mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-10 02:36:06 +00:00
e6d97094b7
the TargetMachine to a TargetSubtargetInfo since everything we wanted is off of that. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219382 91177308-0d34-0410-b5e6-96231b3b80d8
1441 lines
47 KiB
C++
1441 lines
47 KiB
C++
//===-- R600InstrInfo.cpp - R600 Instruction Information ------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
/// \file
|
|
/// \brief R600 Implementation of TargetInstrInfo.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "R600InstrInfo.h"
|
|
#include "AMDGPU.h"
|
|
#include "AMDGPUSubtarget.h"
|
|
#include "AMDGPUTargetMachine.h"
|
|
#include "R600Defines.h"
|
|
#include "R600MachineFunctionInfo.h"
|
|
#include "R600RegisterInfo.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define GET_INSTRINFO_CTOR_DTOR
|
|
#include "AMDGPUGenDFAPacketizer.inc"
|
|
|
|
R600InstrInfo::R600InstrInfo(const AMDGPUSubtarget &st)
|
|
: AMDGPUInstrInfo(st),
|
|
RI(st)
|
|
{ }
|
|
|
|
const R600RegisterInfo &R600InstrInfo::getRegisterInfo() const {
|
|
return RI;
|
|
}
|
|
|
|
bool R600InstrInfo::isTrig(const MachineInstr &MI) const {
|
|
return get(MI.getOpcode()).TSFlags & R600_InstFlag::TRIG;
|
|
}
|
|
|
|
bool R600InstrInfo::isVector(const MachineInstr &MI) const {
|
|
return get(MI.getOpcode()).TSFlags & R600_InstFlag::VECTOR;
|
|
}
|
|
|
|
void
|
|
R600InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MI, DebugLoc DL,
|
|
unsigned DestReg, unsigned SrcReg,
|
|
bool KillSrc) const {
|
|
unsigned VectorComponents = 0;
|
|
if ((AMDGPU::R600_Reg128RegClass.contains(DestReg) ||
|
|
AMDGPU::R600_Reg128VerticalRegClass.contains(DestReg)) &&
|
|
(AMDGPU::R600_Reg128RegClass.contains(SrcReg) ||
|
|
AMDGPU::R600_Reg128VerticalRegClass.contains(SrcReg))) {
|
|
VectorComponents = 4;
|
|
} else if((AMDGPU::R600_Reg64RegClass.contains(DestReg) ||
|
|
AMDGPU::R600_Reg64VerticalRegClass.contains(DestReg)) &&
|
|
(AMDGPU::R600_Reg64RegClass.contains(SrcReg) ||
|
|
AMDGPU::R600_Reg64VerticalRegClass.contains(SrcReg))) {
|
|
VectorComponents = 2;
|
|
}
|
|
|
|
if (VectorComponents > 0) {
|
|
for (unsigned I = 0; I < VectorComponents; I++) {
|
|
unsigned SubRegIndex = RI.getSubRegFromChannel(I);
|
|
buildDefaultInstruction(MBB, MI, AMDGPU::MOV,
|
|
RI.getSubReg(DestReg, SubRegIndex),
|
|
RI.getSubReg(SrcReg, SubRegIndex))
|
|
.addReg(DestReg,
|
|
RegState::Define | RegState::Implicit);
|
|
}
|
|
} else {
|
|
MachineInstr *NewMI = buildDefaultInstruction(MBB, MI, AMDGPU::MOV,
|
|
DestReg, SrcReg);
|
|
NewMI->getOperand(getOperandIdx(*NewMI, AMDGPU::OpName::src0))
|
|
.setIsKill(KillSrc);
|
|
}
|
|
}
|
|
|
|
/// \returns true if \p MBBI can be moved into a new basic.
|
|
bool R600InstrInfo::isLegalToSplitMBBAt(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MBBI) const {
|
|
for (MachineInstr::const_mop_iterator I = MBBI->operands_begin(),
|
|
E = MBBI->operands_end(); I != E; ++I) {
|
|
if (I->isReg() && !TargetRegisterInfo::isVirtualRegister(I->getReg()) &&
|
|
I->isUse() && RI.isPhysRegLiveAcrossClauses(I->getReg()))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool R600InstrInfo::isMov(unsigned Opcode) const {
|
|
|
|
|
|
switch(Opcode) {
|
|
default: return false;
|
|
case AMDGPU::MOV:
|
|
case AMDGPU::MOV_IMM_F32:
|
|
case AMDGPU::MOV_IMM_I32:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Some instructions act as place holders to emulate operations that the GPU
|
|
// hardware does automatically. This function can be used to check if
|
|
// an opcode falls into this category.
|
|
bool R600InstrInfo::isPlaceHolderOpcode(unsigned Opcode) const {
|
|
switch (Opcode) {
|
|
default: return false;
|
|
case AMDGPU::RETURN:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
bool R600InstrInfo::isReductionOp(unsigned Opcode) const {
|
|
return false;
|
|
}
|
|
|
|
bool R600InstrInfo::isCubeOp(unsigned Opcode) const {
|
|
switch(Opcode) {
|
|
default: return false;
|
|
case AMDGPU::CUBE_r600_pseudo:
|
|
case AMDGPU::CUBE_r600_real:
|
|
case AMDGPU::CUBE_eg_pseudo:
|
|
case AMDGPU::CUBE_eg_real:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
bool R600InstrInfo::isALUInstr(unsigned Opcode) const {
|
|
unsigned TargetFlags = get(Opcode).TSFlags;
|
|
|
|
return (TargetFlags & R600_InstFlag::ALU_INST);
|
|
}
|
|
|
|
bool R600InstrInfo::hasInstrModifiers(unsigned Opcode) const {
|
|
unsigned TargetFlags = get(Opcode).TSFlags;
|
|
|
|
return ((TargetFlags & R600_InstFlag::OP1) |
|
|
(TargetFlags & R600_InstFlag::OP2) |
|
|
(TargetFlags & R600_InstFlag::OP3));
|
|
}
|
|
|
|
bool R600InstrInfo::isLDSInstr(unsigned Opcode) const {
|
|
unsigned TargetFlags = get(Opcode).TSFlags;
|
|
|
|
return ((TargetFlags & R600_InstFlag::LDS_1A) |
|
|
(TargetFlags & R600_InstFlag::LDS_1A1D) |
|
|
(TargetFlags & R600_InstFlag::LDS_1A2D));
|
|
}
|
|
|
|
bool R600InstrInfo::isLDSNoRetInstr(unsigned Opcode) const {
|
|
return isLDSInstr(Opcode) && getOperandIdx(Opcode, AMDGPU::OpName::dst) == -1;
|
|
}
|
|
|
|
bool R600InstrInfo::isLDSRetInstr(unsigned Opcode) const {
|
|
return isLDSInstr(Opcode) && getOperandIdx(Opcode, AMDGPU::OpName::dst) != -1;
|
|
}
|
|
|
|
bool R600InstrInfo::canBeConsideredALU(const MachineInstr *MI) const {
|
|
if (isALUInstr(MI->getOpcode()))
|
|
return true;
|
|
if (isVector(*MI) || isCubeOp(MI->getOpcode()))
|
|
return true;
|
|
switch (MI->getOpcode()) {
|
|
case AMDGPU::PRED_X:
|
|
case AMDGPU::INTERP_PAIR_XY:
|
|
case AMDGPU::INTERP_PAIR_ZW:
|
|
case AMDGPU::INTERP_VEC_LOAD:
|
|
case AMDGPU::COPY:
|
|
case AMDGPU::DOT_4:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool R600InstrInfo::isTransOnly(unsigned Opcode) const {
|
|
if (ST.hasCaymanISA())
|
|
return false;
|
|
return (get(Opcode).getSchedClass() == AMDGPU::Sched::TransALU);
|
|
}
|
|
|
|
bool R600InstrInfo::isTransOnly(const MachineInstr *MI) const {
|
|
return isTransOnly(MI->getOpcode());
|
|
}
|
|
|
|
bool R600InstrInfo::isVectorOnly(unsigned Opcode) const {
|
|
return (get(Opcode).getSchedClass() == AMDGPU::Sched::VecALU);
|
|
}
|
|
|
|
bool R600InstrInfo::isVectorOnly(const MachineInstr *MI) const {
|
|
return isVectorOnly(MI->getOpcode());
|
|
}
|
|
|
|
bool R600InstrInfo::isExport(unsigned Opcode) const {
|
|
return (get(Opcode).TSFlags & R600_InstFlag::IS_EXPORT);
|
|
}
|
|
|
|
bool R600InstrInfo::usesVertexCache(unsigned Opcode) const {
|
|
return ST.hasVertexCache() && IS_VTX(get(Opcode));
|
|
}
|
|
|
|
bool R600InstrInfo::usesVertexCache(const MachineInstr *MI) const {
|
|
const MachineFunction *MF = MI->getParent()->getParent();
|
|
const R600MachineFunctionInfo *MFI = MF->getInfo<R600MachineFunctionInfo>();
|
|
return MFI->getShaderType() != ShaderType::COMPUTE &&
|
|
usesVertexCache(MI->getOpcode());
|
|
}
|
|
|
|
bool R600InstrInfo::usesTextureCache(unsigned Opcode) const {
|
|
return (!ST.hasVertexCache() && IS_VTX(get(Opcode))) || IS_TEX(get(Opcode));
|
|
}
|
|
|
|
bool R600InstrInfo::usesTextureCache(const MachineInstr *MI) const {
|
|
const MachineFunction *MF = MI->getParent()->getParent();
|
|
const R600MachineFunctionInfo *MFI = MF->getInfo<R600MachineFunctionInfo>();
|
|
return (MFI->getShaderType() == ShaderType::COMPUTE &&
|
|
usesVertexCache(MI->getOpcode())) ||
|
|
usesTextureCache(MI->getOpcode());
|
|
}
|
|
|
|
bool R600InstrInfo::mustBeLastInClause(unsigned Opcode) const {
|
|
switch (Opcode) {
|
|
case AMDGPU::KILLGT:
|
|
case AMDGPU::GROUP_BARRIER:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool R600InstrInfo::usesAddressRegister(MachineInstr *MI) const {
|
|
return MI->findRegisterUseOperandIdx(AMDGPU::AR_X) != -1;
|
|
}
|
|
|
|
bool R600InstrInfo::definesAddressRegister(MachineInstr *MI) const {
|
|
return MI->findRegisterDefOperandIdx(AMDGPU::AR_X) != -1;
|
|
}
|
|
|
|
bool R600InstrInfo::readsLDSSrcReg(const MachineInstr *MI) const {
|
|
if (!isALUInstr(MI->getOpcode())) {
|
|
return false;
|
|
}
|
|
for (MachineInstr::const_mop_iterator I = MI->operands_begin(),
|
|
E = MI->operands_end(); I != E; ++I) {
|
|
if (!I->isReg() || !I->isUse() ||
|
|
TargetRegisterInfo::isVirtualRegister(I->getReg()))
|
|
continue;
|
|
|
|
if (AMDGPU::R600_LDS_SRC_REGRegClass.contains(I->getReg()))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
int R600InstrInfo::getSrcIdx(unsigned Opcode, unsigned SrcNum) const {
|
|
static const unsigned OpTable[] = {
|
|
AMDGPU::OpName::src0,
|
|
AMDGPU::OpName::src1,
|
|
AMDGPU::OpName::src2
|
|
};
|
|
|
|
assert (SrcNum < 3);
|
|
return getOperandIdx(Opcode, OpTable[SrcNum]);
|
|
}
|
|
|
|
#define SRC_SEL_ROWS 11
|
|
int R600InstrInfo::getSelIdx(unsigned Opcode, unsigned SrcIdx) const {
|
|
static const unsigned SrcSelTable[SRC_SEL_ROWS][2] = {
|
|
{AMDGPU::OpName::src0, AMDGPU::OpName::src0_sel},
|
|
{AMDGPU::OpName::src1, AMDGPU::OpName::src1_sel},
|
|
{AMDGPU::OpName::src2, AMDGPU::OpName::src2_sel},
|
|
{AMDGPU::OpName::src0_X, AMDGPU::OpName::src0_sel_X},
|
|
{AMDGPU::OpName::src0_Y, AMDGPU::OpName::src0_sel_Y},
|
|
{AMDGPU::OpName::src0_Z, AMDGPU::OpName::src0_sel_Z},
|
|
{AMDGPU::OpName::src0_W, AMDGPU::OpName::src0_sel_W},
|
|
{AMDGPU::OpName::src1_X, AMDGPU::OpName::src1_sel_X},
|
|
{AMDGPU::OpName::src1_Y, AMDGPU::OpName::src1_sel_Y},
|
|
{AMDGPU::OpName::src1_Z, AMDGPU::OpName::src1_sel_Z},
|
|
{AMDGPU::OpName::src1_W, AMDGPU::OpName::src1_sel_W}
|
|
};
|
|
|
|
for (unsigned i = 0; i < SRC_SEL_ROWS; ++i) {
|
|
if (getOperandIdx(Opcode, SrcSelTable[i][0]) == (int)SrcIdx) {
|
|
return getOperandIdx(Opcode, SrcSelTable[i][1]);
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
#undef SRC_SEL_ROWS
|
|
|
|
SmallVector<std::pair<MachineOperand *, int64_t>, 3>
|
|
R600InstrInfo::getSrcs(MachineInstr *MI) const {
|
|
SmallVector<std::pair<MachineOperand *, int64_t>, 3> Result;
|
|
|
|
if (MI->getOpcode() == AMDGPU::DOT_4) {
|
|
static const unsigned OpTable[8][2] = {
|
|
{AMDGPU::OpName::src0_X, AMDGPU::OpName::src0_sel_X},
|
|
{AMDGPU::OpName::src0_Y, AMDGPU::OpName::src0_sel_Y},
|
|
{AMDGPU::OpName::src0_Z, AMDGPU::OpName::src0_sel_Z},
|
|
{AMDGPU::OpName::src0_W, AMDGPU::OpName::src0_sel_W},
|
|
{AMDGPU::OpName::src1_X, AMDGPU::OpName::src1_sel_X},
|
|
{AMDGPU::OpName::src1_Y, AMDGPU::OpName::src1_sel_Y},
|
|
{AMDGPU::OpName::src1_Z, AMDGPU::OpName::src1_sel_Z},
|
|
{AMDGPU::OpName::src1_W, AMDGPU::OpName::src1_sel_W},
|
|
};
|
|
|
|
for (unsigned j = 0; j < 8; j++) {
|
|
MachineOperand &MO = MI->getOperand(getOperandIdx(MI->getOpcode(),
|
|
OpTable[j][0]));
|
|
unsigned Reg = MO.getReg();
|
|
if (Reg == AMDGPU::ALU_CONST) {
|
|
unsigned Sel = MI->getOperand(getOperandIdx(MI->getOpcode(),
|
|
OpTable[j][1])).getImm();
|
|
Result.push_back(std::pair<MachineOperand *, int64_t>(&MO, Sel));
|
|
continue;
|
|
}
|
|
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
static const unsigned OpTable[3][2] = {
|
|
{AMDGPU::OpName::src0, AMDGPU::OpName::src0_sel},
|
|
{AMDGPU::OpName::src1, AMDGPU::OpName::src1_sel},
|
|
{AMDGPU::OpName::src2, AMDGPU::OpName::src2_sel},
|
|
};
|
|
|
|
for (unsigned j = 0; j < 3; j++) {
|
|
int SrcIdx = getOperandIdx(MI->getOpcode(), OpTable[j][0]);
|
|
if (SrcIdx < 0)
|
|
break;
|
|
MachineOperand &MO = MI->getOperand(SrcIdx);
|
|
unsigned Reg = MI->getOperand(SrcIdx).getReg();
|
|
if (Reg == AMDGPU::ALU_CONST) {
|
|
unsigned Sel = MI->getOperand(
|
|
getOperandIdx(MI->getOpcode(), OpTable[j][1])).getImm();
|
|
Result.push_back(std::pair<MachineOperand *, int64_t>(&MO, Sel));
|
|
continue;
|
|
}
|
|
if (Reg == AMDGPU::ALU_LITERAL_X) {
|
|
unsigned Imm = MI->getOperand(
|
|
getOperandIdx(MI->getOpcode(), AMDGPU::OpName::literal)).getImm();
|
|
Result.push_back(std::pair<MachineOperand *, int64_t>(&MO, Imm));
|
|
continue;
|
|
}
|
|
Result.push_back(std::pair<MachineOperand *, int64_t>(&MO, 0));
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
std::vector<std::pair<int, unsigned> >
|
|
R600InstrInfo::ExtractSrcs(MachineInstr *MI,
|
|
const DenseMap<unsigned, unsigned> &PV,
|
|
unsigned &ConstCount) const {
|
|
ConstCount = 0;
|
|
const SmallVector<std::pair<MachineOperand *, int64_t>, 3> Srcs = getSrcs(MI);
|
|
const std::pair<int, unsigned> DummyPair(-1, 0);
|
|
std::vector<std::pair<int, unsigned> > Result;
|
|
unsigned i = 0;
|
|
for (unsigned n = Srcs.size(); i < n; ++i) {
|
|
unsigned Reg = Srcs[i].first->getReg();
|
|
unsigned Index = RI.getEncodingValue(Reg) & 0xff;
|
|
if (Reg == AMDGPU::OQAP) {
|
|
Result.push_back(std::pair<int, unsigned>(Index, 0));
|
|
}
|
|
if (PV.find(Reg) != PV.end()) {
|
|
// 255 is used to tells its a PS/PV reg
|
|
Result.push_back(std::pair<int, unsigned>(255, 0));
|
|
continue;
|
|
}
|
|
if (Index > 127) {
|
|
ConstCount++;
|
|
Result.push_back(DummyPair);
|
|
continue;
|
|
}
|
|
unsigned Chan = RI.getHWRegChan(Reg);
|
|
Result.push_back(std::pair<int, unsigned>(Index, Chan));
|
|
}
|
|
for (; i < 3; ++i)
|
|
Result.push_back(DummyPair);
|
|
return Result;
|
|
}
|
|
|
|
static std::vector<std::pair<int, unsigned> >
|
|
Swizzle(std::vector<std::pair<int, unsigned> > Src,
|
|
R600InstrInfo::BankSwizzle Swz) {
|
|
if (Src[0] == Src[1])
|
|
Src[1].first = -1;
|
|
switch (Swz) {
|
|
case R600InstrInfo::ALU_VEC_012_SCL_210:
|
|
break;
|
|
case R600InstrInfo::ALU_VEC_021_SCL_122:
|
|
std::swap(Src[1], Src[2]);
|
|
break;
|
|
case R600InstrInfo::ALU_VEC_102_SCL_221:
|
|
std::swap(Src[0], Src[1]);
|
|
break;
|
|
case R600InstrInfo::ALU_VEC_120_SCL_212:
|
|
std::swap(Src[0], Src[1]);
|
|
std::swap(Src[0], Src[2]);
|
|
break;
|
|
case R600InstrInfo::ALU_VEC_201:
|
|
std::swap(Src[0], Src[2]);
|
|
std::swap(Src[0], Src[1]);
|
|
break;
|
|
case R600InstrInfo::ALU_VEC_210:
|
|
std::swap(Src[0], Src[2]);
|
|
break;
|
|
}
|
|
return Src;
|
|
}
|
|
|
|
static unsigned
|
|
getTransSwizzle(R600InstrInfo::BankSwizzle Swz, unsigned Op) {
|
|
switch (Swz) {
|
|
case R600InstrInfo::ALU_VEC_012_SCL_210: {
|
|
unsigned Cycles[3] = { 2, 1, 0};
|
|
return Cycles[Op];
|
|
}
|
|
case R600InstrInfo::ALU_VEC_021_SCL_122: {
|
|
unsigned Cycles[3] = { 1, 2, 2};
|
|
return Cycles[Op];
|
|
}
|
|
case R600InstrInfo::ALU_VEC_120_SCL_212: {
|
|
unsigned Cycles[3] = { 2, 1, 2};
|
|
return Cycles[Op];
|
|
}
|
|
case R600InstrInfo::ALU_VEC_102_SCL_221: {
|
|
unsigned Cycles[3] = { 2, 2, 1};
|
|
return Cycles[Op];
|
|
}
|
|
default:
|
|
llvm_unreachable("Wrong Swizzle for Trans Slot");
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/// returns how many MIs (whose inputs are represented by IGSrcs) can be packed
|
|
/// in the same Instruction Group while meeting read port limitations given a
|
|
/// Swz swizzle sequence.
|
|
unsigned R600InstrInfo::isLegalUpTo(
|
|
const std::vector<std::vector<std::pair<int, unsigned> > > &IGSrcs,
|
|
const std::vector<R600InstrInfo::BankSwizzle> &Swz,
|
|
const std::vector<std::pair<int, unsigned> > &TransSrcs,
|
|
R600InstrInfo::BankSwizzle TransSwz) const {
|
|
int Vector[4][3];
|
|
memset(Vector, -1, sizeof(Vector));
|
|
for (unsigned i = 0, e = IGSrcs.size(); i < e; i++) {
|
|
const std::vector<std::pair<int, unsigned> > &Srcs =
|
|
Swizzle(IGSrcs[i], Swz[i]);
|
|
for (unsigned j = 0; j < 3; j++) {
|
|
const std::pair<int, unsigned> &Src = Srcs[j];
|
|
if (Src.first < 0 || Src.first == 255)
|
|
continue;
|
|
if (Src.first == GET_REG_INDEX(RI.getEncodingValue(AMDGPU::OQAP))) {
|
|
if (Swz[i] != R600InstrInfo::ALU_VEC_012_SCL_210 &&
|
|
Swz[i] != R600InstrInfo::ALU_VEC_021_SCL_122) {
|
|
// The value from output queue A (denoted by register OQAP) can
|
|
// only be fetched during the first cycle.
|
|
return false;
|
|
}
|
|
// OQAP does not count towards the normal read port restrictions
|
|
continue;
|
|
}
|
|
if (Vector[Src.second][j] < 0)
|
|
Vector[Src.second][j] = Src.first;
|
|
if (Vector[Src.second][j] != Src.first)
|
|
return i;
|
|
}
|
|
}
|
|
// Now check Trans Alu
|
|
for (unsigned i = 0, e = TransSrcs.size(); i < e; ++i) {
|
|
const std::pair<int, unsigned> &Src = TransSrcs[i];
|
|
unsigned Cycle = getTransSwizzle(TransSwz, i);
|
|
if (Src.first < 0)
|
|
continue;
|
|
if (Src.first == 255)
|
|
continue;
|
|
if (Vector[Src.second][Cycle] < 0)
|
|
Vector[Src.second][Cycle] = Src.first;
|
|
if (Vector[Src.second][Cycle] != Src.first)
|
|
return IGSrcs.size() - 1;
|
|
}
|
|
return IGSrcs.size();
|
|
}
|
|
|
|
/// Given a swizzle sequence SwzCandidate and an index Idx, returns the next
|
|
/// (in lexicographic term) swizzle sequence assuming that all swizzles after
|
|
/// Idx can be skipped
|
|
static bool
|
|
NextPossibleSolution(
|
|
std::vector<R600InstrInfo::BankSwizzle> &SwzCandidate,
|
|
unsigned Idx) {
|
|
assert(Idx < SwzCandidate.size());
|
|
int ResetIdx = Idx;
|
|
while (ResetIdx > -1 && SwzCandidate[ResetIdx] == R600InstrInfo::ALU_VEC_210)
|
|
ResetIdx --;
|
|
for (unsigned i = ResetIdx + 1, e = SwzCandidate.size(); i < e; i++) {
|
|
SwzCandidate[i] = R600InstrInfo::ALU_VEC_012_SCL_210;
|
|
}
|
|
if (ResetIdx == -1)
|
|
return false;
|
|
int NextSwizzle = SwzCandidate[ResetIdx] + 1;
|
|
SwzCandidate[ResetIdx] = (R600InstrInfo::BankSwizzle)NextSwizzle;
|
|
return true;
|
|
}
|
|
|
|
/// Enumerate all possible Swizzle sequence to find one that can meet all
|
|
/// read port requirements.
|
|
bool R600InstrInfo::FindSwizzleForVectorSlot(
|
|
const std::vector<std::vector<std::pair<int, unsigned> > > &IGSrcs,
|
|
std::vector<R600InstrInfo::BankSwizzle> &SwzCandidate,
|
|
const std::vector<std::pair<int, unsigned> > &TransSrcs,
|
|
R600InstrInfo::BankSwizzle TransSwz) const {
|
|
unsigned ValidUpTo = 0;
|
|
do {
|
|
ValidUpTo = isLegalUpTo(IGSrcs, SwzCandidate, TransSrcs, TransSwz);
|
|
if (ValidUpTo == IGSrcs.size())
|
|
return true;
|
|
} while (NextPossibleSolution(SwzCandidate, ValidUpTo));
|
|
return false;
|
|
}
|
|
|
|
/// Instructions in Trans slot can't read gpr at cycle 0 if they also read
|
|
/// a const, and can't read a gpr at cycle 1 if they read 2 const.
|
|
static bool
|
|
isConstCompatible(R600InstrInfo::BankSwizzle TransSwz,
|
|
const std::vector<std::pair<int, unsigned> > &TransOps,
|
|
unsigned ConstCount) {
|
|
// TransALU can't read 3 constants
|
|
if (ConstCount > 2)
|
|
return false;
|
|
for (unsigned i = 0, e = TransOps.size(); i < e; ++i) {
|
|
const std::pair<int, unsigned> &Src = TransOps[i];
|
|
unsigned Cycle = getTransSwizzle(TransSwz, i);
|
|
if (Src.first < 0)
|
|
continue;
|
|
if (ConstCount > 0 && Cycle == 0)
|
|
return false;
|
|
if (ConstCount > 1 && Cycle == 1)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
R600InstrInfo::fitsReadPortLimitations(const std::vector<MachineInstr *> &IG,
|
|
const DenseMap<unsigned, unsigned> &PV,
|
|
std::vector<BankSwizzle> &ValidSwizzle,
|
|
bool isLastAluTrans)
|
|
const {
|
|
//Todo : support shared src0 - src1 operand
|
|
|
|
std::vector<std::vector<std::pair<int, unsigned> > > IGSrcs;
|
|
ValidSwizzle.clear();
|
|
unsigned ConstCount;
|
|
BankSwizzle TransBS = ALU_VEC_012_SCL_210;
|
|
for (unsigned i = 0, e = IG.size(); i < e; ++i) {
|
|
IGSrcs.push_back(ExtractSrcs(IG[i], PV, ConstCount));
|
|
unsigned Op = getOperandIdx(IG[i]->getOpcode(),
|
|
AMDGPU::OpName::bank_swizzle);
|
|
ValidSwizzle.push_back( (R600InstrInfo::BankSwizzle)
|
|
IG[i]->getOperand(Op).getImm());
|
|
}
|
|
std::vector<std::pair<int, unsigned> > TransOps;
|
|
if (!isLastAluTrans)
|
|
return FindSwizzleForVectorSlot(IGSrcs, ValidSwizzle, TransOps, TransBS);
|
|
|
|
TransOps = std::move(IGSrcs.back());
|
|
IGSrcs.pop_back();
|
|
ValidSwizzle.pop_back();
|
|
|
|
static const R600InstrInfo::BankSwizzle TransSwz[] = {
|
|
ALU_VEC_012_SCL_210,
|
|
ALU_VEC_021_SCL_122,
|
|
ALU_VEC_120_SCL_212,
|
|
ALU_VEC_102_SCL_221
|
|
};
|
|
for (unsigned i = 0; i < 4; i++) {
|
|
TransBS = TransSwz[i];
|
|
if (!isConstCompatible(TransBS, TransOps, ConstCount))
|
|
continue;
|
|
bool Result = FindSwizzleForVectorSlot(IGSrcs, ValidSwizzle, TransOps,
|
|
TransBS);
|
|
if (Result) {
|
|
ValidSwizzle.push_back(TransBS);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
bool
|
|
R600InstrInfo::fitsConstReadLimitations(const std::vector<unsigned> &Consts)
|
|
const {
|
|
assert (Consts.size() <= 12 && "Too many operands in instructions group");
|
|
unsigned Pair1 = 0, Pair2 = 0;
|
|
for (unsigned i = 0, n = Consts.size(); i < n; ++i) {
|
|
unsigned ReadConstHalf = Consts[i] & 2;
|
|
unsigned ReadConstIndex = Consts[i] & (~3);
|
|
unsigned ReadHalfConst = ReadConstIndex | ReadConstHalf;
|
|
if (!Pair1) {
|
|
Pair1 = ReadHalfConst;
|
|
continue;
|
|
}
|
|
if (Pair1 == ReadHalfConst)
|
|
continue;
|
|
if (!Pair2) {
|
|
Pair2 = ReadHalfConst;
|
|
continue;
|
|
}
|
|
if (Pair2 != ReadHalfConst)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
R600InstrInfo::fitsConstReadLimitations(const std::vector<MachineInstr *> &MIs)
|
|
const {
|
|
std::vector<unsigned> Consts;
|
|
SmallSet<int64_t, 4> Literals;
|
|
for (unsigned i = 0, n = MIs.size(); i < n; i++) {
|
|
MachineInstr *MI = MIs[i];
|
|
if (!isALUInstr(MI->getOpcode()))
|
|
continue;
|
|
|
|
const SmallVectorImpl<std::pair<MachineOperand *, int64_t> > &Srcs =
|
|
getSrcs(MI);
|
|
|
|
for (unsigned j = 0, e = Srcs.size(); j < e; j++) {
|
|
std::pair<MachineOperand *, unsigned> Src = Srcs[j];
|
|
if (Src.first->getReg() == AMDGPU::ALU_LITERAL_X)
|
|
Literals.insert(Src.second);
|
|
if (Literals.size() > 4)
|
|
return false;
|
|
if (Src.first->getReg() == AMDGPU::ALU_CONST)
|
|
Consts.push_back(Src.second);
|
|
if (AMDGPU::R600_KC0RegClass.contains(Src.first->getReg()) ||
|
|
AMDGPU::R600_KC1RegClass.contains(Src.first->getReg())) {
|
|
unsigned Index = RI.getEncodingValue(Src.first->getReg()) & 0xff;
|
|
unsigned Chan = RI.getHWRegChan(Src.first->getReg());
|
|
Consts.push_back((Index << 2) | Chan);
|
|
}
|
|
}
|
|
}
|
|
return fitsConstReadLimitations(Consts);
|
|
}
|
|
|
|
DFAPacketizer *
|
|
R600InstrInfo::CreateTargetScheduleState(const TargetSubtargetInfo &STI) const {
|
|
const InstrItineraryData *II = STI.getInstrItineraryData();
|
|
return static_cast<const AMDGPUSubtarget &>(STI).createDFAPacketizer(II);
|
|
}
|
|
|
|
static bool
|
|
isPredicateSetter(unsigned Opcode) {
|
|
switch (Opcode) {
|
|
case AMDGPU::PRED_X:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static MachineInstr *
|
|
findFirstPredicateSetterFrom(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator I) {
|
|
while (I != MBB.begin()) {
|
|
--I;
|
|
MachineInstr *MI = I;
|
|
if (isPredicateSetter(MI->getOpcode()))
|
|
return MI;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
static
|
|
bool isJump(unsigned Opcode) {
|
|
return Opcode == AMDGPU::JUMP || Opcode == AMDGPU::JUMP_COND;
|
|
}
|
|
|
|
static bool isBranch(unsigned Opcode) {
|
|
return Opcode == AMDGPU::BRANCH || Opcode == AMDGPU::BRANCH_COND_i32 ||
|
|
Opcode == AMDGPU::BRANCH_COND_f32;
|
|
}
|
|
|
|
bool
|
|
R600InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
|
|
MachineBasicBlock *&TBB,
|
|
MachineBasicBlock *&FBB,
|
|
SmallVectorImpl<MachineOperand> &Cond,
|
|
bool AllowModify) const {
|
|
// Most of the following comes from the ARM implementation of AnalyzeBranch
|
|
|
|
// If the block has no terminators, it just falls into the block after it.
|
|
MachineBasicBlock::iterator I = MBB.end();
|
|
if (I == MBB.begin())
|
|
return false;
|
|
--I;
|
|
while (I->isDebugValue()) {
|
|
if (I == MBB.begin())
|
|
return false;
|
|
--I;
|
|
}
|
|
// AMDGPU::BRANCH* instructions are only available after isel and are not
|
|
// handled
|
|
if (isBranch(I->getOpcode()))
|
|
return true;
|
|
if (!isJump(static_cast<MachineInstr *>(I)->getOpcode())) {
|
|
return false;
|
|
}
|
|
|
|
// Remove successive JUMP
|
|
while (I != MBB.begin() && std::prev(I)->getOpcode() == AMDGPU::JUMP) {
|
|
MachineBasicBlock::iterator PriorI = std::prev(I);
|
|
if (AllowModify)
|
|
I->removeFromParent();
|
|
I = PriorI;
|
|
}
|
|
MachineInstr *LastInst = I;
|
|
|
|
// If there is only one terminator instruction, process it.
|
|
unsigned LastOpc = LastInst->getOpcode();
|
|
if (I == MBB.begin() ||
|
|
!isJump(static_cast<MachineInstr *>(--I)->getOpcode())) {
|
|
if (LastOpc == AMDGPU::JUMP) {
|
|
TBB = LastInst->getOperand(0).getMBB();
|
|
return false;
|
|
} else if (LastOpc == AMDGPU::JUMP_COND) {
|
|
MachineInstr *predSet = I;
|
|
while (!isPredicateSetter(predSet->getOpcode())) {
|
|
predSet = --I;
|
|
}
|
|
TBB = LastInst->getOperand(0).getMBB();
|
|
Cond.push_back(predSet->getOperand(1));
|
|
Cond.push_back(predSet->getOperand(2));
|
|
Cond.push_back(MachineOperand::CreateReg(AMDGPU::PRED_SEL_ONE, false));
|
|
return false;
|
|
}
|
|
return true; // Can't handle indirect branch.
|
|
}
|
|
|
|
// Get the instruction before it if it is a terminator.
|
|
MachineInstr *SecondLastInst = I;
|
|
unsigned SecondLastOpc = SecondLastInst->getOpcode();
|
|
|
|
// If the block ends with a B and a Bcc, handle it.
|
|
if (SecondLastOpc == AMDGPU::JUMP_COND && LastOpc == AMDGPU::JUMP) {
|
|
MachineInstr *predSet = --I;
|
|
while (!isPredicateSetter(predSet->getOpcode())) {
|
|
predSet = --I;
|
|
}
|
|
TBB = SecondLastInst->getOperand(0).getMBB();
|
|
FBB = LastInst->getOperand(0).getMBB();
|
|
Cond.push_back(predSet->getOperand(1));
|
|
Cond.push_back(predSet->getOperand(2));
|
|
Cond.push_back(MachineOperand::CreateReg(AMDGPU::PRED_SEL_ONE, false));
|
|
return false;
|
|
}
|
|
|
|
// Otherwise, can't handle this.
|
|
return true;
|
|
}
|
|
|
|
static
|
|
MachineBasicBlock::iterator FindLastAluClause(MachineBasicBlock &MBB) {
|
|
for (MachineBasicBlock::reverse_iterator It = MBB.rbegin(), E = MBB.rend();
|
|
It != E; ++It) {
|
|
if (It->getOpcode() == AMDGPU::CF_ALU ||
|
|
It->getOpcode() == AMDGPU::CF_ALU_PUSH_BEFORE)
|
|
return std::prev(It.base());
|
|
}
|
|
return MBB.end();
|
|
}
|
|
|
|
unsigned
|
|
R600InstrInfo::InsertBranch(MachineBasicBlock &MBB,
|
|
MachineBasicBlock *TBB,
|
|
MachineBasicBlock *FBB,
|
|
const SmallVectorImpl<MachineOperand> &Cond,
|
|
DebugLoc DL) const {
|
|
assert(TBB && "InsertBranch must not be told to insert a fallthrough");
|
|
|
|
if (!FBB) {
|
|
if (Cond.empty()) {
|
|
BuildMI(&MBB, DL, get(AMDGPU::JUMP)).addMBB(TBB);
|
|
return 1;
|
|
} else {
|
|
MachineInstr *PredSet = findFirstPredicateSetterFrom(MBB, MBB.end());
|
|
assert(PredSet && "No previous predicate !");
|
|
addFlag(PredSet, 0, MO_FLAG_PUSH);
|
|
PredSet->getOperand(2).setImm(Cond[1].getImm());
|
|
|
|
BuildMI(&MBB, DL, get(AMDGPU::JUMP_COND))
|
|
.addMBB(TBB)
|
|
.addReg(AMDGPU::PREDICATE_BIT, RegState::Kill);
|
|
MachineBasicBlock::iterator CfAlu = FindLastAluClause(MBB);
|
|
if (CfAlu == MBB.end())
|
|
return 1;
|
|
assert (CfAlu->getOpcode() == AMDGPU::CF_ALU);
|
|
CfAlu->setDesc(get(AMDGPU::CF_ALU_PUSH_BEFORE));
|
|
return 1;
|
|
}
|
|
} else {
|
|
MachineInstr *PredSet = findFirstPredicateSetterFrom(MBB, MBB.end());
|
|
assert(PredSet && "No previous predicate !");
|
|
addFlag(PredSet, 0, MO_FLAG_PUSH);
|
|
PredSet->getOperand(2).setImm(Cond[1].getImm());
|
|
BuildMI(&MBB, DL, get(AMDGPU::JUMP_COND))
|
|
.addMBB(TBB)
|
|
.addReg(AMDGPU::PREDICATE_BIT, RegState::Kill);
|
|
BuildMI(&MBB, DL, get(AMDGPU::JUMP)).addMBB(FBB);
|
|
MachineBasicBlock::iterator CfAlu = FindLastAluClause(MBB);
|
|
if (CfAlu == MBB.end())
|
|
return 2;
|
|
assert (CfAlu->getOpcode() == AMDGPU::CF_ALU);
|
|
CfAlu->setDesc(get(AMDGPU::CF_ALU_PUSH_BEFORE));
|
|
return 2;
|
|
}
|
|
}
|
|
|
|
unsigned
|
|
R600InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
|
|
|
|
// Note : we leave PRED* instructions there.
|
|
// They may be needed when predicating instructions.
|
|
|
|
MachineBasicBlock::iterator I = MBB.end();
|
|
|
|
if (I == MBB.begin()) {
|
|
return 0;
|
|
}
|
|
--I;
|
|
switch (I->getOpcode()) {
|
|
default:
|
|
return 0;
|
|
case AMDGPU::JUMP_COND: {
|
|
MachineInstr *predSet = findFirstPredicateSetterFrom(MBB, I);
|
|
clearFlag(predSet, 0, MO_FLAG_PUSH);
|
|
I->eraseFromParent();
|
|
MachineBasicBlock::iterator CfAlu = FindLastAluClause(MBB);
|
|
if (CfAlu == MBB.end())
|
|
break;
|
|
assert (CfAlu->getOpcode() == AMDGPU::CF_ALU_PUSH_BEFORE);
|
|
CfAlu->setDesc(get(AMDGPU::CF_ALU));
|
|
break;
|
|
}
|
|
case AMDGPU::JUMP:
|
|
I->eraseFromParent();
|
|
break;
|
|
}
|
|
I = MBB.end();
|
|
|
|
if (I == MBB.begin()) {
|
|
return 1;
|
|
}
|
|
--I;
|
|
switch (I->getOpcode()) {
|
|
// FIXME: only one case??
|
|
default:
|
|
return 1;
|
|
case AMDGPU::JUMP_COND: {
|
|
MachineInstr *predSet = findFirstPredicateSetterFrom(MBB, I);
|
|
clearFlag(predSet, 0, MO_FLAG_PUSH);
|
|
I->eraseFromParent();
|
|
MachineBasicBlock::iterator CfAlu = FindLastAluClause(MBB);
|
|
if (CfAlu == MBB.end())
|
|
break;
|
|
assert (CfAlu->getOpcode() == AMDGPU::CF_ALU_PUSH_BEFORE);
|
|
CfAlu->setDesc(get(AMDGPU::CF_ALU));
|
|
break;
|
|
}
|
|
case AMDGPU::JUMP:
|
|
I->eraseFromParent();
|
|
break;
|
|
}
|
|
return 2;
|
|
}
|
|
|
|
bool
|
|
R600InstrInfo::isPredicated(const MachineInstr *MI) const {
|
|
int idx = MI->findFirstPredOperandIdx();
|
|
if (idx < 0)
|
|
return false;
|
|
|
|
unsigned Reg = MI->getOperand(idx).getReg();
|
|
switch (Reg) {
|
|
default: return false;
|
|
case AMDGPU::PRED_SEL_ONE:
|
|
case AMDGPU::PRED_SEL_ZERO:
|
|
case AMDGPU::PREDICATE_BIT:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
bool
|
|
R600InstrInfo::isPredicable(MachineInstr *MI) const {
|
|
// XXX: KILL* instructions can be predicated, but they must be the last
|
|
// instruction in a clause, so this means any instructions after them cannot
|
|
// be predicated. Until we have proper support for instruction clauses in the
|
|
// backend, we will mark KILL* instructions as unpredicable.
|
|
|
|
if (MI->getOpcode() == AMDGPU::KILLGT) {
|
|
return false;
|
|
} else if (MI->getOpcode() == AMDGPU::CF_ALU) {
|
|
// If the clause start in the middle of MBB then the MBB has more
|
|
// than a single clause, unable to predicate several clauses.
|
|
if (MI->getParent()->begin() != MachineBasicBlock::iterator(MI))
|
|
return false;
|
|
// TODO: We don't support KC merging atm
|
|
if (MI->getOperand(3).getImm() != 0 || MI->getOperand(4).getImm() != 0)
|
|
return false;
|
|
return true;
|
|
} else if (isVector(*MI)) {
|
|
return false;
|
|
} else {
|
|
return AMDGPUInstrInfo::isPredicable(MI);
|
|
}
|
|
}
|
|
|
|
|
|
bool
|
|
R600InstrInfo::isProfitableToIfCvt(MachineBasicBlock &MBB,
|
|
unsigned NumCyles,
|
|
unsigned ExtraPredCycles,
|
|
const BranchProbability &Probability) const{
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
R600InstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
|
|
unsigned NumTCycles,
|
|
unsigned ExtraTCycles,
|
|
MachineBasicBlock &FMBB,
|
|
unsigned NumFCycles,
|
|
unsigned ExtraFCycles,
|
|
const BranchProbability &Probability) const {
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
R600InstrInfo::isProfitableToDupForIfCvt(MachineBasicBlock &MBB,
|
|
unsigned NumCyles,
|
|
const BranchProbability &Probability)
|
|
const {
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
R600InstrInfo::isProfitableToUnpredicate(MachineBasicBlock &TMBB,
|
|
MachineBasicBlock &FMBB) const {
|
|
return false;
|
|
}
|
|
|
|
|
|
bool
|
|
R600InstrInfo::ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
|
|
MachineOperand &MO = Cond[1];
|
|
switch (MO.getImm()) {
|
|
case OPCODE_IS_ZERO_INT:
|
|
MO.setImm(OPCODE_IS_NOT_ZERO_INT);
|
|
break;
|
|
case OPCODE_IS_NOT_ZERO_INT:
|
|
MO.setImm(OPCODE_IS_ZERO_INT);
|
|
break;
|
|
case OPCODE_IS_ZERO:
|
|
MO.setImm(OPCODE_IS_NOT_ZERO);
|
|
break;
|
|
case OPCODE_IS_NOT_ZERO:
|
|
MO.setImm(OPCODE_IS_ZERO);
|
|
break;
|
|
default:
|
|
return true;
|
|
}
|
|
|
|
MachineOperand &MO2 = Cond[2];
|
|
switch (MO2.getReg()) {
|
|
case AMDGPU::PRED_SEL_ZERO:
|
|
MO2.setReg(AMDGPU::PRED_SEL_ONE);
|
|
break;
|
|
case AMDGPU::PRED_SEL_ONE:
|
|
MO2.setReg(AMDGPU::PRED_SEL_ZERO);
|
|
break;
|
|
default:
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool
|
|
R600InstrInfo::DefinesPredicate(MachineInstr *MI,
|
|
std::vector<MachineOperand> &Pred) const {
|
|
return isPredicateSetter(MI->getOpcode());
|
|
}
|
|
|
|
|
|
bool
|
|
R600InstrInfo::SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
|
|
const SmallVectorImpl<MachineOperand> &Pred2) const {
|
|
return false;
|
|
}
|
|
|
|
|
|
bool
|
|
R600InstrInfo::PredicateInstruction(MachineInstr *MI,
|
|
const SmallVectorImpl<MachineOperand> &Pred) const {
|
|
int PIdx = MI->findFirstPredOperandIdx();
|
|
|
|
if (MI->getOpcode() == AMDGPU::CF_ALU) {
|
|
MI->getOperand(8).setImm(0);
|
|
return true;
|
|
}
|
|
|
|
if (MI->getOpcode() == AMDGPU::DOT_4) {
|
|
MI->getOperand(getOperandIdx(*MI, AMDGPU::OpName::pred_sel_X))
|
|
.setReg(Pred[2].getReg());
|
|
MI->getOperand(getOperandIdx(*MI, AMDGPU::OpName::pred_sel_Y))
|
|
.setReg(Pred[2].getReg());
|
|
MI->getOperand(getOperandIdx(*MI, AMDGPU::OpName::pred_sel_Z))
|
|
.setReg(Pred[2].getReg());
|
|
MI->getOperand(getOperandIdx(*MI, AMDGPU::OpName::pred_sel_W))
|
|
.setReg(Pred[2].getReg());
|
|
MachineInstrBuilder MIB(*MI->getParent()->getParent(), MI);
|
|
MIB.addReg(AMDGPU::PREDICATE_BIT, RegState::Implicit);
|
|
return true;
|
|
}
|
|
|
|
if (PIdx != -1) {
|
|
MachineOperand &PMO = MI->getOperand(PIdx);
|
|
PMO.setReg(Pred[2].getReg());
|
|
MachineInstrBuilder MIB(*MI->getParent()->getParent(), MI);
|
|
MIB.addReg(AMDGPU::PREDICATE_BIT, RegState::Implicit);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
unsigned int R600InstrInfo::getPredicationCost(const MachineInstr *) const {
|
|
return 2;
|
|
}
|
|
|
|
unsigned int R600InstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
|
|
const MachineInstr *MI,
|
|
unsigned *PredCost) const {
|
|
if (PredCost)
|
|
*PredCost = 2;
|
|
return 2;
|
|
}
|
|
|
|
bool R600InstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
|
|
|
|
switch(MI->getOpcode()) {
|
|
default: return AMDGPUInstrInfo::expandPostRAPseudo(MI);
|
|
case AMDGPU::R600_EXTRACT_ELT_V2:
|
|
case AMDGPU::R600_EXTRACT_ELT_V4:
|
|
buildIndirectRead(MI->getParent(), MI, MI->getOperand(0).getReg(),
|
|
RI.getHWRegIndex(MI->getOperand(1).getReg()), // Address
|
|
MI->getOperand(2).getReg(),
|
|
RI.getHWRegChan(MI->getOperand(1).getReg()));
|
|
break;
|
|
case AMDGPU::R600_INSERT_ELT_V2:
|
|
case AMDGPU::R600_INSERT_ELT_V4:
|
|
buildIndirectWrite(MI->getParent(), MI, MI->getOperand(2).getReg(), // Value
|
|
RI.getHWRegIndex(MI->getOperand(1).getReg()), // Address
|
|
MI->getOperand(3).getReg(), // Offset
|
|
RI.getHWRegChan(MI->getOperand(1).getReg())); // Channel
|
|
break;
|
|
}
|
|
MI->eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
void R600InstrInfo::reserveIndirectRegisters(BitVector &Reserved,
|
|
const MachineFunction &MF) const {
|
|
const AMDGPUFrameLowering *TFL = static_cast<const AMDGPUFrameLowering *>(
|
|
MF.getSubtarget().getFrameLowering());
|
|
|
|
unsigned StackWidth = TFL->getStackWidth(MF);
|
|
int End = getIndirectIndexEnd(MF);
|
|
|
|
if (End == -1)
|
|
return;
|
|
|
|
for (int Index = getIndirectIndexBegin(MF); Index <= End; ++Index) {
|
|
unsigned SuperReg = AMDGPU::R600_Reg128RegClass.getRegister(Index);
|
|
Reserved.set(SuperReg);
|
|
for (unsigned Chan = 0; Chan < StackWidth; ++Chan) {
|
|
unsigned Reg = AMDGPU::R600_TReg32RegClass.getRegister((4 * Index) + Chan);
|
|
Reserved.set(Reg);
|
|
}
|
|
}
|
|
}
|
|
|
|
unsigned R600InstrInfo::calculateIndirectAddress(unsigned RegIndex,
|
|
unsigned Channel) const {
|
|
// XXX: Remove when we support a stack width > 2
|
|
assert(Channel == 0);
|
|
return RegIndex;
|
|
}
|
|
|
|
const TargetRegisterClass *R600InstrInfo::getIndirectAddrRegClass() const {
|
|
return &AMDGPU::R600_TReg32_XRegClass;
|
|
}
|
|
|
|
MachineInstrBuilder R600InstrInfo::buildIndirectWrite(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator I,
|
|
unsigned ValueReg, unsigned Address,
|
|
unsigned OffsetReg) const {
|
|
return buildIndirectWrite(MBB, I, ValueReg, Address, OffsetReg, 0);
|
|
}
|
|
|
|
MachineInstrBuilder R600InstrInfo::buildIndirectWrite(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator I,
|
|
unsigned ValueReg, unsigned Address,
|
|
unsigned OffsetReg,
|
|
unsigned AddrChan) const {
|
|
unsigned AddrReg;
|
|
switch (AddrChan) {
|
|
default: llvm_unreachable("Invalid Channel");
|
|
case 0: AddrReg = AMDGPU::R600_AddrRegClass.getRegister(Address); break;
|
|
case 1: AddrReg = AMDGPU::R600_Addr_YRegClass.getRegister(Address); break;
|
|
case 2: AddrReg = AMDGPU::R600_Addr_ZRegClass.getRegister(Address); break;
|
|
case 3: AddrReg = AMDGPU::R600_Addr_WRegClass.getRegister(Address); break;
|
|
}
|
|
MachineInstr *MOVA = buildDefaultInstruction(*MBB, I, AMDGPU::MOVA_INT_eg,
|
|
AMDGPU::AR_X, OffsetReg);
|
|
setImmOperand(MOVA, AMDGPU::OpName::write, 0);
|
|
|
|
MachineInstrBuilder Mov = buildDefaultInstruction(*MBB, I, AMDGPU::MOV,
|
|
AddrReg, ValueReg)
|
|
.addReg(AMDGPU::AR_X,
|
|
RegState::Implicit | RegState::Kill);
|
|
setImmOperand(Mov, AMDGPU::OpName::dst_rel, 1);
|
|
return Mov;
|
|
}
|
|
|
|
MachineInstrBuilder R600InstrInfo::buildIndirectRead(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator I,
|
|
unsigned ValueReg, unsigned Address,
|
|
unsigned OffsetReg) const {
|
|
return buildIndirectRead(MBB, I, ValueReg, Address, OffsetReg, 0);
|
|
}
|
|
|
|
MachineInstrBuilder R600InstrInfo::buildIndirectRead(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator I,
|
|
unsigned ValueReg, unsigned Address,
|
|
unsigned OffsetReg,
|
|
unsigned AddrChan) const {
|
|
unsigned AddrReg;
|
|
switch (AddrChan) {
|
|
default: llvm_unreachable("Invalid Channel");
|
|
case 0: AddrReg = AMDGPU::R600_AddrRegClass.getRegister(Address); break;
|
|
case 1: AddrReg = AMDGPU::R600_Addr_YRegClass.getRegister(Address); break;
|
|
case 2: AddrReg = AMDGPU::R600_Addr_ZRegClass.getRegister(Address); break;
|
|
case 3: AddrReg = AMDGPU::R600_Addr_WRegClass.getRegister(Address); break;
|
|
}
|
|
MachineInstr *MOVA = buildDefaultInstruction(*MBB, I, AMDGPU::MOVA_INT_eg,
|
|
AMDGPU::AR_X,
|
|
OffsetReg);
|
|
setImmOperand(MOVA, AMDGPU::OpName::write, 0);
|
|
MachineInstrBuilder Mov = buildDefaultInstruction(*MBB, I, AMDGPU::MOV,
|
|
ValueReg,
|
|
AddrReg)
|
|
.addReg(AMDGPU::AR_X,
|
|
RegState::Implicit | RegState::Kill);
|
|
setImmOperand(Mov, AMDGPU::OpName::src0_rel, 1);
|
|
|
|
return Mov;
|
|
}
|
|
|
|
unsigned R600InstrInfo::getMaxAlusPerClause() const {
|
|
return 115;
|
|
}
|
|
|
|
MachineInstrBuilder R600InstrInfo::buildDefaultInstruction(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator I,
|
|
unsigned Opcode,
|
|
unsigned DstReg,
|
|
unsigned Src0Reg,
|
|
unsigned Src1Reg) const {
|
|
MachineInstrBuilder MIB = BuildMI(MBB, I, MBB.findDebugLoc(I), get(Opcode),
|
|
DstReg); // $dst
|
|
|
|
if (Src1Reg) {
|
|
MIB.addImm(0) // $update_exec_mask
|
|
.addImm(0); // $update_predicate
|
|
}
|
|
MIB.addImm(1) // $write
|
|
.addImm(0) // $omod
|
|
.addImm(0) // $dst_rel
|
|
.addImm(0) // $dst_clamp
|
|
.addReg(Src0Reg) // $src0
|
|
.addImm(0) // $src0_neg
|
|
.addImm(0) // $src0_rel
|
|
.addImm(0) // $src0_abs
|
|
.addImm(-1); // $src0_sel
|
|
|
|
if (Src1Reg) {
|
|
MIB.addReg(Src1Reg) // $src1
|
|
.addImm(0) // $src1_neg
|
|
.addImm(0) // $src1_rel
|
|
.addImm(0) // $src1_abs
|
|
.addImm(-1); // $src1_sel
|
|
}
|
|
|
|
//XXX: The r600g finalizer expects this to be 1, once we've moved the
|
|
//scheduling to the backend, we can change the default to 0.
|
|
MIB.addImm(1) // $last
|
|
.addReg(AMDGPU::PRED_SEL_OFF) // $pred_sel
|
|
.addImm(0) // $literal
|
|
.addImm(0); // $bank_swizzle
|
|
|
|
return MIB;
|
|
}
|
|
|
|
#define OPERAND_CASE(Label) \
|
|
case Label: { \
|
|
static const unsigned Ops[] = \
|
|
{ \
|
|
Label##_X, \
|
|
Label##_Y, \
|
|
Label##_Z, \
|
|
Label##_W \
|
|
}; \
|
|
return Ops[Slot]; \
|
|
}
|
|
|
|
static unsigned getSlotedOps(unsigned Op, unsigned Slot) {
|
|
switch (Op) {
|
|
OPERAND_CASE(AMDGPU::OpName::update_exec_mask)
|
|
OPERAND_CASE(AMDGPU::OpName::update_pred)
|
|
OPERAND_CASE(AMDGPU::OpName::write)
|
|
OPERAND_CASE(AMDGPU::OpName::omod)
|
|
OPERAND_CASE(AMDGPU::OpName::dst_rel)
|
|
OPERAND_CASE(AMDGPU::OpName::clamp)
|
|
OPERAND_CASE(AMDGPU::OpName::src0)
|
|
OPERAND_CASE(AMDGPU::OpName::src0_neg)
|
|
OPERAND_CASE(AMDGPU::OpName::src0_rel)
|
|
OPERAND_CASE(AMDGPU::OpName::src0_abs)
|
|
OPERAND_CASE(AMDGPU::OpName::src0_sel)
|
|
OPERAND_CASE(AMDGPU::OpName::src1)
|
|
OPERAND_CASE(AMDGPU::OpName::src1_neg)
|
|
OPERAND_CASE(AMDGPU::OpName::src1_rel)
|
|
OPERAND_CASE(AMDGPU::OpName::src1_abs)
|
|
OPERAND_CASE(AMDGPU::OpName::src1_sel)
|
|
OPERAND_CASE(AMDGPU::OpName::pred_sel)
|
|
default:
|
|
llvm_unreachable("Wrong Operand");
|
|
}
|
|
}
|
|
|
|
#undef OPERAND_CASE
|
|
|
|
MachineInstr *R600InstrInfo::buildSlotOfVectorInstruction(
|
|
MachineBasicBlock &MBB, MachineInstr *MI, unsigned Slot, unsigned DstReg)
|
|
const {
|
|
assert (MI->getOpcode() == AMDGPU::DOT_4 && "Not Implemented");
|
|
unsigned Opcode;
|
|
if (ST.getGeneration() <= AMDGPUSubtarget::R700)
|
|
Opcode = AMDGPU::DOT4_r600;
|
|
else
|
|
Opcode = AMDGPU::DOT4_eg;
|
|
MachineBasicBlock::iterator I = MI;
|
|
MachineOperand &Src0 = MI->getOperand(
|
|
getOperandIdx(MI->getOpcode(), getSlotedOps(AMDGPU::OpName::src0, Slot)));
|
|
MachineOperand &Src1 = MI->getOperand(
|
|
getOperandIdx(MI->getOpcode(), getSlotedOps(AMDGPU::OpName::src1, Slot)));
|
|
MachineInstr *MIB = buildDefaultInstruction(
|
|
MBB, I, Opcode, DstReg, Src0.getReg(), Src1.getReg());
|
|
static const unsigned Operands[14] = {
|
|
AMDGPU::OpName::update_exec_mask,
|
|
AMDGPU::OpName::update_pred,
|
|
AMDGPU::OpName::write,
|
|
AMDGPU::OpName::omod,
|
|
AMDGPU::OpName::dst_rel,
|
|
AMDGPU::OpName::clamp,
|
|
AMDGPU::OpName::src0_neg,
|
|
AMDGPU::OpName::src0_rel,
|
|
AMDGPU::OpName::src0_abs,
|
|
AMDGPU::OpName::src0_sel,
|
|
AMDGPU::OpName::src1_neg,
|
|
AMDGPU::OpName::src1_rel,
|
|
AMDGPU::OpName::src1_abs,
|
|
AMDGPU::OpName::src1_sel,
|
|
};
|
|
|
|
MachineOperand &MO = MI->getOperand(getOperandIdx(MI->getOpcode(),
|
|
getSlotedOps(AMDGPU::OpName::pred_sel, Slot)));
|
|
MIB->getOperand(getOperandIdx(Opcode, AMDGPU::OpName::pred_sel))
|
|
.setReg(MO.getReg());
|
|
|
|
for (unsigned i = 0; i < 14; i++) {
|
|
MachineOperand &MO = MI->getOperand(
|
|
getOperandIdx(MI->getOpcode(), getSlotedOps(Operands[i], Slot)));
|
|
assert (MO.isImm());
|
|
setImmOperand(MIB, Operands[i], MO.getImm());
|
|
}
|
|
MIB->getOperand(20).setImm(0);
|
|
return MIB;
|
|
}
|
|
|
|
MachineInstr *R600InstrInfo::buildMovImm(MachineBasicBlock &BB,
|
|
MachineBasicBlock::iterator I,
|
|
unsigned DstReg,
|
|
uint64_t Imm) const {
|
|
MachineInstr *MovImm = buildDefaultInstruction(BB, I, AMDGPU::MOV, DstReg,
|
|
AMDGPU::ALU_LITERAL_X);
|
|
setImmOperand(MovImm, AMDGPU::OpName::literal, Imm);
|
|
return MovImm;
|
|
}
|
|
|
|
MachineInstr *R600InstrInfo::buildMovInstr(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator I,
|
|
unsigned DstReg, unsigned SrcReg) const {
|
|
return buildDefaultInstruction(*MBB, I, AMDGPU::MOV, DstReg, SrcReg);
|
|
}
|
|
|
|
int R600InstrInfo::getOperandIdx(const MachineInstr &MI, unsigned Op) const {
|
|
return getOperandIdx(MI.getOpcode(), Op);
|
|
}
|
|
|
|
int R600InstrInfo::getOperandIdx(unsigned Opcode, unsigned Op) const {
|
|
return AMDGPU::getNamedOperandIdx(Opcode, Op);
|
|
}
|
|
|
|
void R600InstrInfo::setImmOperand(MachineInstr *MI, unsigned Op,
|
|
int64_t Imm) const {
|
|
int Idx = getOperandIdx(*MI, Op);
|
|
assert(Idx != -1 && "Operand not supported for this instruction.");
|
|
assert(MI->getOperand(Idx).isImm());
|
|
MI->getOperand(Idx).setImm(Imm);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Instruction flag getters/setters
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
bool R600InstrInfo::hasFlagOperand(const MachineInstr &MI) const {
|
|
return GET_FLAG_OPERAND_IDX(get(MI.getOpcode()).TSFlags) != 0;
|
|
}
|
|
|
|
MachineOperand &R600InstrInfo::getFlagOp(MachineInstr *MI, unsigned SrcIdx,
|
|
unsigned Flag) const {
|
|
unsigned TargetFlags = get(MI->getOpcode()).TSFlags;
|
|
int FlagIndex = 0;
|
|
if (Flag != 0) {
|
|
// If we pass something other than the default value of Flag to this
|
|
// function, it means we are want to set a flag on an instruction
|
|
// that uses native encoding.
|
|
assert(HAS_NATIVE_OPERANDS(TargetFlags));
|
|
bool IsOP3 = (TargetFlags & R600_InstFlag::OP3) == R600_InstFlag::OP3;
|
|
switch (Flag) {
|
|
case MO_FLAG_CLAMP:
|
|
FlagIndex = getOperandIdx(*MI, AMDGPU::OpName::clamp);
|
|
break;
|
|
case MO_FLAG_MASK:
|
|
FlagIndex = getOperandIdx(*MI, AMDGPU::OpName::write);
|
|
break;
|
|
case MO_FLAG_NOT_LAST:
|
|
case MO_FLAG_LAST:
|
|
FlagIndex = getOperandIdx(*MI, AMDGPU::OpName::last);
|
|
break;
|
|
case MO_FLAG_NEG:
|
|
switch (SrcIdx) {
|
|
case 0: FlagIndex = getOperandIdx(*MI, AMDGPU::OpName::src0_neg); break;
|
|
case 1: FlagIndex = getOperandIdx(*MI, AMDGPU::OpName::src1_neg); break;
|
|
case 2: FlagIndex = getOperandIdx(*MI, AMDGPU::OpName::src2_neg); break;
|
|
}
|
|
break;
|
|
|
|
case MO_FLAG_ABS:
|
|
assert(!IsOP3 && "Cannot set absolute value modifier for OP3 "
|
|
"instructions.");
|
|
(void)IsOP3;
|
|
switch (SrcIdx) {
|
|
case 0: FlagIndex = getOperandIdx(*MI, AMDGPU::OpName::src0_abs); break;
|
|
case 1: FlagIndex = getOperandIdx(*MI, AMDGPU::OpName::src1_abs); break;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
FlagIndex = -1;
|
|
break;
|
|
}
|
|
assert(FlagIndex != -1 && "Flag not supported for this instruction");
|
|
} else {
|
|
FlagIndex = GET_FLAG_OPERAND_IDX(TargetFlags);
|
|
assert(FlagIndex != 0 &&
|
|
"Instruction flags not supported for this instruction");
|
|
}
|
|
|
|
MachineOperand &FlagOp = MI->getOperand(FlagIndex);
|
|
assert(FlagOp.isImm());
|
|
return FlagOp;
|
|
}
|
|
|
|
void R600InstrInfo::addFlag(MachineInstr *MI, unsigned Operand,
|
|
unsigned Flag) const {
|
|
unsigned TargetFlags = get(MI->getOpcode()).TSFlags;
|
|
if (Flag == 0) {
|
|
return;
|
|
}
|
|
if (HAS_NATIVE_OPERANDS(TargetFlags)) {
|
|
MachineOperand &FlagOp = getFlagOp(MI, Operand, Flag);
|
|
if (Flag == MO_FLAG_NOT_LAST) {
|
|
clearFlag(MI, Operand, MO_FLAG_LAST);
|
|
} else if (Flag == MO_FLAG_MASK) {
|
|
clearFlag(MI, Operand, Flag);
|
|
} else {
|
|
FlagOp.setImm(1);
|
|
}
|
|
} else {
|
|
MachineOperand &FlagOp = getFlagOp(MI, Operand);
|
|
FlagOp.setImm(FlagOp.getImm() | (Flag << (NUM_MO_FLAGS * Operand)));
|
|
}
|
|
}
|
|
|
|
void R600InstrInfo::clearFlag(MachineInstr *MI, unsigned Operand,
|
|
unsigned Flag) const {
|
|
unsigned TargetFlags = get(MI->getOpcode()).TSFlags;
|
|
if (HAS_NATIVE_OPERANDS(TargetFlags)) {
|
|
MachineOperand &FlagOp = getFlagOp(MI, Operand, Flag);
|
|
FlagOp.setImm(0);
|
|
} else {
|
|
MachineOperand &FlagOp = getFlagOp(MI);
|
|
unsigned InstFlags = FlagOp.getImm();
|
|
InstFlags &= ~(Flag << (NUM_MO_FLAGS * Operand));
|
|
FlagOp.setImm(InstFlags);
|
|
}
|
|
}
|