | |
| bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
 | |
|   assert(BBExecutable.count(To) && "Dest should always be alive!");
 | |
| 
 | |
|   // Make sure the source basic block is executable!!
 | |
|   if (!BBExecutable.count(From)) return false;
 | |
| 
 | |
|   // Check to make sure this edge itself is actually feasible now...
 | |
|   TerminatorInst *TI = From->getTerminator();
 | |
|   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
 | |
|     if (BI->isUnconditional())
 | |
|       return true;
 | |
|     else {
 | |
|       LatticeVal &BCValue = getValueState(BI->getCondition());
 | |
|       if (BCValue.isOverdefined()) {
 | |
|         // Overdefined condition variables mean the branch could go either way.
 | |
|         return true;
 | |
|       } else if (BCValue.isConstant()) {
 | |
|         // Not branching on an evaluatable constant?
 | |
|         if (!isa<ConstantInt>(BCValue.getConstant())) return true;
 | |
| 
 | |
|         // Constant condition variables mean the branch can only go a single way
 | |
|         return BI->getSuccessor(BCValue.getConstant() ==
 | |
|                                        ConstantInt::getFalse()) == To;
 | |
|       }
 | |
|       return false;
 | |
|     }
 | |
|   } else if (isa<InvokeInst>(TI)) {
 | |
|     // Invoke instructions successors are always executable.
 | |
|     return true;
 | |
|   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
 | |
|     LatticeVal &SCValue = getValueState(SI->getCondition());
 | |
|     if (SCValue.isOverdefined()) {  // Overdefined condition?
 | |
|       // All destinations are executable!
 | |
|       return true;
 | |
|     } else if (SCValue.isConstant()) {
 | |
|       Constant *CPV = SCValue.getConstant();
 | |
|       if (!isa<ConstantInt>(CPV))
 | |
|         return true;  // not a foldable constant?
 | |
| 
 | |
|       // Make sure to skip the "default value" which isn't a value
 | |
|       for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i)
 | |
|         if (SI->getSuccessorValue(i) == CPV) // Found the taken branch...
 | |
|           return SI->getSuccessor(i) == To;
 | |
| 
 | |
|       // Constant value not equal to any of the branches... must execute
 | |
|       // default branch then...
 | |
|       return SI->getDefaultDest() == To;
 | |
|     }
 | |
|     return false;
 | |
|   } else {
 | |
|     cerr << "Unknown terminator instruction: " << *TI;
 | |
|     abort();
 | |
|   }
 | |
| }
 | |
| 
 | |
| // visit Implementations - Something changed in this instruction... Either an
 | |
| // operand made a transition, or the instruction is newly executable.  Change
 | |
| // the value type of I to reflect these changes if appropriate.  This method
 | |
| // makes sure to do the following actions:
 | |
| //
 | |
| // 1. If a phi node merges two constants in, and has conflicting value coming
 | |
| //    from different branches, or if the PHI node merges in an overdefined
 | |
| //    value, then the PHI node becomes overdefined.
 | |
| // 2. If a phi node merges only constants in, and they all agree on value, the
 | |
| //    PHI node becomes a constant value equal to that.
 | |
| // 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
 | |
| // 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
 | |
| // 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
 | |
| // 6. If a conditional branch has a value that is constant, make the selected
 | |
| //    destination executable
 | |
| // 7. If a conditional branch has a value that is overdefined, make all
 | |
| //    successors executable.
 | |
| //
 | |
| void SCCPSolver::visitPHINode(PHINode &PN) {
 | |
|   LatticeVal &PNIV = getValueState(&PN);
 | |
|   if (PNIV.isOverdefined()) {
 | |
|     // There may be instructions using this PHI node that are not overdefined
 | |
|     // themselves.  If so, make sure that they know that the PHI node operand
 | |
|     // changed.
 | |
|     std::multimap<PHINode*, Instruction*>::iterator I, E;
 | |
|     tie(I, E) = UsersOfOverdefinedPHIs.equal_range(&PN);
 | |
|     if (I != E) {
 | |
|       SmallVector<Instruction*, 16> Users;
 | |
|       for (; I != E; ++I) Users.push_back(I->second);
 | |
|       while (!Users.empty()) {
 | |
|         visit(Users.back());
 | |
|         Users.pop_back();
 | |
|       }
 | |
|     }
 | |
|     return;  // Quick exit
 | |
|   }
 | |
| 
 | |
|   // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
 | |
|   // and slow us down a lot.  Just mark them overdefined.
 | |
|   if (PN.getNumIncomingValues() > 64) {
 | |
|     markOverdefined(PNIV, &PN);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Look at all of the executable operands of the PHI node.  If any of them
 | |
|   // are overdefined, the PHI becomes overdefined as well.  If they are all
 | |
|   // constant, and they agree with each other, the PHI becomes the identical
 | |
|   // constant.  If they are constant and don't agree, the PHI is overdefined.
 | |
|   // If there are no executable operands, the PHI remains undefined.
 | |
|   //
 | |
|   Constant *OperandVal = 0;
 | |
|   for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
 | |
|     LatticeVal &IV = getValueState(PN.getIncomingValue(i));
 | |
|     if (IV.isUndefined()) continue;  // Doesn't influence PHI node.
 | |
| 
 | |
|     if (isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) {
 | |
|       if (IV.isOverdefined()) {   // PHI node becomes overdefined!
 | |
|         markOverdefined(&PN);
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       if (OperandVal == 0) {   // Grab the first value...
 | |
|         OperandVal = IV.getConstant();
 | |
|       } else {                // Another value is being merged in!
 | |
|         // There is already a reachable operand.  If we conflict with it,
 | |
|         // then the PHI node becomes overdefined.  If we agree with it, we
 | |
|         // can continue on.
 | |
| 
 | |
|         // Check to see if there are two different constants merging...
 | |
|         if (IV.getConstant() != OperandVal) {
 | |
|           // Yes there is.  This means the PHI node is not constant.
 | |
|           // You must be overdefined poor PHI.
 | |
|           //
 | |
|           markOverdefined(&PN);    // The PHI node now becomes overdefined
 | |
|           return;    // I'm done analyzing you
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If we exited the loop, this means that the PHI node only has constant
 | |
|   // arguments that agree with each other(and OperandVal is the constant) or
 | |
|   // OperandVal is null because there are no defined incoming arguments.  If
 | |
|   // this is the case, the PHI remains undefined.
 | |
|   //
 | |
|   if (OperandVal)
 | |
|     markConstant(&PN, OperandVal);      // Acquire operand value
 | |
| }
 | |
| 
 | |
| void SCCPSolver::visitReturnInst(ReturnInst &I) {
 | |
|   if (I.getNumOperands() == 0) return;  // Ret void
 | |
| 
 | |
|   Function *F = I.getParent()->getParent();
 | |
|   // If we are tracking the return value of this function, merge it in.
 | |
|   if (!F->hasLocalLinkage())
 | |
|     return;
 | |
| 
 | |
|   if (!TrackedRetVals.empty() && I.getNumOperands() == 1) {
 | |
|     DenseMap<Function*, LatticeVal>::iterator TFRVI =
 | |
|       TrackedRetVals.find(F);
 | |
|     if (TFRVI != TrackedRetVals.end() &&
 | |
|         !TFRVI->second.isOverdefined()) {
 | |
|       LatticeVal &IV = getValueState(I.getOperand(0));
 | |
|       mergeInValue(TFRVI->second, F, IV);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Handle functions that return multiple values.
 | |
|   if (!TrackedMultipleRetVals.empty() && I.getNumOperands() > 1) {
 | |
|     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
 | |
|       DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator
 | |
|         It = TrackedMultipleRetVals.find(std::make_pair(F, i));
 | |
|       if (It == TrackedMultipleRetVals.end()) break;
 | |
|       mergeInValue(It->second, F, getValueState(I.getOperand(i)));
 | |
|     }
 | |
|   } else if (!TrackedMultipleRetVals.empty() &&
 | |
|              I.getNumOperands() == 1 &&
 | |
|              isa<StructType>(I.getOperand(0)->getType())) {
 | |
|     for (unsigned i = 0, e = I.getOperand(0)->getType()->getNumContainedTypes();
 | |
|          i != e; ++i) {
 | |
|       DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator
 | |
|         It = TrackedMultipleRetVals.find(std::make_pair(F, i));
 | |
|       if (It == TrackedMultipleRetVals.end()) break;
 | |
|       Value *Val = FindInsertedValue(I.getOperand(0), i);
 | |
|       mergeInValue(It->second, F, getValueState(Val));
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) {
 | |
|   SmallVector<bool, 16> SuccFeasible;
 | |
|   getFeasibleSuccessors(TI, SuccFeasible);
 | |
| 
 | |
|   BasicBlock *BB = TI.getParent();
 | |
| 
 | |
|   // Mark all feasible successors executable...
 | |
|   for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
 | |
|     if (SuccFeasible[i])
 | |
|       markEdgeExecutable(BB, TI.getSuccessor(i));
 | |
| }
 | |
| 
 | |
| void SCCPSolver::visitCastInst(CastInst &I) {
 | |
|   Value *V = I.getOperand(0);
 | |
|   LatticeVal &VState = getValueState(V);
 | |
|   if (VState.isOverdefined())          // Inherit overdefinedness of operand
 | |
|     markOverdefined(&I);
 | |
|   else if (VState.isConstant())        // Propagate constant value
 | |
|     markConstant(&I, ConstantExpr::getCast(I.getOpcode(), 
 | |
|                                            VState.getConstant(), I.getType()));
 | |
| }
 | |
| 
 | |
| void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) {
 | |
|   Value *Aggr = EVI.getAggregateOperand();
 | |
| 
 | |
|   // If the operand to the extractvalue is an undef, the result is undef.
 | |
|   if (isa<UndefValue>(Aggr))
 | |
|     return;
 | |
| 
 | |
|   // Currently only handle single-index extractvalues.
 | |
|   if (EVI.getNumIndices() != 1) {
 | |
|     markOverdefined(&EVI);
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   Function *F = 0;
 | |
|   if (CallInst *CI = dyn_cast<CallInst>(Aggr))
 | |
|     F = CI->getCalledFunction();
 | |
|   else if (InvokeInst *II = dyn_cast<InvokeInst>(Aggr))
 | |
|     F = II->getCalledFunction();
 | |
| 
 | |
|   // TODO: If IPSCCP resolves the callee of this function, we could propagate a
 | |
|   // result back!
 | |
|   if (F == 0 || TrackedMultipleRetVals.empty()) {
 | |
|     markOverdefined(&EVI);
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   // See if we are tracking the result of the callee.  If not tracking this
 | |
|   // function (for example, it is a declaration) just move to overdefined.
 | |
|   if (!TrackedMultipleRetVals.count(std::make_pair(F, *EVI.idx_begin()))) {
 | |
|     markOverdefined(&EVI);
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   // Otherwise, the value will be merged in here as a result of CallSite
 | |
|   // handling.
 | |
| }
 | |
| 
 | |
| void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) {
 | |
|   Value *Aggr = IVI.getAggregateOperand();
 | |
|   Value *Val = IVI.getInsertedValueOperand();
 | |
| 
 | |
|   // If the operands to the insertvalue are undef, the result is undef.
 | |
|   if (isa<UndefValue>(Aggr) && isa<UndefValue>(Val))
 | |
|     return;
 | |
| 
 | |
|   // Currently only handle single-index insertvalues.
 | |
|   if (IVI.getNumIndices() != 1) {
 | |
|     markOverdefined(&IVI);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Currently only handle insertvalue instructions that are in a single-use
 | |
|   // chain that builds up a return value.
 | |
|   for (const InsertValueInst *TmpIVI = &IVI; ; ) {
 | |
|     if (!TmpIVI->hasOneUse()) {
 | |
|       markOverdefined(&IVI);
 | |
|       return;
 | |
|     }
 | |
|     const Value *V = *TmpIVI->use_begin();
 | |
|     if (isa<ReturnInst>(V))
 | |
|       break;
 | |
|     TmpIVI = dyn_cast<InsertValueInst>(V);
 | |
|     if (!TmpIVI) {
 | |
|       markOverdefined(&IVI);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // See if we are tracking the result of the callee.
 | |
|   Function *F = IVI.getParent()->getParent();
 | |
|   DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator
 | |
|     It = TrackedMultipleRetVals.find(std::make_pair(F, *IVI.idx_begin()));
 | |
| 
 | |
|   // Merge in the inserted member value.
 | |
|   if (It != TrackedMultipleRetVals.end())
 | |
|     mergeInValue(It->second, F, getValueState(Val));
 | |
| 
 | |
|   // Mark the aggregate result of the IVI overdefined; any tracking that we do
 | |
|   // will be done on the individual member values.
 | |
|   markOverdefined(&IVI);
 | |
| }
 | |
| 
 | |
| void SCCPSolver::visitSelectInst(SelectInst &I) {
 | |
|   LatticeVal &CondValue = getValueState(I.getCondition());
 | |
|   if (CondValue.isUndefined())
 | |
|     return;
 | |
|   if (CondValue.isConstant()) {
 | |
|     if (ConstantInt *CondCB = dyn_cast<ConstantInt>(CondValue.getConstant())){
 | |
|       mergeInValue(&I, getValueState(CondCB->getZExtValue() ? I.getTrueValue()
 | |
|                                                           : I.getFalseValue()));
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Otherwise, the condition is overdefined or a constant we can't evaluate.
 | |
|   // See if we can produce something better than overdefined based on the T/F
 | |
|   // value.
 | |
|   LatticeVal &TVal = getValueState(I.getTrueValue());
 | |
|   LatticeVal &FVal = getValueState(I.getFalseValue());
 | |
|   
 | |
|   // select ?, C, C -> C.
 | |
|   if (TVal.isConstant() && FVal.isConstant() && 
 | |
|       TVal.getConstant() == FVal.getConstant()) {
 | |
|     markConstant(&I, FVal.getConstant());
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (TVal.isUndefined()) {  // select ?, undef, X -> X.
 | |
|     mergeInValue(&I, FVal);
 | |
|   } else if (FVal.isUndefined()) {  // select ?, X, undef -> X.
 | |
|     mergeInValue(&I, TVal);
 | |
|   } else {
 | |
|     markOverdefined(&I);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Handle BinaryOperators and Shift Instructions...
 | |
| void SCCPSolver::visitBinaryOperator(Instruction &I) {
 | |
|   LatticeVal &IV = ValueState[&I];
 | |
|   if (IV.isOverdefined()) return;
 | |
| 
 | |
|   LatticeVal &V1State = getValueState(I.getOperand(0));
 | |
|   LatticeVal &V2State = getValueState(I.getOperand(1));
 | |
| 
 | |
|   if (V1State.isOverdefined() || V2State.isOverdefined()) {
 | |
|     // If this is an AND or OR with 0 or -1, it doesn't matter that the other
 | |
|     // operand is overdefined.
 | |
|     if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) {
 | |
|       LatticeVal *NonOverdefVal = 0;
 | |
|       if (!V1State.isOverdefined()) {
 | |
|         NonOverdefVal = &V1State;
 | |
|       } else if (!V2State.isOverdefined()) {
 | |
|         NonOverdefVal = &V2State;
 | |
|       }
 | |
| 
 | |
|       if (NonOverdefVal) {
 | |
|         if (NonOverdefVal->isUndefined()) {
 | |
|           // Could annihilate value.
 | |
|           if (I.getOpcode() == Instruction::And)
 | |
|             markConstant(IV, &I, Constant::getNullValue(I.getType()));
 | |
|           else if (const VectorType *PT = dyn_cast<VectorType>(I.getType()))
 | |
|             markConstant(IV, &I, ConstantVector::getAllOnesValue(PT));
 | |
|           else
 | |
|             markConstant(IV, &I, ConstantInt::getAllOnesValue(I.getType()));
 | |
|           return;
 | |
|         } else {
 | |
|           if (I.getOpcode() == Instruction::And) {
 | |
|             if (NonOverdefVal->getConstant()->isNullValue()) {
 | |
|               markConstant(IV, &I, NonOverdefVal->getConstant());
 | |
|               return;      // X and 0 = 0
 | |
|             }
 | |
|           } else {
 | |
|             if (ConstantInt *CI =
 | |
|                      dyn_cast<ConstantInt>(NonOverdefVal->getConstant()))
 | |
|               if (CI->isAllOnesValue()) {
 | |
|                 markConstant(IV, &I, NonOverdefVal->getConstant());
 | |
|                 return;    // X or -1 = -1
 | |
|               }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
| 
 | |
|     // If both operands are PHI nodes, it is possible that this instruction has
 | |
|     // a constant value, despite the fact that the PHI node doesn't.  Check for
 | |
|     // this condition now.
 | |
|     if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0)))
 | |
|       if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1)))
 | |
|         if (PN1->getParent() == PN2->getParent()) {
 | |
|           // Since the two PHI nodes are in the same basic block, they must have
 | |
|           // entries for the same predecessors.  Walk the predecessor list, and
 | |
|           // if all of the incoming values are constants, and the result of
 | |
|           // evaluating this expression with all incoming value pairs is the
 | |
|           // same, then this expression is a constant even though the PHI node
 | |
|           // is not a constant!
 | |
|           LatticeVal Result;
 | |
|           for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) {
 | |
|             LatticeVal &In1 = getValueState(PN1->getIncomingValue(i));
 | |
|             BasicBlock *InBlock = PN1->getIncomingBlock(i);
 | |
|             LatticeVal &In2 =
 | |
|               getValueState(PN2->getIncomingValueForBlock(InBlock));
 | |
| 
 | |
|             if (In1.isOverdefined() || In2.isOverdefined()) {
 | |
|               Result.markOverdefined();
 | |
|               break;  // Cannot fold this operation over the PHI nodes!
 | |
|             } else if (In1.isConstant() && In2.isConstant()) {
 | |
|               Constant *V = ConstantExpr::get(I.getOpcode(), In1.getConstant(),
 | |
|                                               In2.getConstant());
 | |
|               if (Result.isUndefined())
 | |
|                 Result.markConstant(V);
 | |
|               else if (Result.isConstant() && Result.getConstant() != V) {
 | |
|                 Result.markOverdefined();
 | |
|                 break;
 | |
|               }
 | |
|             }
 | |
|           }
 | |
| 
 | |
|           // If we found a constant value here, then we know the instruction is
 | |
|           // constant despite the fact that the PHI nodes are overdefined.
 | |
|           if (Result.isConstant()) {
 | |
|             markConstant(IV, &I, Result.getConstant());
 | |
|             // Remember that this instruction is virtually using the PHI node
 | |
|             // operands.
 | |
|             UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I));
 | |
|             UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I));
 | |
|             return;
 | |
|           } else if (Result.isUndefined()) {
 | |
|             return;
 | |
|           }
 | |
| 
 | |
|           // Okay, this really is overdefined now.  Since we might have
 | |
|           // speculatively thought that this was not overdefined before, and
 | |
|           // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs,
 | |
|           // make sure to clean out any entries that we put there, for
 | |
|           // efficiency.
 | |
|           std::multimap<PHINode*, Instruction*>::iterator It, E;
 | |
|           tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1);
 | |
|           while (It != E) {
 | |
|             if (It->second == &I) {
 | |
|               UsersOfOverdefinedPHIs.erase(It++);
 | |
|             } else
 | |
|               ++It;
 | |
|           }
 | |
|           tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2);
 | |
|           while (It != E) {
 | |
|             if (It->second == &I) {
 | |
|               UsersOfOverdefinedPHIs.erase(It++);
 | |
|             } else
 | |
|               ++It;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|     markOverdefined(IV, &I);
 | |
|   } else if (V1State.isConstant() && V2State.isConstant()) {
 | |
|     markConstant(IV, &I, ConstantExpr::get(I.getOpcode(), V1State.getConstant(),
 | |
|                                            V2State.getConstant()));
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Handle ICmpInst instruction...
 | |
| void SCCPSolver::visitCmpInst(CmpInst &I) {
 | |
|   LatticeVal &IV = ValueState[&I];
 | |
|   if (IV.isOverdefined()) return;
 | |
| 
 | |
|   LatticeVal &V1State = getValueState(I.getOperand(0));
 | |
|   LatticeVal &V2State = getValueState(I.getOperand(1));
 | |
| 
 | |
|   if (V1State.isOverdefined() || V2State.isOverdefined()) {
 | |
|     // If both operands are PHI nodes, it is possible that this instruction has
 | |
|     // a constant value, despite the fact that the PHI node doesn't.  Check for
 | |
|     // this condition now.
 | |
|     if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0)))
 | |
|       if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1)))
 | |
|         if (PN1->getParent() == PN2->getParent()) {
 | |
|           // Since the two PHI nodes are in the same basic block, they must have
 | |
|           // entries for the same predecessors.  Walk the predecessor list, and
 | |
|           // if all of the incoming values are constants, and the result of
 | |
|           // evaluating this expression with all incoming value pairs is the
 | |
|           // same, then this expression is a constant even though the PHI node
 | |
|           // is not a constant!
 | |
|           LatticeVal Result;
 | |
|           for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) {
 | |
|             LatticeVal &In1 = getValueState(PN1->getIncomingValue(i));
 | |
|             BasicBlock *InBlock = PN1->getIncomingBlock(i);
 | |
|             LatticeVal &In2 =
 | |
|               getValueState(PN2->getIncomingValueForBlock(InBlock));
 | |
| 
 | |
|             if (In1.isOverdefined() || In2.isOverdefined()) {
 | |
|               Result.markOverdefined();
 | |
|               break;  // Cannot fold this operation over the PHI nodes!
 | |
|             } else if (In1.isConstant() && In2.isConstant()) {
 | |
|               Constant *V = ConstantExpr::getCompare(I.getPredicate(), 
 | |
|                                                      In1.getConstant(), 
 | |
|                                                      In2.getConstant());
 | |
|               if (Result.isUndefined())
 | |
|                 Result.markConstant(V);
 | |
|               else if (Result.isConstant() && Result.getConstant() != V) {
 | |
|                 Result.markOverdefined();
 | |
|                 break;
 | |
|               }
 | |
|             }
 | |
|           }
 | |
| 
 | |
|           // If we found a constant value here, then we know the instruction is
 | |
|           // constant despite the fact that the PHI nodes are overdefined.
 | |
|           if (Result.isConstant()) {
 | |
|             markConstant(IV, &I, Result.getConstant());
 | |
|             // Remember that this instruction is virtually using the PHI node
 | |
|             // operands.
 | |
|             UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I));
 | |
|             UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I));
 | |
|             return;
 | |
|           } else if (Result.isUndefined()) {
 | |
|             return;
 | |
|           }
 | |
| 
 | |
|           // Okay, this really is overdefined now.  Since we might have
 | |
|           // speculatively thought that this was not overdefined before, and
 | |
|           // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs,
 | |
|           // make sure to clean out any entries that we put there, for
 | |
|           // efficiency.
 | |
|           std::multimap<PHINode*, Instruction*>::iterator It, E;
 | |
|           tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1);
 | |
|           while (It != E) {
 | |
|             if (It->second == &I) {
 | |
|               UsersOfOverdefinedPHIs.erase(It++);
 | |
|             } else
 | |
|               ++It;
 | |
|           }
 | |
|           tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2);
 | |
|           while (It != E) {
 | |
|             if (It->second == &I) {
 | |
|               UsersOfOverdefinedPHIs.erase(It++);
 | |
|             } else
 | |
|               ++It;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|     markOverdefined(IV, &I);
 | |
|   } else if (V1State.isConstant() && V2State.isConstant()) {
 | |
|     markConstant(IV, &I, ConstantExpr::getCompare(I.getPredicate(), 
 | |
|                                                   V1State.getConstant(), 
 | |
|                                                   V2State.getConstant()));
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SCCPSolver::visitExtractElementInst(ExtractElementInst &I) {
 | |
|   // FIXME : SCCP does not handle vectors properly.
 | |
|   markOverdefined(&I);
 | |
|   return;
 | |
| 
 | |
| #if 0
 | |
|   LatticeVal &ValState = getValueState(I.getOperand(0));
 | |
|   LatticeVal &IdxState = getValueState(I.getOperand(1));
 | |
| 
 | |
|   if (ValState.isOverdefined() || IdxState.isOverdefined())
 | |
|     markOverdefined(&I);
 | |
|   else if(ValState.isConstant() && IdxState.isConstant())
 | |
|     markConstant(&I, ConstantExpr::getExtractElement(ValState.getConstant(),
 | |
|                                                      IdxState.getConstant()));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void SCCPSolver::visitInsertElementInst(InsertElementInst &I) {
 | |
|   // FIXME : SCCP does not handle vectors properly.
 | |
|   markOverdefined(&I);
 | |
|   return;
 | |
| #if 0
 | |
|   LatticeVal &ValState = getValueState(I.getOperand(0));
 | |
|   LatticeVal &EltState = getValueState(I.getOperand(1));
 | |
|   LatticeVal &IdxState = getValueState(I.getOperand(2));
 | |
| 
 | |
|   if (ValState.isOverdefined() || EltState.isOverdefined() ||
 | |
|       IdxState.isOverdefined())
 | |
|     markOverdefined(&I);
 | |
|   else if(ValState.isConstant() && EltState.isConstant() &&
 | |
|           IdxState.isConstant())
 | |
|     markConstant(&I, ConstantExpr::getInsertElement(ValState.getConstant(),
 | |
|                                                     EltState.getConstant(),
 | |
|                                                     IdxState.getConstant()));
 | |
|   else if (ValState.isUndefined() && EltState.isConstant() &&
 | |
|            IdxState.isConstant()) 
 | |
|     markConstant(&I,ConstantExpr::getInsertElement(UndefValue::get(I.getType()),
 | |
|                                                    EltState.getConstant(),
 | |
|                                                    IdxState.getConstant()));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) {
 | |
|   // FIXME : SCCP does not handle vectors properly.
 | |
|   markOverdefined(&I);
 | |
|   return;
 | |
| #if 0
 | |
|   LatticeVal &V1State   = getValueState(I.getOperand(0));
 | |
|   LatticeVal &V2State   = getValueState(I.getOperand(1));
 | |
|   LatticeVal &MaskState = getValueState(I.getOperand(2));
 | |
| 
 | |
|   if (MaskState.isUndefined() ||
 | |
|       (V1State.isUndefined() && V2State.isUndefined()))
 | |
|     return;  // Undefined output if mask or both inputs undefined.
 | |
|   
 | |
|   if (V1State.isOverdefined() || V2State.isOverdefined() ||
 | |
|       MaskState.isOverdefined()) {
 | |
|     markOverdefined(&I);
 | |
|   } else {
 | |
|     // A mix of constant/undef inputs.
 | |
|     Constant *V1 = V1State.isConstant() ? 
 | |
|         V1State.getConstant() : UndefValue::get(I.getType());
 | |
|     Constant *V2 = V2State.isConstant() ? 
 | |
|         V2State.getConstant() : UndefValue::get(I.getType());
 | |
|     Constant *Mask = MaskState.isConstant() ? 
 | |
|       MaskState.getConstant() : UndefValue::get(I.getOperand(2)->getType());
 | |
|     markConstant(&I, ConstantExpr::getShuffleVector(V1, V2, Mask));
 | |
|   }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Handle getelementptr instructions... if all operands are constants then we
 | |
| // can turn this into a getelementptr ConstantExpr.
 | |
| //
 | |
| void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) {
 | |
|   LatticeVal &IV = ValueState[&I];
 | |
|   if (IV.isOverdefined()) return;
 | |
| 
 | |
|   SmallVector<Constant*, 8> Operands;
 | |
|   Operands.reserve(I.getNumOperands());
 | |
| 
 | |
|   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
 | |
|     LatticeVal &State = getValueState(I.getOperand(i));
 | |
|     if (State.isUndefined())
 | |
|       return;  // Operands are not resolved yet...
 | |
|     else if (State.isOverdefined()) {
 | |
|       markOverdefined(IV, &I);
 | |
|       return;
 | |
|     }
 | |
|     assert(State.isConstant() && "Unknown state!");
 | |
|     Operands.push_back(State.getConstant());
 | |
|   }
 | |
| 
 | |
|   Constant *Ptr = Operands[0];
 | |
|   Operands.erase(Operands.begin());  // Erase the pointer from idx list...
 | |
| 
 | |
|   markConstant(IV, &I, ConstantExpr::getGetElementPtr(Ptr, &Operands[0],
 | |
|                                                       Operands.size()));
 | |
| }
 | |
| 
 | |
| void SCCPSolver::visitStoreInst(Instruction &SI) {
 | |
|   if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
 | |
|     return;
 | |
|   GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
 | |
|   DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV);
 | |
|   if (I == TrackedGlobals.end() || I->second.isOverdefined()) return;
 | |
| 
 | |
|   // Get the value we are storing into the global.
 | |
|   LatticeVal &PtrVal = getValueState(SI.getOperand(0));
 | |
| 
 | |
|   mergeInValue(I->second, GV, PtrVal);
 | |
|   if (I->second.isOverdefined())
 | |
|     TrackedGlobals.erase(I);      // No need to keep tracking this!
 | |
| }
 | |
| 
 | |
| 
 | |
| // Handle load instructions.  If the operand is a constant pointer to a constant
 | |
| // global, we can replace the load with the loaded constant value!
 | |
| void SCCPSolver::visitLoadInst(LoadInst &I) {
 | |
|   LatticeVal &IV = ValueState[&I];
 | |
|   if (IV.isOverdefined()) return;
 | |
| 
 | |
|   LatticeVal &PtrVal = getValueState(I.getOperand(0));
 | |
|   if (PtrVal.isUndefined()) return;   // The pointer is not resolved yet!
 | |
|   if (PtrVal.isConstant() && !I.isVolatile()) {
 | |
|     Value *Ptr = PtrVal.getConstant();
 | |
|     // TODO: Consider a target hook for valid address spaces for this xform.
 | |
|     if (isa<ConstantPointerNull>(Ptr) && 
 | |
|         cast<PointerType>(Ptr->getType())->getAddressSpace() == 0) {
 | |
|       // load null -> null
 | |
|       markConstant(IV, &I, Constant::getNullValue(I.getType()));
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // Transform load (constant global) into the value loaded.
 | |
|     if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
 | |
|       if (GV->isConstant()) {
 | |
|         if (!GV->isDeclaration()) {
 | |
|           markConstant(IV, &I, GV->getInitializer());
 | |
|           return;
 | |
|         }
 | |
|       } else if (!TrackedGlobals.empty()) {
 | |
|         // If we are tracking this global, merge in the known value for it.
 | |
|         DenseMap<GlobalVariable*, LatticeVal>::iterator It =
 | |
|           TrackedGlobals.find(GV);
 | |
|         if (It != TrackedGlobals.end()) {
 | |
|           mergeInValue(IV, &I, It->second);
 | |
|           return;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Transform load (constantexpr_GEP global, 0, ...) into the value loaded.
 | |
|     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
 | |
|       if (CE->getOpcode() == Instruction::GetElementPtr)
 | |
|     if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
 | |
|       if (GV->isConstant() && !GV->isDeclaration())
 | |
|         if (Constant *V =
 | |
|              ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE)) {
 | |
|           markConstant(IV, &I, V);
 | |
|           return;
 | |
|         }
 | |
|   }
 | |
| 
 | |
|   // Otherwise we cannot say for certain what value this load will produce.
 | |
|   // Bail out.
 | |
|   markOverdefined(IV, &I);
 | |
| }
 | |
| 
 | |
| void SCCPSolver::visitCallSite(CallSite CS) {
 | |
|   Function *F = CS.getCalledFunction();
 | |
|   Instruction *I = CS.getInstruction();
 | |
|   
 | |
|   // The common case is that we aren't tracking the callee, either because we
 | |
|   // are not doing interprocedural analysis or the callee is indirect, or is
 | |
|   // external.  Handle these cases first.
 | |
|   if (F == 0 || !F->hasLocalLinkage()) {
 | |
| CallOverdefined:
 | |
|     // Void return and not tracking callee, just bail.
 | |
|     if (I->getType() == Type::VoidTy) return;
 | |
|     
 | |
|     // Otherwise, if we have a single return value case, and if the function is
 | |
|     // a declaration, maybe we can constant fold it.
 | |
|     if (!isa<StructType>(I->getType()) && F && F->isDeclaration() && 
 | |
|         canConstantFoldCallTo(F)) {
 | |
|       
 | |
|       SmallVector<Constant*, 8> Operands;
 | |
|       for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
 | |
|            AI != E; ++AI) {
 | |
|         LatticeVal &State = getValueState(*AI);
 | |
|         if (State.isUndefined())
 | |
|           return;  // Operands are not resolved yet.
 | |
|         else if (State.isOverdefined()) {
 | |
|           markOverdefined(I);
 | |
|           return;
 | |
|         }
 | |
|         assert(State.isConstant() && "Unknown state!");
 | |
|         Operands.push_back(State.getConstant());
 | |
|       }
 | |
|      
 | |
|       // If we can constant fold this, mark the result of the call as a
 | |
|       // constant.
 | |
|       if (Constant *C = ConstantFoldCall(F, &Operands[0], Operands.size())) {
 | |
|         markConstant(I, C);
 | |
|         return;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Otherwise, we don't know anything about this call, mark it overdefined.
 | |
|     markOverdefined(I);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // If this is a single/zero retval case, see if we're tracking the function.
 | |
|   DenseMap<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F);
 | |
|   if (TFRVI != TrackedRetVals.end()) {
 | |
|     // If so, propagate the return value of the callee into this call result.
 | |
|     mergeInValue(I, TFRVI->second);
 | |
|   } else if (isa<StructType>(I->getType())) {
 | |
|     // Check to see if we're tracking this callee, if not, handle it in the
 | |
|     // common path above.
 | |
|     DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator
 | |
|     TMRVI = TrackedMultipleRetVals.find(std::make_pair(F, 0));
 | |
|     if (TMRVI == TrackedMultipleRetVals.end())
 | |
|       goto CallOverdefined;
 | |
|     
 | |
|     // If we are tracking this callee, propagate the return values of the call
 | |
|     // into this call site.  We do this by walking all the uses. Single-index
 | |
|     // ExtractValueInst uses can be tracked; anything more complicated is
 | |
|     // currently handled conservatively.
 | |
|     for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
 | |
|          UI != E; ++UI) {
 | |
|       if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(*UI)) {
 | |
|         if (EVI->getNumIndices() == 1) {
 | |
|           mergeInValue(EVI, 
 | |
|                   TrackedMultipleRetVals[std::make_pair(F, *EVI->idx_begin())]);
 | |
|           continue;
 | |
|         }
 | |
|       }
 | |
|       // The aggregate value is used in a way not handled here. Assume nothing.
 | |
|       markOverdefined(*UI);
 | |
|     }
 | |
|   } else {
 | |
|     // Otherwise we're not tracking this callee, so handle it in the
 | |
|     // common path above.
 | |
|     goto CallOverdefined;
 | |
|   }
 | |
|    
 | |
|   // Finally, if this is the first call to the function hit, mark its entry
 | |
|   // block executable.
 | |
|   if (!BBExecutable.count(F->begin()))
 | |
|     MarkBlockExecutable(F->begin());
 | |
|   
 | |
|   // Propagate information from this call site into the callee.
 | |
|   CallSite::arg_iterator CAI = CS.arg_begin();
 | |
|   for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
 | |
|        AI != E; ++AI, ++CAI) {
 | |
|     LatticeVal &IV = ValueState[AI];
 | |
|     if (!IV.isOverdefined())
 | |
|       mergeInValue(IV, AI, getValueState(*CAI));
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| void SCCPSolver::Solve() {
 | |
|   // Process the work lists until they are empty!
 | |
|   while (!BBWorkList.empty() || !InstWorkList.empty() ||
 | |
|          !OverdefinedInstWorkList.empty()) {
 | |
|     // Process the instruction work list...
 | |
|     while (!OverdefinedInstWorkList.empty()) {
 | |
|       Value *I = OverdefinedInstWorkList.back();
 | |
|       OverdefinedInstWorkList.pop_back();
 | |
| 
 | |
|       DOUT << "\nPopped off OI-WL: " << *I;
 | |
| 
 | |
|       // "I" got into the work list because it either made the transition from
 | |
|       // bottom to constant
 | |
|       //
 | |
|       // Anything on this worklist that is overdefined need not be visited
 | |
|       // since all of its users will have already been marked as overdefined
 | |
|       // Update all of the users of this instruction's value...
 | |
|       //
 | |
|       for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
 | |
|            UI != E; ++UI)
 | |
|         OperandChangedState(*UI);
 | |
|     }
 | |
|     // Process the instruction work list...
 | |
|     while (!InstWorkList.empty()) {
 | |
|       Value *I = InstWorkList.back();
 | |
|       InstWorkList.pop_back();
 | |
| 
 | |
|       DOUT << "\nPopped off I-WL: " << *I;
 | |
| 
 | |
|       // "I" got into the work list because it either made the transition from
 | |
|       // bottom to constant
 | |
|       //
 | |
|       // Anything on this worklist that is overdefined need not be visited
 | |
|       // since all of its users will have already been marked as overdefined.
 | |
|       // Update all of the users of this instruction's value...
 | |
|       //
 | |
|       if (!getValueState(I).isOverdefined())
 | |
|         for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
 | |
|              UI != E; ++UI)
 | |
|           OperandChangedState(*UI);
 | |
|     }
 | |
| 
 | |
|     // Process the basic block work list...
 | |
|     while (!BBWorkList.empty()) {
 | |
|       BasicBlock *BB = BBWorkList.back();
 | |
|       BBWorkList.pop_back();
 | |
| 
 | |
|       DOUT << "\nPopped off BBWL: " << *BB;
 | |
| 
 | |
|       // Notify all instructions in this basic block that they are newly
 | |
|       // executable.
 | |
|       visit(BB);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
 | |
| /// that branches on undef values cannot reach any of their successors.
 | |
| /// However, this is not a safe assumption.  After we solve dataflow, this
 | |
| /// method should be use to handle this.  If this returns true, the solver
 | |
| /// should be rerun.
 | |
| ///
 | |
| /// This method handles this by finding an unresolved branch and marking it one
 | |
| /// of the edges from the block as being feasible, even though the condition
 | |
| /// doesn't say it would otherwise be.  This allows SCCP to find the rest of the
 | |
| /// CFG and only slightly pessimizes the analysis results (by marking one,
 | |
| /// potentially infeasible, edge feasible).  This cannot usefully modify the
 | |
| /// constraints on the condition of the branch, as that would impact other users
 | |
| /// of the value.
 | |
| ///
 | |
| /// This scan also checks for values that use undefs, whose results are actually
 | |
| /// defined.  For example, 'zext i8 undef to i32' should produce all zeros
 | |
| /// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero,
 | |
| /// even if X isn't defined.
 | |
| bool SCCPSolver::ResolvedUndefsIn(Function &F) {
 | |
|   for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
 | |
|     if (!BBExecutable.count(BB))
 | |
|       continue;
 | |
|     
 | |
|     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
 | |
|       // Look for instructions which produce undef values.
 | |
|       if (I->getType() == Type::VoidTy) continue;
 | |
|       
 | |
|       LatticeVal &LV = getValueState(I);
 | |
|       if (!LV.isUndefined()) continue;
 | |
| 
 | |
|       // Get the lattice values of the first two operands for use below.
 | |
|       LatticeVal &Op0LV = getValueState(I->getOperand(0));
 | |
|       LatticeVal Op1LV;
 | |
|       if (I->getNumOperands() == 2) {
 | |
|         // If this is a two-operand instruction, and if both operands are
 | |
|         // undefs, the result stays undef.
 | |
|         Op1LV = getValueState(I->getOperand(1));
 | |
|         if (Op0LV.isUndefined() && Op1LV.isUndefined())
 | |
|           continue;
 | |
|       }
 | |
|       
 | |
|       // If this is an instructions whose result is defined even if the input is
 | |
|       // not fully defined, propagate the information.
 | |
|       const Type *ITy = I->getType();
 | |
|       switch (I->getOpcode()) {
 | |
|       default: break;          // Leave the instruction as an undef.
 | |
|       case Instruction::ZExt:
 | |
|         // After a zero extend, we know the top part is zero.  SExt doesn't have
 | |
|         // to be handled here, because we don't know whether the top part is 1's
 | |
|         // or 0's.
 | |
|         assert(Op0LV.isUndefined());
 | |
|         markForcedConstant(LV, I, Constant::getNullValue(ITy));
 | |
|         return true;
 | |
|       case Instruction::Mul:
 | |
|       case Instruction::And:
 | |
|         // undef * X -> 0.   X could be zero.
 | |
|         // undef & X -> 0.   X could be zero.
 | |
|         markForcedConstant(LV, I, Constant::getNullValue(ITy));
 | |
|         return true;
 | |
| 
 | |
|       case Instruction::Or:
 | |
|         // undef | X -> -1.   X could be -1.
 | |
|         if (const VectorType *PTy = dyn_cast<VectorType>(ITy))
 | |
|           markForcedConstant(LV, I, ConstantVector::getAllOnesValue(PTy));
 | |
|         else          
 | |
|           markForcedConstant(LV, I, ConstantInt::getAllOnesValue(ITy));
 | |
|         return true;
 | |
| 
 | |
|       case Instruction::SDiv:
 | |
|       case Instruction::UDiv:
 | |
|       case Instruction::SRem:
 | |
|       case Instruction::URem:
 | |
|         // X / undef -> undef.  No change.
 | |
|         // X % undef -> undef.  No change.
 | |
|         if (Op1LV.isUndefined()) break;
 | |
|         
 | |
|         // undef / X -> 0.   X could be maxint.
 | |
|         // undef % X -> 0.   X could be 1.
 | |
|         markForcedConstant(LV, I, Constant::getNullValue(ITy));
 | |
|         return true;
 | |
|         
 | |
|       case Instruction::AShr:
 | |
|         // undef >>s X -> undef.  No change.
 | |
|         if (Op0LV.isUndefined()) break;
 | |
|         
 | |
|         // X >>s undef -> X.  X could be 0, X could have the high-bit known set.
 | |
|         if (Op0LV.isConstant())
 | |
|           markForcedConstant(LV, I, Op0LV.getConstant());
 | |
|         else
 | |
|           markOverdefined(LV, I);
 | |
|         return true;
 | |
|       case Instruction::LShr:
 | |
|       case Instruction::Shl:
 | |
|         // undef >> X -> undef.  No change.
 | |
|         // undef << X -> undef.  No change.
 | |
|         if (Op0LV.isUndefined()) break;
 | |
|         
 | |
|         // X >> undef -> 0.  X could be 0.
 | |
|         // X << undef -> 0.  X could be 0.
 | |
|         markForcedConstant(LV, I, Constant::getNullValue(ITy));
 | |
|         return true;
 | |
|       case Instruction::Select:
 | |
|         // undef ? X : Y  -> X or Y.  There could be commonality between X/Y.
 | |
|         if (Op0LV.isUndefined()) {
 | |
|           if (!Op1LV.isConstant())  // Pick the constant one if there is any.
 | |
|             Op1LV = getValueState(I->getOperand(2));
 | |
|         } else if (Op1LV.isUndefined()) {
 | |
|           // c ? undef : undef -> undef.  No change.
 | |
|           Op1LV = getValueState(I->getOperand(2));
 | |
|           if (Op1LV.isUndefined())
 | |
|             break;
 | |
|           // Otherwise, c ? undef : x -> x.
 | |
|         } else {
 | |
|           // Leave Op1LV as Operand(1)'s LatticeValue.
 | |
|         }
 | |
|         
 | |
|         if (Op1LV.isConstant())
 | |
|           markForcedConstant(LV, I, Op1LV.getConstant());
 | |
|         else
 | |
|           markOverdefined(LV, I);
 | |
|         return true;
 | |
|       case Instruction::Call:
 | |
|         // If a call has an undef result, it is because it is constant foldable
 | |
|         // but one of the inputs was undef.  Just force the result to
 | |
|         // overdefined.
 | |
|         markOverdefined(LV, I);
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|   
 | |
|     TerminatorInst *TI = BB->getTerminator();
 | |
|     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
 | |
|       if (!BI->isConditional()) continue;
 | |
|       if (!getValueState(BI->getCondition()).isUndefined())
 | |
|         continue;
 | |
|     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
 | |
|       if (SI->getNumSuccessors()<2)   // no cases
 | |
|         continue;
 | |
|       if (!getValueState(SI->getCondition()).isUndefined())
 | |
|         continue;
 | |
|     } else {
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     // If the edge to the second successor isn't thought to be feasible yet,
 | |
|     // mark it so now.  We pick the second one so that this goes to some
 | |
|     // enumerated value in a switch instead of going to the default destination.
 | |
|     if (KnownFeasibleEdges.count(Edge(BB, TI->getSuccessor(1))))
 | |
|       continue;
 | |
|     
 | |
|     // Otherwise, it isn't already thought to be feasible.  Mark it as such now
 | |
|     // and return.  This will make other blocks reachable, which will allow new
 | |
|     // values to be discovered and existing ones to be moved in the lattice.
 | |
|     markEdgeExecutable(BB, TI->getSuccessor(1));
 | |
|     
 | |
|     // This must be a conditional branch of switch on undef.  At this point,
 | |
|     // force the old terminator to branch to the first successor.  This is
 | |
|     // required because we are now influencing the dataflow of the function with
 | |
|     // the assumption that this edge is taken.  If we leave the branch condition
 | |
|     // as undef, then further analysis could think the undef went another way
 | |
|     // leading to an inconsistent set of conclusions.
 | |
|     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
 | |
|       BI->setCondition(ConstantInt::getFalse());
 | |
|     } else {
 | |
|       SwitchInst *SI = cast<SwitchInst>(TI);
 | |
|       SI->setCondition(SI->getCaseValue(1));
 | |
|     }
 | |
|     
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| namespace {
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   //
 | |
|   /// SCCP Class - This class uses the SCCPSolver to implement a per-function
 | |
|   /// Sparse Conditional Constant Propagator.
 | |
|   ///
 | |
|   struct VISIBILITY_HIDDEN SCCP : public FunctionPass {
 | |
|     static char ID; // Pass identification, replacement for typeid
 | |
|     SCCP() : FunctionPass(&ID) {}
 | |
| 
 | |
|     // runOnFunction - Run the Sparse Conditional Constant Propagation
 | |
|     // algorithm, and return true if the function was modified.
 | |
|     //
 | |
|     bool runOnFunction(Function &F);
 | |
| 
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AU.setPreservesCFG();
 | |
|     }
 | |
|   };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| char SCCP::ID = 0;
 | |
| static RegisterPass<SCCP>
 | |
| X("sccp", "Sparse Conditional Constant Propagation");
 | |
| 
 | |
| // createSCCPPass - This is the public interface to this file...
 | |
| FunctionPass *llvm::createSCCPPass() {
 | |
|   return new SCCP();
 | |
| }
 | |
| 
 | |
| 
 | |
| // runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm,
 | |
| // and return true if the function was modified.
 | |
| //
 | |
| bool SCCP::runOnFunction(Function &F) {
 | |
|   DOUT << "SCCP on function '" << F.getNameStart() << "'\n";
 | |
|   SCCPSolver Solver;
 | |
| 
 | |
|   // Mark the first block of the function as being executable.
 | |
|   Solver.MarkBlockExecutable(F.begin());
 | |
| 
 | |
|   // Mark all arguments to the function as being overdefined.
 | |
|   for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E;++AI)
 | |
|     Solver.markOverdefined(AI);
 | |
| 
 | |
|   // Solve for constants.
 | |
|   bool ResolvedUndefs = true;
 | |
|   while (ResolvedUndefs) {
 | |
|     Solver.Solve();
 | |
|     DOUT << "RESOLVING UNDEFs\n";
 | |
|     ResolvedUndefs = Solver.ResolvedUndefsIn(F);
 | |
|   }
 | |
| 
 | |
|   bool MadeChanges = false;
 | |
| 
 | |
|   // If we decided that there are basic blocks that are dead in this function,
 | |
|   // delete their contents now.  Note that we cannot actually delete the blocks,
 | |
|   // as we cannot modify the CFG of the function.
 | |
|   //
 | |
|   SmallVector<Instruction*, 512> Insts;
 | |
|   std::map<Value*, LatticeVal> &Values = Solver.getValueMapping();
 | |
| 
 | |
|   for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
 | |
|     if (!Solver.isBlockExecutable(BB)) {
 | |
|       DOUT << "  BasicBlock Dead:" << *BB;
 | |
|       ++NumDeadBlocks;
 | |
| 
 | |
|       // Delete the instructions backwards, as it has a reduced likelihood of
 | |
|       // having to update as many def-use and use-def chains.
 | |
|       for (BasicBlock::iterator I = BB->begin(), E = BB->getTerminator();
 | |
|            I != E; ++I)
 | |
|         Insts.push_back(I);
 | |
|       while (!Insts.empty()) {
 | |
|         Instruction *I = Insts.back();
 | |
|         Insts.pop_back();
 | |
|         if (!I->use_empty())
 | |
|           I->replaceAllUsesWith(UndefValue::get(I->getType()));
 | |
|         BB->getInstList().erase(I);
 | |
|         MadeChanges = true;
 | |
|         ++NumInstRemoved;
 | |
|       }
 | |
|     } else {
 | |
|       // Iterate over all of the instructions in a function, replacing them with
 | |
|       // constants if we have found them to be of constant values.
 | |
|       //
 | |
|       for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
 | |
|         Instruction *Inst = BI++;
 | |
|         if (Inst->getType() == Type::VoidTy ||
 | |
|             isa<TerminatorInst>(Inst))
 | |
|           continue;
 | |
|         
 | |
|         LatticeVal &IV = Values[Inst];
 | |
|         if (!IV.isConstant() && !IV.isUndefined())
 | |
|           continue;
 | |
|         
 | |
|         Constant *Const = IV.isConstant()
 | |
|           ? IV.getConstant() : UndefValue::get(Inst->getType());
 | |
|         DOUT << "  Constant: " << *Const << " = " << *Inst;
 | |
| 
 | |
|         // Replaces all of the uses of a variable with uses of the constant.
 | |
|         Inst->replaceAllUsesWith(Const);
 | |
|         
 | |
|         // Delete the instruction.
 | |
|         Inst->eraseFromParent();
 | |
|         
 | |
|         // Hey, we just changed something!
 | |
|         MadeChanges = true;
 | |
|         ++NumInstRemoved;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   return MadeChanges;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   //
 | |
|   /// IPSCCP Class - This class implements interprocedural Sparse Conditional
 | |
|   /// Constant Propagation.
 | |
|   ///
 | |
|   struct VISIBILITY_HIDDEN IPSCCP : public ModulePass {
 | |
|     static char ID;
 | |
|     IPSCCP() : ModulePass(&ID) {}
 | |
|     bool runOnModule(Module &M);
 | |
|   };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| char IPSCCP::ID = 0;
 | |
| static RegisterPass<IPSCCP>
 | |
| Y("ipsccp", "Interprocedural Sparse Conditional Constant Propagation");
 | |
| 
 | |
| // createIPSCCPPass - This is the public interface to this file...
 | |
| ModulePass *llvm::createIPSCCPPass() {
 | |
|   return new IPSCCP();
 | |
| }
 | |
| 
 | |
| 
 | |
| static bool AddressIsTaken(GlobalValue *GV) {
 | |
|   // Delete any dead constantexpr klingons.
 | |
|   GV->removeDeadConstantUsers();
 | |
| 
 | |
|   for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end();
 | |
|        UI != E; ++UI)
 | |
|     if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
 | |
|       if (SI->getOperand(0) == GV || SI->isVolatile())
 | |
|         return true;  // Storing addr of GV.
 | |
|     } else if (isa<InvokeInst>(*UI) || isa<CallInst>(*UI)) {
 | |
|       // Make sure we are calling the function, not passing the address.
 | |
|       CallSite CS = CallSite::get(cast<Instruction>(*UI));
 | |
|       if (CS.hasArgument(GV))
 | |
|         return true;
 | |
|     } else if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
 | |
|       if (LI->isVolatile())
 | |
|         return true;
 | |
|     } else {
 | |
|       return true;
 | |
|     }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool IPSCCP::runOnModule(Module &M) {
 | |
|   SCCPSolver Solver;
 | |
| 
 | |
|   // Loop over all functions, marking arguments to those with their addresses
 | |
|   // taken or that are external as overdefined.
 | |
|   //
 | |
|   for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
 | |
|     if (!F->hasLocalLinkage() || AddressIsTaken(F)) {
 | |
|       if (!F->isDeclaration())
 | |
|         Solver.MarkBlockExecutable(F->begin());
 | |
|       for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
 | |
|            AI != E; ++AI)
 | |
|         Solver.markOverdefined(AI);
 | |
|     } else {
 | |
|       Solver.AddTrackedFunction(F);
 | |
|     }
 | |
| 
 | |
|   // Loop over global variables.  We inform the solver about any internal global
 | |
|   // variables that do not have their 'addresses taken'.  If they don't have
 | |
|   // their addresses taken, we can propagate constants through them.
 | |
|   for (Module::global_iterator G = M.global_begin(), E = M.global_end();
 | |
|        G != E; ++G)
 | |
|     if (!G->isConstant() && G->hasLocalLinkage() && !AddressIsTaken(G))
 | |
|       Solver.TrackValueOfGlobalVariable(G);
 | |
| 
 | |
|   // Solve for constants.
 | |
|   bool ResolvedUndefs = true;
 | |
|   while (ResolvedUndefs) {
 | |
|     Solver.Solve();
 | |
| 
 | |
|     DOUT << "RESOLVING UNDEFS\n";
 | |
|     ResolvedUndefs = false;
 | |
|     for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
 | |
|       ResolvedUndefs |= Solver.ResolvedUndefsIn(*F);
 | |
|   }
 | |
| 
 | |
|   bool MadeChanges = false;
 | |
| 
 | |
|   // Iterate over all of the instructions in the module, replacing them with
 | |
|   // constants if we have found them to be of constant values.
 | |
|   //
 | |
|   SmallVector<Instruction*, 512> Insts;
 | |
|   SmallVector<BasicBlock*, 512> BlocksToErase;
 | |
|   std::map<Value*, LatticeVal> &Values = Solver.getValueMapping();
 | |
| 
 | |
|   for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
 | |
|     for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
 | |
|          AI != E; ++AI)
 | |
|       if (!AI->use_empty()) {
 | |
|         LatticeVal &IV = Values[AI];
 | |
|         if (IV.isConstant() || IV.isUndefined()) {
 | |
|           Constant *CST = IV.isConstant() ?
 | |
|             IV.getConstant() : UndefValue::get(AI->getType());
 | |
|           DOUT << "***  Arg " << *AI << " = " << *CST <<"\n";
 | |
| 
 | |
|           // Replaces all of the uses of a variable with uses of the
 | |
|           // constant.
 | |
|           AI->replaceAllUsesWith(CST);
 | |
|           ++IPNumArgsElimed;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|     for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
 | |
|       if (!Solver.isBlockExecutable(BB)) {
 | |
|         DOUT << "  BasicBlock Dead:" << *BB;
 | |
|         ++IPNumDeadBlocks;
 | |
| 
 | |
|         // Delete the instructions backwards, as it has a reduced likelihood of
 | |
|         // having to update as many def-use and use-def chains.
 | |
|         TerminatorInst *TI = BB->getTerminator();
 | |
|         for (BasicBlock::iterator I = BB->begin(), E = TI; I != E; ++I)
 | |
|           Insts.push_back(I);
 | |
| 
 | |
|         while (!Insts.empty()) {
 | |
|           Instruction *I = Insts.back();
 | |
|           Insts.pop_back();
 | |
|           if (!I->use_empty())
 | |
|             I->replaceAllUsesWith(UndefValue::get(I->getType()));
 | |
|           BB->getInstList().erase(I);
 | |
|           MadeChanges = true;
 | |
|           ++IPNumInstRemoved;
 | |
|         }
 | |
| 
 | |
|         for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
 | |
|           BasicBlock *Succ = TI->getSuccessor(i);
 | |
|           if (!Succ->empty() && isa<PHINode>(Succ->begin()))
 | |
|             TI->getSuccessor(i)->removePredecessor(BB);
 | |
|         }
 | |
|         if (!TI->use_empty())
 | |
|           TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
 | |
|         BB->getInstList().erase(TI);
 | |
| 
 | |
|         if (&*BB != &F->front())
 | |
|           BlocksToErase.push_back(BB);
 | |
|         else
 | |
|           new UnreachableInst(BB);
 | |
| 
 | |
|       } else {
 | |
|         for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
 | |
|           Instruction *Inst = BI++;
 | |
|           if (Inst->getType() == Type::VoidTy)
 | |
|             continue;
 | |
|           
 | |
|           LatticeVal &IV = Values[Inst];
 | |
|           if (!IV.isConstant() && !IV.isUndefined())
 | |
|             continue;
 | |
|           
 | |
|           Constant *Const = IV.isConstant()
 | |
|             ? IV.getConstant() : UndefValue::get(Inst->getType());
 | |
|           DOUT << "  Constant: " << *Const << " = " << *Inst;
 | |
| 
 | |
|           // Replaces all of the uses of a variable with uses of the
 | |
|           // constant.
 | |
|           Inst->replaceAllUsesWith(Const);
 | |
|           
 | |
|           // Delete the instruction.
 | |
|           if (!isa<CallInst>(Inst) && !isa<TerminatorInst>(Inst))
 | |
|             Inst->eraseFromParent();
 | |
| 
 | |
|           // Hey, we just changed something!
 | |
|           MadeChanges = true;
 | |
|           ++IPNumInstRemoved;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|     // Now that all instructions in the function are constant folded, erase dead
 | |
|     // blocks, because we can now use ConstantFoldTerminator to get rid of
 | |
|     // in-edges.
 | |
|     for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) {
 | |
|       // If there are any PHI nodes in this successor, drop entries for BB now.
 | |
|       BasicBlock *DeadBB = BlocksToErase[i];
 | |
|       while (!DeadBB->use_empty()) {
 | |
|         Instruction *I = cast<Instruction>(DeadBB->use_back());
 | |
|         bool Folded = ConstantFoldTerminator(I->getParent());
 | |
|         if (!Folded) {
 | |
|           // The constant folder may not have been able to fold the terminator
 | |
|           // if this is a branch or switch on undef.  Fold it manually as a
 | |
|           // branch to the first successor.
 | |
| #ifndef NDEBUG
 | |
|           if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
 | |
|             assert(BI->isConditional() && isa<UndefValue>(BI->getCondition()) &&
 | |
|                    "Branch should be foldable!");
 | |
|           } else if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
 | |
|             assert(isa<UndefValue>(SI->getCondition()) && "Switch should fold");
 | |
|           } else {
 | |
|             assert(0 && "Didn't fold away reference to block!");
 | |
|           }
 | |
| #endif
 | |
|           
 | |
|           // Make this an uncond branch to the first successor.
 | |
|           TerminatorInst *TI = I->getParent()->getTerminator();
 | |
|           BranchInst::Create(TI->getSuccessor(0), TI);
 | |
|           
 | |
|           // Remove entries in successor phi nodes to remove edges.
 | |
|           for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i)
 | |
|             TI->getSuccessor(i)->removePredecessor(TI->getParent());
 | |
|           
 | |
|           // Remove the old terminator.
 | |
|           TI->eraseFromParent();
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Finally, delete the basic block.
 | |
|       F->getBasicBlockList().erase(DeadBB);
 | |
|     }
 | |
|     BlocksToErase.clear();
 | |
|   }
 | |
| 
 | |
|   // If we inferred constant or undef return values for a function, we replaced
 | |
|   // all call uses with the inferred value.  This means we don't need to bother
 | |
|   // actually returning anything from the function.  Replace all return
 | |
|   // instructions with return undef.
 | |
|   // TODO: Process multiple value ret instructions also.
 | |
|   const DenseMap<Function*, LatticeVal> &RV = Solver.getTrackedRetVals();
 | |
|   for (DenseMap<Function*, LatticeVal>::const_iterator I = RV.begin(),
 | |
|          E = RV.end(); I != E; ++I)
 | |
|     if (!I->second.isOverdefined() &&
 | |
|         I->first->getReturnType() != Type::VoidTy) {
 | |
|       Function *F = I->first;
 | |
|       for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
 | |
|         if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
 | |
|           if (!isa<UndefValue>(RI->getOperand(0)))
 | |
|             RI->setOperand(0, UndefValue::get(F->getReturnType()));
 | |
|     }
 | |
| 
 | |
|   // If we infered constant or undef values for globals variables, we can delete
 | |
|   // the global and any stores that remain to it.
 | |
|   const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals();
 | |
|   for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(),
 | |
|          E = TG.end(); I != E; ++I) {
 | |
|     GlobalVariable *GV = I->first;
 | |
|     assert(!I->second.isOverdefined() &&
 | |
|            "Overdefined values should have been taken out of the map!");
 | |
|     DOUT << "Found that GV '" << GV->getNameStart() << "' is constant!\n";
 | |
|     while (!GV->use_empty()) {
 | |
|       StoreInst *SI = cast<StoreInst>(GV->use_back());
 | |
|       SI->eraseFromParent();
 | |
|     }
 | |
|     M.getGlobalList().erase(GV);
 | |
|     ++IPNumGlobalConst;
 | |
|   }
 | |
| 
 | |
|   return MadeChanges;
 | |
| }
 |