mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@113647 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			552 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			552 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- BasicBlockUtils.cpp - BasicBlock Utilities -------------------------==//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This family of functions perform manipulations on basic blocks, and
 | |
| // instructions contained within basic blocks.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/IntrinsicInst.h"
 | |
| #include "llvm/Constant.h"
 | |
| #include "llvm/Type.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Analysis/Dominators.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/ValueHandle.h"
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| 
 | |
| /// DeleteDeadBlock - Delete the specified block, which must have no
 | |
| /// predecessors.
 | |
| void llvm::DeleteDeadBlock(BasicBlock *BB) {
 | |
|   assert((pred_begin(BB) == pred_end(BB) ||
 | |
|          // Can delete self loop.
 | |
|          BB->getSinglePredecessor() == BB) && "Block is not dead!");
 | |
|   TerminatorInst *BBTerm = BB->getTerminator();
 | |
|   
 | |
|   // Loop through all of our successors and make sure they know that one
 | |
|   // of their predecessors is going away.
 | |
|   for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i)
 | |
|     BBTerm->getSuccessor(i)->removePredecessor(BB);
 | |
|   
 | |
|   // Zap all the instructions in the block.
 | |
|   while (!BB->empty()) {
 | |
|     Instruction &I = BB->back();
 | |
|     // If this instruction is used, replace uses with an arbitrary value.
 | |
|     // Because control flow can't get here, we don't care what we replace the
 | |
|     // value with.  Note that since this block is unreachable, and all values
 | |
|     // contained within it must dominate their uses, that all uses will
 | |
|     // eventually be removed (they are themselves dead).
 | |
|     if (!I.use_empty())
 | |
|       I.replaceAllUsesWith(UndefValue::get(I.getType()));
 | |
|     BB->getInstList().pop_back();
 | |
|   }
 | |
|   
 | |
|   // Zap the block!
 | |
|   BB->eraseFromParent();
 | |
| }
 | |
| 
 | |
| /// FoldSingleEntryPHINodes - We know that BB has one predecessor.  If there are
 | |
| /// any single-entry PHI nodes in it, fold them away.  This handles the case
 | |
| /// when all entries to the PHI nodes in a block are guaranteed equal, such as
 | |
| /// when the block has exactly one predecessor.
 | |
| void llvm::FoldSingleEntryPHINodes(BasicBlock *BB) {
 | |
|   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
 | |
|     if (PN->getIncomingValue(0) != PN)
 | |
|       PN->replaceAllUsesWith(PN->getIncomingValue(0));
 | |
|     else
 | |
|       PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
 | |
|     PN->eraseFromParent();
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// DeleteDeadPHIs - Examine each PHI in the given block and delete it if it
 | |
| /// is dead. Also recursively delete any operands that become dead as
 | |
| /// a result. This includes tracing the def-use list from the PHI to see if
 | |
| /// it is ultimately unused or if it reaches an unused cycle.
 | |
| bool llvm::DeleteDeadPHIs(BasicBlock *BB) {
 | |
|   // Recursively deleting a PHI may cause multiple PHIs to be deleted
 | |
|   // or RAUW'd undef, so use an array of WeakVH for the PHIs to delete.
 | |
|   SmallVector<WeakVH, 8> PHIs;
 | |
|   for (BasicBlock::iterator I = BB->begin();
 | |
|        PHINode *PN = dyn_cast<PHINode>(I); ++I)
 | |
|     PHIs.push_back(PN);
 | |
| 
 | |
|   bool Changed = false;
 | |
|   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
 | |
|     if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
 | |
|       Changed |= RecursivelyDeleteDeadPHINode(PN);
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// MergeBlockIntoPredecessor - Attempts to merge a block into its predecessor,
 | |
| /// if possible.  The return value indicates success or failure.
 | |
| bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, Pass *P) {
 | |
|   // Don't merge away blocks who have their address taken.
 | |
|   if (BB->hasAddressTaken()) return false;
 | |
|   
 | |
|   // Can't merge if there are multiple predecessors, or no predecessors.
 | |
|   BasicBlock *PredBB = BB->getUniquePredecessor();
 | |
|   if (!PredBB) return false;
 | |
| 
 | |
|   // Don't break self-loops.
 | |
|   if (PredBB == BB) return false;
 | |
|   // Don't break invokes.
 | |
|   if (isa<InvokeInst>(PredBB->getTerminator())) return false;
 | |
|   
 | |
|   succ_iterator SI(succ_begin(PredBB)), SE(succ_end(PredBB));
 | |
|   BasicBlock* OnlySucc = BB;
 | |
|   for (; SI != SE; ++SI)
 | |
|     if (*SI != OnlySucc) {
 | |
|       OnlySucc = 0;     // There are multiple distinct successors!
 | |
|       break;
 | |
|     }
 | |
|   
 | |
|   // Can't merge if there are multiple successors.
 | |
|   if (!OnlySucc) return false;
 | |
| 
 | |
|   // Can't merge if there is PHI loop.
 | |
|   for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE; ++BI) {
 | |
|     if (PHINode *PN = dyn_cast<PHINode>(BI)) {
 | |
|       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | |
|         if (PN->getIncomingValue(i) == PN)
 | |
|           return false;
 | |
|     } else
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   // Begin by getting rid of unneeded PHIs.
 | |
|   while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
 | |
|     PN->replaceAllUsesWith(PN->getIncomingValue(0));
 | |
|     BB->getInstList().pop_front();  // Delete the phi node...
 | |
|   }
 | |
|   
 | |
|   // Delete the unconditional branch from the predecessor...
 | |
|   PredBB->getInstList().pop_back();
 | |
|   
 | |
|   // Move all definitions in the successor to the predecessor...
 | |
|   PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
 | |
|   
 | |
|   // Make all PHI nodes that referred to BB now refer to Pred as their
 | |
|   // source...
 | |
|   BB->replaceAllUsesWith(PredBB);
 | |
|   
 | |
|   // Inherit predecessors name if it exists.
 | |
|   if (!PredBB->hasName())
 | |
|     PredBB->takeName(BB);
 | |
|   
 | |
|   // Finally, erase the old block and update dominator info.
 | |
|   if (P) {
 | |
|     if (DominatorTree* DT = P->getAnalysisIfAvailable<DominatorTree>()) {
 | |
|       DomTreeNode* DTN = DT->getNode(BB);
 | |
|       DomTreeNode* PredDTN = DT->getNode(PredBB);
 | |
|   
 | |
|       if (DTN) {
 | |
|         SmallPtrSet<DomTreeNode*, 8> Children(DTN->begin(), DTN->end());
 | |
|         for (SmallPtrSet<DomTreeNode*, 8>::iterator DI = Children.begin(),
 | |
|              DE = Children.end(); DI != DE; ++DI)
 | |
|           DT->changeImmediateDominator(*DI, PredDTN);
 | |
| 
 | |
|         DT->eraseNode(BB);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   BB->eraseFromParent();
 | |
|   
 | |
|   
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// ReplaceInstWithValue - Replace all uses of an instruction (specified by BI)
 | |
| /// with a value, then remove and delete the original instruction.
 | |
| ///
 | |
| void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
 | |
|                                 BasicBlock::iterator &BI, Value *V) {
 | |
|   Instruction &I = *BI;
 | |
|   // Replaces all of the uses of the instruction with uses of the value
 | |
|   I.replaceAllUsesWith(V);
 | |
| 
 | |
|   // Make sure to propagate a name if there is one already.
 | |
|   if (I.hasName() && !V->hasName())
 | |
|     V->takeName(&I);
 | |
| 
 | |
|   // Delete the unnecessary instruction now...
 | |
|   BI = BIL.erase(BI);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// ReplaceInstWithInst - Replace the instruction specified by BI with the
 | |
| /// instruction specified by I.  The original instruction is deleted and BI is
 | |
| /// updated to point to the new instruction.
 | |
| ///
 | |
| void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
 | |
|                                BasicBlock::iterator &BI, Instruction *I) {
 | |
|   assert(I->getParent() == 0 &&
 | |
|          "ReplaceInstWithInst: Instruction already inserted into basic block!");
 | |
| 
 | |
|   // Insert the new instruction into the basic block...
 | |
|   BasicBlock::iterator New = BIL.insert(BI, I);
 | |
| 
 | |
|   // Replace all uses of the old instruction, and delete it.
 | |
|   ReplaceInstWithValue(BIL, BI, I);
 | |
| 
 | |
|   // Move BI back to point to the newly inserted instruction
 | |
|   BI = New;
 | |
| }
 | |
| 
 | |
| /// ReplaceInstWithInst - Replace the instruction specified by From with the
 | |
| /// instruction specified by To.
 | |
| ///
 | |
| void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
 | |
|   BasicBlock::iterator BI(From);
 | |
|   ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
 | |
| }
 | |
| 
 | |
| /// RemoveSuccessor - Change the specified terminator instruction such that its
 | |
| /// successor SuccNum no longer exists.  Because this reduces the outgoing
 | |
| /// degree of the current basic block, the actual terminator instruction itself
 | |
| /// may have to be changed.  In the case where the last successor of the block 
 | |
| /// is deleted, a return instruction is inserted in its place which can cause a
 | |
| /// surprising change in program behavior if it is not expected.
 | |
| ///
 | |
| void llvm::RemoveSuccessor(TerminatorInst *TI, unsigned SuccNum) {
 | |
|   assert(SuccNum < TI->getNumSuccessors() &&
 | |
|          "Trying to remove a nonexistant successor!");
 | |
| 
 | |
|   // If our old successor block contains any PHI nodes, remove the entry in the
 | |
|   // PHI nodes that comes from this branch...
 | |
|   //
 | |
|   BasicBlock *BB = TI->getParent();
 | |
|   TI->getSuccessor(SuccNum)->removePredecessor(BB);
 | |
| 
 | |
|   TerminatorInst *NewTI = 0;
 | |
|   switch (TI->getOpcode()) {
 | |
|   case Instruction::Br:
 | |
|     // If this is a conditional branch... convert to unconditional branch.
 | |
|     if (TI->getNumSuccessors() == 2) {
 | |
|       cast<BranchInst>(TI)->setUnconditionalDest(TI->getSuccessor(1-SuccNum));
 | |
|     } else {                    // Otherwise convert to a return instruction...
 | |
|       Value *RetVal = 0;
 | |
| 
 | |
|       // Create a value to return... if the function doesn't return null...
 | |
|       if (!BB->getParent()->getReturnType()->isVoidTy())
 | |
|         RetVal = Constant::getNullValue(BB->getParent()->getReturnType());
 | |
| 
 | |
|       // Create the return...
 | |
|       NewTI = ReturnInst::Create(TI->getContext(), RetVal);
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case Instruction::Invoke:    // Should convert to call
 | |
|   case Instruction::Switch:    // Should remove entry
 | |
|   default:
 | |
|   case Instruction::Ret:       // Cannot happen, has no successors!
 | |
|     llvm_unreachable("Unhandled terminator inst type in RemoveSuccessor!");
 | |
|   }
 | |
| 
 | |
|   if (NewTI)   // If it's a different instruction, replace.
 | |
|     ReplaceInstWithInst(TI, NewTI);
 | |
| }
 | |
| 
 | |
| /// GetSuccessorNumber - Search for the specified successor of basic block BB
 | |
| /// and return its position in the terminator instruction's list of
 | |
| /// successors.  It is an error to call this with a block that is not a
 | |
| /// successor.
 | |
| unsigned llvm::GetSuccessorNumber(BasicBlock *BB, BasicBlock *Succ) {
 | |
|   TerminatorInst *Term = BB->getTerminator();
 | |
| #ifndef NDEBUG
 | |
|   unsigned e = Term->getNumSuccessors();
 | |
| #endif
 | |
|   for (unsigned i = 0; ; ++i) {
 | |
|     assert(i != e && "Didn't find edge?");
 | |
|     if (Term->getSuccessor(i) == Succ)
 | |
|       return i;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// SplitEdge -  Split the edge connecting specified block. Pass P must 
 | |
| /// not be NULL. 
 | |
| BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, Pass *P) {
 | |
|   unsigned SuccNum = GetSuccessorNumber(BB, Succ);
 | |
|   
 | |
|   // If this is a critical edge, let SplitCriticalEdge do it.
 | |
|   TerminatorInst *LatchTerm = BB->getTerminator();
 | |
|   if (SplitCriticalEdge(LatchTerm, SuccNum, P))
 | |
|     return LatchTerm->getSuccessor(SuccNum);
 | |
| 
 | |
|   // If the edge isn't critical, then BB has a single successor or Succ has a
 | |
|   // single pred.  Split the block.
 | |
|   BasicBlock::iterator SplitPoint;
 | |
|   if (BasicBlock *SP = Succ->getSinglePredecessor()) {
 | |
|     // If the successor only has a single pred, split the top of the successor
 | |
|     // block.
 | |
|     assert(SP == BB && "CFG broken");
 | |
|     SP = NULL;
 | |
|     return SplitBlock(Succ, Succ->begin(), P);
 | |
|   } else {
 | |
|     // Otherwise, if BB has a single successor, split it at the bottom of the
 | |
|     // block.
 | |
|     assert(BB->getTerminator()->getNumSuccessors() == 1 &&
 | |
|            "Should have a single succ!"); 
 | |
|     return SplitBlock(BB, BB->getTerminator(), P);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// SplitBlock - Split the specified block at the specified instruction - every
 | |
| /// thing before SplitPt stays in Old and everything starting with SplitPt moves
 | |
| /// to a new block.  The two blocks are joined by an unconditional branch and
 | |
| /// the loop info is updated.
 | |
| ///
 | |
| BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, Pass *P) {
 | |
|   BasicBlock::iterator SplitIt = SplitPt;
 | |
|   while (isa<PHINode>(SplitIt))
 | |
|     ++SplitIt;
 | |
|   BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split");
 | |
| 
 | |
|   // The new block lives in whichever loop the old one did. This preserves
 | |
|   // LCSSA as well, because we force the split point to be after any PHI nodes.
 | |
|   if (LoopInfo* LI = P->getAnalysisIfAvailable<LoopInfo>())
 | |
|     if (Loop *L = LI->getLoopFor(Old))
 | |
|       L->addBasicBlockToLoop(New, LI->getBase());
 | |
| 
 | |
|   if (DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>()) {
 | |
|     // Old dominates New. New node dominates all other nodes dominated by Old.
 | |
|     DomTreeNode *OldNode = DT->getNode(Old);
 | |
|     std::vector<DomTreeNode *> Children;
 | |
|     for (DomTreeNode::iterator I = OldNode->begin(), E = OldNode->end();
 | |
|          I != E; ++I) 
 | |
|       Children.push_back(*I);
 | |
| 
 | |
|       DomTreeNode *NewNode = DT->addNewBlock(New,Old);
 | |
|       for (std::vector<DomTreeNode *>::iterator I = Children.begin(),
 | |
|              E = Children.end(); I != E; ++I) 
 | |
|         DT->changeImmediateDominator(*I, NewNode);
 | |
|   }
 | |
| 
 | |
|   if (DominanceFrontier *DF = P->getAnalysisIfAvailable<DominanceFrontier>())
 | |
|     DF->splitBlock(Old);
 | |
|     
 | |
|   return New;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// SplitBlockPredecessors - This method transforms BB by introducing a new
 | |
| /// basic block into the function, and moving some of the predecessors of BB to
 | |
| /// be predecessors of the new block.  The new predecessors are indicated by the
 | |
| /// Preds array, which has NumPreds elements in it.  The new block is given a
 | |
| /// suffix of 'Suffix'.
 | |
| ///
 | |
| /// This currently updates the LLVM IR, AliasAnalysis, DominatorTree,
 | |
| /// DominanceFrontier, LoopInfo, and LCCSA but no other analyses.
 | |
| /// In particular, it does not preserve LoopSimplify (because it's
 | |
| /// complicated to handle the case where one of the edges being split
 | |
| /// is an exit of a loop with other exits).
 | |
| ///
 | |
| BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB, 
 | |
|                                          BasicBlock *const *Preds,
 | |
|                                          unsigned NumPreds, const char *Suffix,
 | |
|                                          Pass *P) {
 | |
|   // Create new basic block, insert right before the original block.
 | |
|   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), BB->getName()+Suffix,
 | |
|                                          BB->getParent(), BB);
 | |
|   
 | |
|   // The new block unconditionally branches to the old block.
 | |
|   BranchInst *BI = BranchInst::Create(BB, NewBB);
 | |
|   
 | |
|   LoopInfo *LI = P ? P->getAnalysisIfAvailable<LoopInfo>() : 0;
 | |
|   Loop *L = LI ? LI->getLoopFor(BB) : 0;
 | |
|   bool PreserveLCSSA = P->mustPreserveAnalysisID(LCSSAID);
 | |
| 
 | |
|   // Move the edges from Preds to point to NewBB instead of BB.
 | |
|   // While here, if we need to preserve loop analyses, collect
 | |
|   // some information about how this split will affect loops.
 | |
|   bool HasLoopExit = false;
 | |
|   bool IsLoopEntry = !!L;
 | |
|   bool SplitMakesNewLoopHeader = false;
 | |
|   for (unsigned i = 0; i != NumPreds; ++i) {
 | |
|     // This is slightly more strict than necessary; the minimum requirement
 | |
|     // is that there be no more than one indirectbr branching to BB. And
 | |
|     // all BlockAddress uses would need to be updated.
 | |
|     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
 | |
|            "Cannot split an edge from an IndirectBrInst");
 | |
| 
 | |
|     Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
 | |
| 
 | |
|     if (LI) {
 | |
|       // If we need to preserve LCSSA, determine if any of
 | |
|       // the preds is a loop exit.
 | |
|       if (PreserveLCSSA)
 | |
|         if (Loop *PL = LI->getLoopFor(Preds[i]))
 | |
|           if (!PL->contains(BB))
 | |
|             HasLoopExit = true;
 | |
|       // If we need to preserve LoopInfo, note whether any of the
 | |
|       // preds crosses an interesting loop boundary.
 | |
|       if (L) {
 | |
|         if (L->contains(Preds[i]))
 | |
|           IsLoopEntry = false;
 | |
|         else
 | |
|           SplitMakesNewLoopHeader = true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Update dominator tree and dominator frontier if available.
 | |
|   DominatorTree *DT = P ? P->getAnalysisIfAvailable<DominatorTree>() : 0;
 | |
|   if (DT)
 | |
|     DT->splitBlock(NewBB);
 | |
|   if (DominanceFrontier *DF =
 | |
|         P ? P->getAnalysisIfAvailable<DominanceFrontier>() : 0)
 | |
|     DF->splitBlock(NewBB);
 | |
| 
 | |
|   // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
 | |
|   // node becomes an incoming value for BB's phi node.  However, if the Preds
 | |
|   // list is empty, we need to insert dummy entries into the PHI nodes in BB to
 | |
|   // account for the newly created predecessor.
 | |
|   if (NumPreds == 0) {
 | |
|     // Insert dummy values as the incoming value.
 | |
|     for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
 | |
|       cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
 | |
|     return NewBB;
 | |
|   }
 | |
| 
 | |
|   AliasAnalysis *AA = P ? P->getAnalysisIfAvailable<AliasAnalysis>() : 0;
 | |
| 
 | |
|   if (L) {
 | |
|     if (IsLoopEntry) {
 | |
|       // Add the new block to the nearest enclosing loop (and not an
 | |
|       // adjacent loop). To find this, examine each of the predecessors and
 | |
|       // determine which loops enclose them, and select the most-nested loop
 | |
|       // which contains the loop containing the block being split.
 | |
|       Loop *InnermostPredLoop = 0;
 | |
|       for (unsigned i = 0; i != NumPreds; ++i)
 | |
|         if (Loop *PredLoop = LI->getLoopFor(Preds[i])) {
 | |
|           // Seek a loop which actually contains the block being split (to
 | |
|           // avoid adjacent loops).
 | |
|           while (PredLoop && !PredLoop->contains(BB))
 | |
|             PredLoop = PredLoop->getParentLoop();
 | |
|           // Select the most-nested of these loops which contains the block.
 | |
|           if (PredLoop &&
 | |
|               PredLoop->contains(BB) &&
 | |
|               (!InnermostPredLoop ||
 | |
|                InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
 | |
|             InnermostPredLoop = PredLoop;
 | |
|         }
 | |
|       if (InnermostPredLoop)
 | |
|         InnermostPredLoop->addBasicBlockToLoop(NewBB, LI->getBase());
 | |
|     } else {
 | |
|       L->addBasicBlockToLoop(NewBB, LI->getBase());
 | |
|       if (SplitMakesNewLoopHeader)
 | |
|         L->moveToHeader(NewBB);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Otherwise, create a new PHI node in NewBB for each PHI node in BB.
 | |
|   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ) {
 | |
|     PHINode *PN = cast<PHINode>(I++);
 | |
|     
 | |
|     // Check to see if all of the values coming in are the same.  If so, we
 | |
|     // don't need to create a new PHI node, unless it's needed for LCSSA.
 | |
|     Value *InVal = 0;
 | |
|     if (!HasLoopExit) {
 | |
|       InVal = PN->getIncomingValueForBlock(Preds[0]);
 | |
|       for (unsigned i = 1; i != NumPreds; ++i)
 | |
|         if (InVal != PN->getIncomingValueForBlock(Preds[i])) {
 | |
|           InVal = 0;
 | |
|           break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (InVal) {
 | |
|       // If all incoming values for the new PHI would be the same, just don't
 | |
|       // make a new PHI.  Instead, just remove the incoming values from the old
 | |
|       // PHI.
 | |
|       for (unsigned i = 0; i != NumPreds; ++i)
 | |
|         PN->removeIncomingValue(Preds[i], false);
 | |
|     } else {
 | |
|       // If the values coming into the block are not the same, we need a PHI.
 | |
|       // Create the new PHI node, insert it into NewBB at the end of the block
 | |
|       PHINode *NewPHI =
 | |
|         PHINode::Create(PN->getType(), PN->getName()+".ph", BI);
 | |
|       if (AA) AA->copyValue(PN, NewPHI);
 | |
|       
 | |
|       // Move all of the PHI values for 'Preds' to the new PHI.
 | |
|       for (unsigned i = 0; i != NumPreds; ++i) {
 | |
|         Value *V = PN->removeIncomingValue(Preds[i], false);
 | |
|         NewPHI->addIncoming(V, Preds[i]);
 | |
|       }
 | |
|       InVal = NewPHI;
 | |
|     }
 | |
|     
 | |
|     // Add an incoming value to the PHI node in the loop for the preheader
 | |
|     // edge.
 | |
|     PN->addIncoming(InVal, NewBB);
 | |
|   }
 | |
|   
 | |
|   return NewBB;
 | |
| }
 | |
| 
 | |
| /// FindFunctionBackedges - Analyze the specified function to find all of the
 | |
| /// loop backedges in the function and return them.  This is a relatively cheap
 | |
| /// (compared to computing dominators and loop info) analysis.
 | |
| ///
 | |
| /// The output is added to Result, as pairs of <from,to> edge info.
 | |
| void llvm::FindFunctionBackedges(const Function &F,
 | |
|      SmallVectorImpl<std::pair<const BasicBlock*,const BasicBlock*> > &Result) {
 | |
|   const BasicBlock *BB = &F.getEntryBlock();
 | |
|   if (succ_begin(BB) == succ_end(BB))
 | |
|     return;
 | |
|   
 | |
|   SmallPtrSet<const BasicBlock*, 8> Visited;
 | |
|   SmallVector<std::pair<const BasicBlock*, succ_const_iterator>, 8> VisitStack;
 | |
|   SmallPtrSet<const BasicBlock*, 8> InStack;
 | |
|   
 | |
|   Visited.insert(BB);
 | |
|   VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
 | |
|   InStack.insert(BB);
 | |
|   do {
 | |
|     std::pair<const BasicBlock*, succ_const_iterator> &Top = VisitStack.back();
 | |
|     const BasicBlock *ParentBB = Top.first;
 | |
|     succ_const_iterator &I = Top.second;
 | |
|     
 | |
|     bool FoundNew = false;
 | |
|     while (I != succ_end(ParentBB)) {
 | |
|       BB = *I++;
 | |
|       if (Visited.insert(BB)) {
 | |
|         FoundNew = true;
 | |
|         break;
 | |
|       }
 | |
|       // Successor is in VisitStack, it's a back edge.
 | |
|       if (InStack.count(BB))
 | |
|         Result.push_back(std::make_pair(ParentBB, BB));
 | |
|     }
 | |
|     
 | |
|     if (FoundNew) {
 | |
|       // Go down one level if there is a unvisited successor.
 | |
|       InStack.insert(BB);
 | |
|       VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
 | |
|     } else {
 | |
|       // Go up one level.
 | |
|       InStack.erase(VisitStack.pop_back_val().first);
 | |
|     }
 | |
|   } while (!VisitStack.empty());
 | |
|   
 | |
|   
 | |
| }
 |