llvm-6502/lib/Transforms/Utils/ValueMapper.cpp
Chandler Carruth 0b8c9a80f2 Move all of the header files which are involved in modelling the LLVM IR
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.

There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.

The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.

I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).

I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171366 91177308-0d34-0410-b5e6-96231b3b80d8
2013-01-02 11:36:10 +00:00

201 lines
7.4 KiB
C++

//===- ValueMapper.cpp - Interface shared by lib/Transforms/Utils ---------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the MapValue function, which is shared by various parts of
// the lib/Transforms/Utils library.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/ValueMapper.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Metadata.h"
using namespace llvm;
// Out of line method to get vtable etc for class.
void ValueMapTypeRemapper::anchor() {}
Value *llvm::MapValue(const Value *V, ValueToValueMapTy &VM, RemapFlags Flags,
ValueMapTypeRemapper *TypeMapper) {
ValueToValueMapTy::iterator I = VM.find(V);
// If the value already exists in the map, use it.
if (I != VM.end() && I->second) return I->second;
// Global values do not need to be seeded into the VM if they
// are using the identity mapping.
if (isa<GlobalValue>(V) || isa<MDString>(V))
return VM[V] = const_cast<Value*>(V);
if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
// Inline asm may need *type* remapping.
FunctionType *NewTy = IA->getFunctionType();
if (TypeMapper) {
NewTy = cast<FunctionType>(TypeMapper->remapType(NewTy));
if (NewTy != IA->getFunctionType())
V = InlineAsm::get(NewTy, IA->getAsmString(), IA->getConstraintString(),
IA->hasSideEffects(), IA->isAlignStack());
}
return VM[V] = const_cast<Value*>(V);
}
if (const MDNode *MD = dyn_cast<MDNode>(V)) {
// If this is a module-level metadata and we know that nothing at the module
// level is changing, then use an identity mapping.
if (!MD->isFunctionLocal() && (Flags & RF_NoModuleLevelChanges))
return VM[V] = const_cast<Value*>(V);
// Create a dummy node in case we have a metadata cycle.
MDNode *Dummy = MDNode::getTemporary(V->getContext(), ArrayRef<Value*>());
VM[V] = Dummy;
// Check all operands to see if any need to be remapped.
for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i) {
Value *OP = MD->getOperand(i);
if (OP == 0 || MapValue(OP, VM, Flags, TypeMapper) == OP) continue;
// Ok, at least one operand needs remapping.
SmallVector<Value*, 4> Elts;
Elts.reserve(MD->getNumOperands());
for (i = 0; i != e; ++i) {
Value *Op = MD->getOperand(i);
Elts.push_back(Op ? MapValue(Op, VM, Flags, TypeMapper) : 0);
}
MDNode *NewMD = MDNode::get(V->getContext(), Elts);
Dummy->replaceAllUsesWith(NewMD);
VM[V] = NewMD;
MDNode::deleteTemporary(Dummy);
return NewMD;
}
VM[V] = const_cast<Value*>(V);
MDNode::deleteTemporary(Dummy);
// No operands needed remapping. Use an identity mapping.
return const_cast<Value*>(V);
}
// Okay, this either must be a constant (which may or may not be mappable) or
// is something that is not in the mapping table.
Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V));
if (C == 0)
return 0;
if (BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
Function *F =
cast<Function>(MapValue(BA->getFunction(), VM, Flags, TypeMapper));
BasicBlock *BB = cast_or_null<BasicBlock>(MapValue(BA->getBasicBlock(), VM,
Flags, TypeMapper));
return VM[V] = BlockAddress::get(F, BB ? BB : BA->getBasicBlock());
}
// Otherwise, we have some other constant to remap. Start by checking to see
// if all operands have an identity remapping.
unsigned OpNo = 0, NumOperands = C->getNumOperands();
Value *Mapped = 0;
for (; OpNo != NumOperands; ++OpNo) {
Value *Op = C->getOperand(OpNo);
Mapped = MapValue(Op, VM, Flags, TypeMapper);
if (Mapped != C) break;
}
// See if the type mapper wants to remap the type as well.
Type *NewTy = C->getType();
if (TypeMapper)
NewTy = TypeMapper->remapType(NewTy);
// If the result type and all operands match up, then just insert an identity
// mapping.
if (OpNo == NumOperands && NewTy == C->getType())
return VM[V] = C;
// Okay, we need to create a new constant. We've already processed some or
// all of the operands, set them all up now.
SmallVector<Constant*, 8> Ops;
Ops.reserve(NumOperands);
for (unsigned j = 0; j != OpNo; ++j)
Ops.push_back(cast<Constant>(C->getOperand(j)));
// If one of the operands mismatch, push it and the other mapped operands.
if (OpNo != NumOperands) {
Ops.push_back(cast<Constant>(Mapped));
// Map the rest of the operands that aren't processed yet.
for (++OpNo; OpNo != NumOperands; ++OpNo)
Ops.push_back(MapValue(cast<Constant>(C->getOperand(OpNo)), VM,
Flags, TypeMapper));
}
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
return VM[V] = CE->getWithOperands(Ops, NewTy);
if (isa<ConstantArray>(C))
return VM[V] = ConstantArray::get(cast<ArrayType>(NewTy), Ops);
if (isa<ConstantStruct>(C))
return VM[V] = ConstantStruct::get(cast<StructType>(NewTy), Ops);
if (isa<ConstantVector>(C))
return VM[V] = ConstantVector::get(Ops);
// If this is a no-operand constant, it must be because the type was remapped.
if (isa<UndefValue>(C))
return VM[V] = UndefValue::get(NewTy);
if (isa<ConstantAggregateZero>(C))
return VM[V] = ConstantAggregateZero::get(NewTy);
assert(isa<ConstantPointerNull>(C));
return VM[V] = ConstantPointerNull::get(cast<PointerType>(NewTy));
}
/// RemapInstruction - Convert the instruction operands from referencing the
/// current values into those specified by VMap.
///
void llvm::RemapInstruction(Instruction *I, ValueToValueMapTy &VMap,
RemapFlags Flags, ValueMapTypeRemapper *TypeMapper){
// Remap operands.
for (User::op_iterator op = I->op_begin(), E = I->op_end(); op != E; ++op) {
Value *V = MapValue(*op, VMap, Flags, TypeMapper);
// If we aren't ignoring missing entries, assert that something happened.
if (V != 0)
*op = V;
else
assert((Flags & RF_IgnoreMissingEntries) &&
"Referenced value not in value map!");
}
// Remap phi nodes' incoming blocks.
if (PHINode *PN = dyn_cast<PHINode>(I)) {
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
Value *V = MapValue(PN->getIncomingBlock(i), VMap, Flags);
// If we aren't ignoring missing entries, assert that something happened.
if (V != 0)
PN->setIncomingBlock(i, cast<BasicBlock>(V));
else
assert((Flags & RF_IgnoreMissingEntries) &&
"Referenced block not in value map!");
}
}
// Remap attached metadata.
SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
I->getAllMetadata(MDs);
for (SmallVectorImpl<std::pair<unsigned, MDNode *> >::iterator
MI = MDs.begin(), ME = MDs.end(); MI != ME; ++MI) {
MDNode *Old = MI->second;
MDNode *New = MapValue(Old, VMap, Flags, TypeMapper);
if (New != Old)
I->setMetadata(MI->first, New);
}
// If the instruction's type is being remapped, do so now.
if (TypeMapper)
I->mutateType(TypeMapper->remapType(I->getType()));
}